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Satisfying Common Criteria Security Evaluation
Testing Requirements:

Two Case Studies Using a High-Assurance
Operating System

Matthew Kaplan, Paul A. Karger, Suzanne K. McIntosh
Elaine Palmer, Amitkumar Paradkar, David C. Toll and Sam Weber

Abstract—In this paper, we describe results of two case studies designed to satisfy the testing requirements mandated by higher levels
of the Common Criteria for security evaluations. These requirements include 1) Demonstrable independence of individual test cases 2)
Demonstrable coverage of both user level specifications and implementation code.
The case studies are based on a highly secure smart card operating system. In the first case study, we used automated specification
based test generation, together with fault injection, to demonstrate that self-contained test cases are independent and do not lead to
fault masking. The goal of the second case study was to demonstrate adequate code coverage, while retaining the ability to generate
expected outputs based on specifications. To that end, we first established mappings between the specification and implementation
code elements. Test cases were then generated from the user level specification to identify the executed code elements and we
attempted to use static analysis to map the unexecuted code elements to the corresponding elements in the user level specification. In
this second case study, we found that, given a sufficiently expressive user level specification, and a test generation system that is able
to effectively use such a specification, the resulting tests will cover the vast majority of the code branches that are able to be covered.
Therefore, the benefit of a feedback-directed system will be limited. We further provide evidence that the static analysis required to
generate feedback in these cases tends to be difficult, involving inferring the semantics of the internal implementation of data structures.
In particular, we observed that the internal states at the implementation level in a high security application pose significant challenges
to this mapping process.

F

1 INTRODUCTION

THIS paper reports results of case studies attempting
to satisfy requirements for testing in the upper as-

surance levels of the Common Criteria for Information
Security Evaluation [1]. These testing requirements can
be summarized as follows:

1) Ensure that testing is structured to avoid circular
arguments about the correctness of the portions of
the security functions being tested and document
any dependencies among test procedures.

2) Ensure that each security function, each of its pa-
rameters (along with their boundary values), and
negative testing based on high level specifications,
are tested.

3) Ensure that each code element implementing the
security function is tested completely.

The test dependency requirements have two conse-
quences: 1) Need to develop self-contained test cases,
where each test case in a test suite does all the set up
it needs, verifies all the expected output including any
system state updates, and cleans up after itself, and 2)
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Potential to minimize the risk of fault masking, where one
fault prevents another fault from being exposed.

Our hypothesis was that a specification based test
generation approach, such as the one reported in [2],
would be able to help satisfy these requirements. This
type of approach generates self-contained test cases that
take into account boundary values, thus providing for
generation of both positive and negative test cases for
a given specification. However, the test cases generated
using this technique may not achieve complete code
coverage.

Recent works such as DART [3], CUTE [4], and EXE [5]
have used code coverage to guide further generation of
tests to ensure branch coverage. But these approaches
generate only the test inputs that achieve the desired
branch coverage and ignore the issue of generating
expected test output (test oracles) — the ability to judge
correctness of program output. We can employ the
specification used to generate test cases to address this
oracle issue. However, to achieve the necessary code cov-
erage target using specification-guided test generation,
unexecuted code must be associated with the relevant
specifications - possibly leading to refinement of the
specifications themselves. Although the possibility of
such round-tripping has been mentioned previously [6],
not only has this not been achieved, but, to our knowl-
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edge, it has never been attempted.
Our goal was to use the specification-based test gener-

ation technique reported in [2] in conjunction with code
coverage information based on executed test cases. This
test generation approach leverages the information pro-
vided in the UML class diagram and UML use cases of
an application under test to produce a small yet effective
set of test objectives and a corresponding set of test cases.
This also addresses the issue of test oracle generation. We
call this approach feedback-driven specification-based
test generation.

As part of this work, we endeavored to demonstrate
that round-tripping between system specification and
concrete code was possible. We selected a significant
real-world codebase as the system under test in order
to provide future implementation efforts with guidance
that is based on a non-trivial example, thus relating
very directly to software generated for major develop-
ment efforts. Our results indicate that mapping concrete
implementation to user level specification is difficult
to establish. The primary factor causing the difficulty
was the state implicit in the implementation but not
described in the specification.

1.1 Motivation

Analyzing software to look for security vulnerabilities is
a challenging technical problem. Current practice relies
on a combination of visual inspection, language-specific
static analysis, detailed documentation, strict develop-
ment processes, and extensive testing (by the developer
and by the security evaluator).

Test case generation is particularly a problem for
software that is intended to be evaluated under the
Common Criteria [1]. The Common Criteria (ISO 15408)
is a standard for the independent third-party evaluation
of the security aspects of a computer system. For test case
creation, the current state-of-the-art relies on manual
technology, and even if done well, typically enables
organizations to reach only Evaluation Assurance Level
EAL4 or EAL5 (out of a possible 7) of the Common Cri-
teria. This results in high costs due to long development
cycles for the evaluated security components of systems,
and lower target levels of security certifications. Tools
that augment human analysis are required in order to
meet a growing demand for evaluated products. This
demand is driven primarily by recent mandates from the
United States and Germany, and by financial institutions
worldwide. One of the goals of our research has been to
assist in meeting the high assurance test goals.

In the software engineering arena, the increasing use
of UML (Unified Modeling Language) is making model-
based automated test generation a new opportunity
for significant productivity and quality enhancements.
However, the current model-based automated test gen-
eration technology is not adaptive i.e. there is no feed-
back from the results of the test execution to guide
further test generation. The motivation of this research

was to dramatically advance the state of the art in
automated testing, security analysis and certification.
Our goals were (1) to employ high levels of adaptive
test automation to facilitate the development of secure
products and subsystems that can meet the rigorous
testing requirements of Common Criteria EAL5 through
EAL7 and (2) to apply the resulting technology to the
world’s first smart card implementation designed to
meet EAL7. From the software engineering perspective,
the new technology would offer heretofore unavailable
predictors and metrics based on static analysis of source
code and dynamic analysis of test coverage, as well as
dynamic feedback into the test generation process based
on these metrics. On the security side, these tools would
improve the security of the target software, as well as
facilitate gathering of test measurements required for
third party security evaluations, which are mandated in
order to sell security products to the US government.

1.2 Hypothesis
In our approach, a user level specification of the expected
behavior of the application under test would be used to
generate the test cases (along with the expected outputs
for each test case). This approach is illustrated in Figure 1
below.

Fig. 1. Architecture Diagram for Feedback-Directed Auto-
mated Security Testing

Our hypothesis stated that it was possible, with
the current state of technology, to design and build a
specification-based test generation system that incorpo-
rates feedback to successively refine the tests it generates.
More specifically, the system should

1) Take as input a user-level specification of the cor-
rect behavior of the system under test. The speci-
fication should contain knowledge at the level of
normal API documentation and UML diagrams,
but no implementation details.

2) Generate a set of self-contained specification-based
tests that will cover all the expected behavior of the
system. In cases where the specification states that
the system’s behavior depends upon its current
state, the test cases will have to establish this
state. Furthermore, unlike systems which generate
random tests, the set of generated tests should be
small. Such self-contained test cases do not lead to
fault masking.
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3) The test system should execute the current set of
tests, monitoring which branches were taken by
each test.

4) The code coverage information would be fed back
to the specification-based test generator compo-
nent. The test generator would use this information
to either 1) generate a new set of test objectives and
corresponding test cases to achieve the higher cov-
erage, or 2) if necessary, refine the specification to
account for the discrepancy with the implementa-
tion, and then generate new tests that, according to
the revised specification, will likely cover branches
that were omitted by the previous set of tests.
The refined model need not correspond exactly to
the concrete implementation details. It could be an
approximate description, such as which parameters
are relevant and irrelevant to a given code branch,
to enable the system to tune its tests.

5) The process starting from step 3 will repeat until
either full code coverage is achieved or until no
further progress is made.

1.3 Organization of This Paper

The rest of this paper is organized as follows. Section 2
reviews some related prior work in feedback-directed
test generation, specification-based test generation, and
test dependencies. Section 3 describes our test subject
and methodology, and Section 4 presents our results.
These results are discussed and generalized in Section 5.
Finally, we conclude in Section 6.

2 RELATED WORK

The problem of demonstrating test independence is
similar to the one encountered when integrating and
testing object-oriented software, to decide the order of
class integration. A number of papers have provided
strategies and algorithms for deriving an integration
and test order from dependencies among classes in the
system class diagram [7], [8], [9], [10], [11]. The objective
of all of these approaches is to minimize the number
of test stubs to be produced, as this is perceived to
be a major cost factor for integration testing. Indeed,
stubs are pieces of software that have to be built in
order to simulate parts of the software that are either
not developed yet or have not yet been unit tested,
but are needed to test classes that depend on them.
Kung et al. [8] were the first researchers to address the
class test order problem and they showed that, when
no dependency cycles are present among classes, deriv-
ing an integration order is equivalent to performing a
topological sorting of classes based on their dependency
graph - a well known graph theory problem. In the
presence of dependency cycles, the proposed strategy
consists of identifying strongly connected components
(SCCs) and removing associations until there is no cycle
in the SCCs.

However, Kung and colleagues do not provide precise
solutions when there is more than one candidate associa-
tion for cycle breaking. In this case they simply perform
a random selection. Existing solutions to this problem
are based on the principle of breaking some dependen-
cies to obtain acyclic dependencies between classes. Tai
and Daniels [11] propose a 2-stage algorithm that deals
with dependency cycles. However, in cases where class
associations are not involved in cycles, their solution
is sub-optimal in terms of the required number of test
stubs. Le Traon et al. [10] propose an alternative strategy
based on graph search algorithms that recognize strongly
connected components, and that arguably yields more
optimal results. One issue, though, is that this algorithm
is not fully deterministic in the sense that, depending
on some arbitrary decision (e.g., the initial vertex (class)
of the search, and the search itself), the algorithm may
yield significantly different results.

Furthermore, since the model used does not have any
information on the kind of dependency (inheritance, as-
sociation or aggregation), this approach may lead to the
removal of an inheritance or aggregation relationship.
Kung et al. [8], as well as others before them [11], point
out that association relationships are usually the weakest
links in a class diagram, i.e., they are the links involving
the fewest dependencies and hence least complexity for
stubbing.

This research is also the first attempt to incorporate
feedback from test case executions into a process which
incorporates test generation based on user level speci-
fications. However, significant work has been reported
in the areas of code-based and specification-based test
generation, and here we present a brief overview of this
work.

Godefroid et al. [3] present DART, a tool for finding
combinations of input values and environment settings
for C programs that trigger assertion failures and crashes
when these programs are executed. DART combines ran-
dom test generation with the use of a symbolic reasoning
component for keeping track of path constraints that
capture the outcome of executed control flow predi-
cates. A constraint solver is used to determine from the
recorded path constraints how subsequent executions
can be directed towards uncovered branches. Experi-
mental results indicate that DART is highly effective at
finding large numbers of errors in several C applications
and frameworks, including important and previously
unknown security vulnerabilities.

The core approach combining concrete and symbolic
executions has been extended to accomplish two primary
goals:

1) To improve the scalability of the approach [12], [13]
and

2) To improve execution coverage and bug detec-
tion capability through better support for pointers
and arrays [4], [5], better search heuristics [14],
or encompassing wider domains such as database
applications [15].
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The same goal of generating test cases to achieve branch
coverage using genetic algorithms has been reported in
[16], [17].

Yang et al. [18] used the EXE tool reported in [5] to
detect errors in several file systems such as JFS. They
used symbolic execution coupled with random data
generated using constraint solving to detect crashes in
the file system implementation. In contrast, our work
uses user level specifications to identify deviations from
the expected behavior.

Model-Based conformance Test Generation (MBTG)
has become an area of active research [19], [20], [21],
[2]. Typically, the models are described in terms of
operations provided by the system under test (SUT)
which maintains an internal state. Each operation is
specified as a set of guarded results, and each result has a
guard condition and a set of update actions on operation
parameters and the system state.

Several MBTG techniques require the tester to addi-
tionally provide the test objective specifications to guide
the test generation process [19], [20]. Such test objective
specifications - independent from the behavior model -
offer flexibility to the tester. Several techniques use an
extended finite state machine (EFSM) as their fundamen-
tal representation for the models used in test generation
[21]. EFSMs offer convenient adequacy criteria to guide
the test generation such as State, Transition, and Pred-
icate coverage. However, these techniques do not typi-
cally address the issue of generating a verification sequence
- a sequence which enables verification of system state
(both control and data) obtained as a result of applying
each transition sequence. Petrenko et. al [22] describe
a technique for generating such sequences for EFSM,
however it is not applicable to UML object diagrams.

Kaplan et al. [2] uses UML use cases and class dia-
grams as the specification. Each use case flow has an
associated guard condition and a set of updates (to
the domain object diagram and the output parameters).
Kaplan et al. then produce suitable test objectives which
are refinements of the guard conditions on the use case
flows using a set of fault models. This test generation ap-
proach also generates verification sequences as part of the
self-checking test oracle to ensure that the object diagram
updates associated with a given flow are implemented
correctly. They use mutations on state updates to UML
object diagrams to derive an appropriate distinguishing
sequence to address the issue.

3 CASE STUDY DESCRIPTION

This section describes the system used as a target for the
case studies and the methodology used in conducting
them.

3.1 Code Under Test

The software targeted for our case study was the file sys-
tem component of the Caernarvon operating system [23].

Category # of Total Stmts Branches # of
Files Lines Func

C Header 73 16324 4994 0 0
Non-FS C 114 65038 21170 3064 393

FS C 24 15943 4778 1080 101
Total C Files 211 97305 30942 4144 494

Assembler 31 26961 8682 1049 413
Total 242 124266 39624 5193 907

TABLE 1
Caernarvon Code Metrics

We chose Caernarvon on the grounds that it is well de-
fined (there is a complete and accurate specification), and
it is of a suitable size (large enough to give meaningful
results, but not so large as to be unwieldy). Caernarvon
is a high assurance operating system that was under
development at IBM T.J. Watson Research Center for use
in embedded solutions such as smart card applications.
Our target hardware platform was a smart card chip,
and operating systems designed to run on such devices
must be optimized to use very little memory because
a typical smart card chip might only have 8K bytes of
RAM and 128K bytes of persistent storage.

Because the Caernarvon operating system is intended
to pass the highest assurance level (EAL7) of the Com-
mon Criteria [1], there is a very strong requirement to
keep the code as simple as possible. To assist in reducing
complexity, Caernarvon is designed as a strictly layered
operating system, with upward calls forbidden.

Table 1 shows the size of the entire Caernarvon op-
erating system, with the file system layer broken out,
measured in total lines of code (including comments and
white space), numbers of C and assembler statements,
and the size of header files (declarations). The File
System is written entirely in C. The majority of the lines
of assembler code are found in the cryptographic library.

At a high level of abstraction, the Caernarvon operat-
ing system provides a well-defined set of services, imple-
mented as supervisor calls. These services are grouped
into logical subsets such as the cryptographic services,
the key management services, the file system, etc. For the
purpose of this paper, we considered only the file system
services, and modeled the behavior of each file system
service as a UML use case. The Caernarvon operating
system provides a variety of security features for the file
system, including mandatory and discretionary access
controls and storage quota controls. The file system also
provides facilities to map files into virtual memory – this
feature was excluded from our model.

Externally, the Caernarvon file system looks much like
a conventional file system, with typical file create, open,
read, write, etc calls. Internally, though, the implementa-
tion is very different, due to the extremely limited mem-
ory space on a smart card. The Caernarvon file system
does not actually store directories at all. Instead, each
file contains a pointer to its parent directory. Path name
translation is carried out by searching all of memory for
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the file whose name and parent name matches the path
name. This saves a significant amount of space, while
the performance cost is quite small, because there is not
very much memory through which the system has to
search. The implication of this for testing is that the test
cases generated based on system specification may not
be able to cover the entire low-level implementation.

The Caernarvon file system operations were com-
plicated by the need to consider the relative priority
of errors. If an operation encounters multiple errors,
returning the wrong one could leak information, causing
a security problem. For example, when a file creation
operation is attempted, the fact that the file already exists
must not be divulged unless the user has permission to
read the directory.

3.2 Methodology

Briefly, our methodology was to go through all compu-
tations that an idealized feedback-directed test system
would entail, doing hand-simulations wherever neces-
sary. In detail, the steps were:

1) Creating UML models of the external interfaces
to the file system (specifically, parameters, success
results, and error conditions of the top level super-
visor calls), as well as modeling the system’s state
and semantically-significant object classes.

2) Generating test objectives, which formally express
tests for specific fault sensitivity and are intended
to identify particular faults (e.g. attempt to write to
a file open only for read).

3) Generating tests that fulfill the test objectives.
These are ultimately expressed in the actual test
execution language (in our case, Ruby).

4) Grouping the tests into categories (e.g. all tests of
”file write”).

5) Running the tests, capturing data on which C
blocks were executed, partially executed (because
of multi-part conditionals), and not executed. This
activity includes:
• Mapping the executed machine language in-

structions back to the C source using the output
of the development environment.

• Capturing data on which lines were unique to
each test, which lines were common to multiple
tests, and which lines were not executed by any
tests.

• Excluding lines that are part of pre-testing
setup and post-testing verification, and not part
of the lines of interest. For example, in order to
open a file, it must be created first. The lines
relevant to creating a file must be excluded
when testing file opening.

6) Analyzing the C source code to determine why the
unexecuted lines were not executed and identifying
what additional information is required as feed-
back to the test generation system, so as to force

the execution of the unexecuted lines. This step
entailed the following:
• analyzing the branch condition that enveloped

the unexecuted lines.
• analyzing inter-procedural control and data

flow.
• establish or reject the existence of a linkage

from the immediate branch condition through
outer branch conditions, all the way to top
level operation parameters and/or global sys-
tem state.

• locating all transformations on that top level
operation parameter and/or global system
state, including inter-procedural transforma-
tions, that would influence the content of the
feedback ‘message’.

Some of the steps above were performed automati-
cally, some manually, and some were simulated. Specif-
ically, step 1 is a task typically done by a human expert,
and would continue to be done this way in the final
system. Steps 2, 3, and 4 would normally be done by an
automated test generation system, but were simulated
using manually-written and hand-selected tests. Step 5
was automated with custom-written tools that analyzed
the raw data from our unusual development environ-
ment (the smart card emulator). Step 6 was performed
manually.

The intention of this case study was to investigate
the feasibility of automating step 6. Steps 1 through 5
may provide valuable feedback information to a human
expert, but it is step 6 which would be the focus of
automated feedback. In our second case study, we used
the same target environment and test cases to investigate
the presence of fault masking, which can be observed
independent of the presence or absence of any type of
feedback mechanism.

3.3 Modeling Details
As described above, the first step in our experiment was
to create a model of the Caernarvon file system based
upon the Caernarvon specification. This would be given
to our simulated specification-based test generation tool.
Our model was UML-based, with augmentations to
enable expression of the full Caernarvon file system
semantics. As such, it was at least as expressive as the
models used by any specification-based testing tools that
we are aware of. As it was able to fully describe the
Caernarvon file system, any failure of our hypothetical
system would not be due to limitations of our modeling
language.

A UML domain model described the semantic entities
in the Caernarvon file system, as shown in Figure 2.
It consists of 5 classes. Classes File, and Directory
inherit from an abstract class FileSystemObject. A
Directory may contain other FileSystemObjects
(and hence both other Directory and File instances).
This is depicted by the parent-children association
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Fig. 2. Domain model of Caernarvon FS

between the two classes. A special instance of the
Directory class - called root - does not have a par-
ent. A FileSystemObject consists of blocks of Data
(represented as a Sequence). Also, a FileSystemObject
may be referred to by a Handle object. Each Directory
instance has a quota attribute to indicate its allocated
maximum amount of storage space and a quotaLeft
attribute to indicate the remaining available space.

The other part of our model described the file system
operations, including their effect upon the system state.
UML use case diagrams were greatly extended by a
mini-language describing the conditions under which
every distinct behavior of a given file system operation
occurred, and the state changes that result from said
operation. A parser for this mini-language was produced
to assist us. The model describing the read operation
is shown in Figure 3. As can be seen, steps 1 and 2
describe the normal, successful, operation of the read
operation. e1.1 through e1.4 are the exceptions that
can be raised after step 1. Each exception has a brief
English language description of the exception’s cause,
a predicate stating under what conditions the exception
will occur, and finally a description of what computation
the exception processing will perform. For example,
e1.1 describes what happens when a read past the
end of file is attempted. In this case, the computation
described in step e.1.1.1 occurs, which sets the return
code appropriately, and outputs the remainder of the
file’s data and the number of bytes read. In this example,
each exception performs only one step of computation,
but in general many steps can occur, and other excep-
tions raised during exception processing.

As can be seen, our use case specifications were com-
putationally complex.

3.4 Test Generation and Execution Details

After completion of the file system model, we generated
tests based upon it. Test generation proceeded in two
stages simulating the techniques reported in [2]. First,
sets of test objectives were created. Each test objective was
described in terms of the model entities, a system state,
and a test operation to be performed when the system
is in that state. For example, one test objective would be

Use Case FS_Read:
usecase Caernarvon file system read
precondition none

1. Ruby inputs file handle, byte count
InputParameters:
Declaration fileHandle: FileHandle
Declaration byteCount: Integer

2. System outputs requested number of bytes & QSVCgood
OutputParameters:
Declaration readData: Integer

Value: readData:=SUBSEQUENCE(
fileHandle.file.data,fileHandle.filePointer,
fileHandle.filePointer+byteCount)

Declaration returnCode: ReturnCode
Value: returnCode:=ReturnCode.QSVCgood

e1.1. exception the data in the file isn’t long enough
to read count bytes starting with file pointer

Predicate: fileHandle.filePointer+byteCount>
fileHandle.file.data.COUNT()

e1.1.1. System returns partial data, count of bytes
read, and QSVCoutside

OutputParameters:
Declaration readData: Integer

Value: readData:=SUBSEQUENCE(
fileHandle.file.data,fileHandle.filePointer,
fileHandle.file.data.COUNT())

Declaration returnCode: ReturnCode
Value: returnCode:=ReturnCode.QSVCoutside

Declaration bytesRead: Integer
Value: bytesRead:=fileHandle.file.data.COUNT()

-fileHandle.filePointer
e1.2. exception the file referred to by file handle

has been deleted
Predicate: fileHandle.file.deleted

e1.2.1. System returns QSVCdeleted
OutputParameters:
Declaration returnCode: ReturnCode

Value: returnCode:=ReturnCode.QSVCdeleted
e1.3. exception the file handle is not valid

Predicate: fileHandle=null
e1.3.1. System returns QSVChandle

OutputParameters:
Declaration returnCode: ReturnCode

Value: returnCode:=ReturnCode.QSVChandle
e1.4. exception arithmetic overflow on buffer position

Predicate: fileHandle.filePointer+byteCount>
theFileSystem.mAXINT

e1.4.1. System returns QSVCbadparm
OutputParameters:
Declaration returnCode: ReturnCode

Value: returnCode:=ReturnCode.QSVCbadparm

Fig. 3. Use case Model for Read Operation

to invoke the file open operation on a file that doesn’t
exist. Secondly, for each test objective, an actual test was
created that performed the operations necessary to create
the desired initial state, and then executed the operation
under test.

Test objectives capture information about the state and
set of parameter values necessary to trigger desired be-
havior. In order to test each operation’s error conditions,
we generated a test objective for each exception, consist-
ing of the exception’s predicate. If a disjunction occurred
in the exception’s predicate, then the exception was split
into two, and objectives generated for each subpredicate.
Objectives to test the normal execution were generated
by conjoining the negation of each of the exception
predicates, and splitting the resulting predicate at each
disjunction. The domain model also implies “interesting”
system states which we want to be tested. For example,
given a recursive model structure, one wants to test
the system in states where the structure recurses zero,
one, and some other positive number of times. The
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special states so generated are composed with all of the
objectives created by examination of the exceptions. That
is, if there are three special states identified, then we
should try to test that each exception will occur in each
of those states.

Some objectives resulting from the above algorithm
are self-contradictory. For example, since the state with
no files is a special state, and attempting to read more
data than a file contains is an exception, we would
have an impossible test objective of attempting to read
more data than a file contains when there are no files
in the system. These objectives were discarded. For
the remaining objectives, a sequence of operations was
created and a set of parameter values selected so that
the test objective was satisfied. In cases where certain
values were under-specified (such as the name of a file
to be read), arbitrary values were chosen. It should be
observed that creating a sequence of operations which
will produce a desired system state is a non-trivial
problem. In general this problem is undecidable for
any Turing-complete specification language. Neverthe-
less, we assume that our idealized test generation tool
uses planning algorithms which can solve such problems
under common circumstances.

In order to be able to generate a set of self-contained
test cases, We define 3 kinds of dependencies between a
pair of operations:

1) Set Up, which arises when an operation needs to
be invoked with a successful result before another
operation can succeed,

2) Verification, which arises when an operation needs
to be invoked in order to verify behavior of another
operation, and

3) Clean Up, which arises when an operation needs
to be invoked to reverse the state update effects of
another operation.

We derive these dependency relationships among a
set of operations, and use a two-phase topological sort
of these dependencies to derive the necessary self-
contained test cases

Each test was executed on the test system, with
monitoring done to determine which instructions were
executed. Instructions that were executed in order to
create the proper initial state for a test were disregarded.
This information was then analyzed to determine which
lines of the C source code were not executed.

4 CASE STUDY RESULTS

4.1 Fault Masking Case Study Analysis
In support of our experiments, we injected known faults
into the stable implementation of Caernarvon available
to us by modifying the source code. Fault injection is a
commonly employed technique to validate hypotheses
in testing experiments.

We performed testing of the Caernarvon Builds with
Injected Faults (BIFs) by running a standard set of test
cases (267 of them) against each build. These test cases

target all Caernarvon operations, i.e. they are not limited
to testing the File System services only.

For every build, we required that all standard test
cases must have been attempted and a clear pass or fail
indication received. These criteria ensured that both the
test environment and the SUT remained healthy in areas
outside the scope of the injected fault. We discarded the
BIFs (and the associated faults) that prevented the full
suite of test cases from completing.

Another utility, the Caernarvon Fault Injection Tool
(XFIT), augments the basic Caernarvon test environment
already described. In order to facilitate the anticipated
high volume of testing, XFIT supports:

1) Injection of single faults and fault combinations
into Caernarvon builds;

2) Automatic generation of Caernarvon BIFs;
3) Automatic testing of BIFs;
4) Automatic storage of test results for analysis.
XFIT provides a simple external interface to facilitate

the fault injection process. A user/tester may select
any combination of faults and, through a menu-driven
interface, one can initiate the automatic generation and
test of Caernarvon BIFs. XFIT collects test results, unam-
biguously associating the results with the faults injected.

In preparing for our fault injection experiments, our
first task was to identify the types of faults to be injected
into the implementation of Caernarvon File System ser-
vices. An initial list of plausible file system bugs was
produced. To avoid bias, this list was produced from
the file system services specification document alone by
one of the authors who was not familiar with either the
implementation details or the existing Caernarvon test
suite.

Of this list, fifty faults were selected and implemented.
Although all of them could have been implemented, we
preferred faults that:

1) Required minimal changes to the existing code, and
2) Could be fully realized without the need to modify

multiple software components.
We injected each of the fifty faults individually, gen-

erating fifty BIFs. We quickly found that some of the
faults we had injected interfered with Caernarvon’s ini-
tialization sequence - which creates, among other things,
the root directory of the file system. To combat this,
we introduced a flag for gating the injected faults such
that the injected faults took effect only after Caernarvon
entered its steady state.

Gating in place, we proceeded to run the full suite of
test cases against this collection of BIFs. We discovered
that fourteen builds either caused catastrophic failures
or failures that occurred early in the setup stage of a
test case. In both of these scenarios, we found that only
a portion of the standard test suite had run. As stated
earlier, we required that all test cases run and yield a
clear pass or fail indication. Consequently, these fourteen
BIFs (and the associated injected faults) were removed
from our target set.
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Our final fault set consisted of thirty six faults quite
representative of common programming errors espe-
cially prevalent in file processing systems. For example,
failure to:

• verify path or filename is legal
• charge or return quota properly
• create file of correct size or file type
• prevent operations illegal for a given file type or

mode
• record file state information accurately
• initialize/update/use the file pointer properly
• trap a read beyond the end of file
In Table 2, we illustrate some of the injected

faults. The column labeled Operational Code - No
Fault shows the fragment of correct code, and col-
umn labeled Code with Injected Fault shows the
code corresponding to the injected fault. For example,
Fault_StartRdAtWrongAddr in Table 2 causes an off-
by-one error with respect to the file pointer during a
file read operation. We inserted code that directly decre-
ments the file pointer prior to calling the low-level read
operation. Other faulty code shown in Table 2 causes
side effects such as:

• Reducing the correct file size prior to creating the
file.

• Neglecting to update quota (achieved by comment-
ing out certain code).

• Returning the wrong amount of quota.
Having identified our target set of single faults and

scrutinized the single fault seeding results, we turned
our attention to experimenting with paired fault seeding.
We paired inter- and intra-service faults and then ran
the standard 267 test cases. When we refer to paired
inter-service faults, we are referring to two faults, each
of which occurs in implementations of different ser-
vices. When we refer to paired intra-service faults, we
are referring to two faults, both of which occur in the
implementation of the same service.

Once again, we scrutinized the results and discarded
fault pairs that did not meet our criteria - namely, all
test cases must run and all test cases must give a clear
pass or fail indication. Our paired fault set consisted
of 207 paired fault BIFs (135 inter–service, 72 intra–
service). Together with the results of single fault testing,
we would use the output of these tests to search for signs
of fault masking.

We compared the results obtained for each paired
fault tested, to the results obtained when each fault
comprising the pair was individually tested. To claim
absence of fault masking, we needed to demonstrate
that the union of test cases that failed for each of the
two faults tested individually was present in the results
obtained when the two faults were paired up and tested.

The result of this analysis provided us with several
candidate cases of fault masking - it appeared we could
not claim absence of fault masking. Upon further inves-
tigation, we were able to characterize these candidate

cases as belonging to one of two categories of masking
which were actually trivial, the direct result of the pres-
ence of opposing faults. The two categories are:

1) Masking that occurs from the presence of two faults
that cancel each other out.

2) Masking that occurs from the presence of two faults
that cannot co-exist logically.

As an example of the first category, consider enabling
two faults: Fault_Add1 and Fault_Sub1. Enabling
Fault_Add1 demands that a pointer be incremented by
one. Enabling Fault_Sub1 demands that same pointer
be decremented by one. If we include both faults, the
net result is an unchanged pointer. We noted five such
cases. Not surprisingly, we observed cases such as this
only with intra-service fault pairs where the fault pairs
are likely to modify code within the same module.

As an example of the second category, consider
enabling two faults: Fault_Wr2RdOnlyHandle
and Fault_Wr2ClosedHandle. Enabling
Fault_Wr2RdOnlyHandle requires that the handle
to be written to be open in read-only mode. Enabling
Fault_Wr2ClosedHandle requires that the handle to
be written to be closed. The prerequisite state of the file
handle cannot be both open and closed. Therefore, this
is an illogical combination. We noted nine such cases.

We also observed other interesting results not associ-
ated with fault masking. In these results, we discovered
that one fault pair caused test cases to fail even though
these test cases had passed when we applied each of the
two faults of the pair individually. Six test cases failed
in this instance. One of the test cases, a File Seek test,
failed on file open because we reached the maximum
number of open handles and, due to one of the faults
injected into the build, we prevented file handles from
being marked as closed. The other five test cases failed
because they attempt to create a file that already exists.
Normally, the failed File Seek test, which had created
the same file, would have deleted it. However, owing to
its own failures, the File Seek test had not deleted that
test file. This implies that for a test case to be truly self-
contained it is not enough to have all clean up fragment
in the test cases, its placement within the test case is also
important.

4.2 Feedback Case Study Analysis
The most critical component of this experiment was
the process of determining, for every unexecuted code
branch, whether or not it could be generated via a
reasonably feasible feedback. To accomplish this, we
started with two basic analysis techniques. First, for
every code branch that leads to an error condition, we
would do static slicing to determine which structures
influence the test condition. These slices would be com-
pared, to isolate the implementations of model elements.
This information would be augmented by information
inferred by the code’s loops. Secondly, we would do data
flow analysis, determining which data structures are
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Id Operational Code - No Fault Code With Injected Fault

Fault_StartRdAtWrongAddr rc = PSM_ReadObject (DataMemId, rc = PSM_ReadObject (DataMemId,
Offset+FcbEntry->Position, (Offset+FcbEntry->Position)-1,

CntData, (USHORT_P)Buffer) CntData, (USHORT_P)Buffer)

Fault_CreFileWrongSize rc = PSM_CreateObject (MS_FILE | MemType, rc = PSM_CreateObject (MS_FILE | MemType,
HdrSize + FileSize, (HdrSize + FileSize)-1,

&HdrId) &HdrId)

Fault_QuotaNotCharged RelevantQuoteMemId = ParentMemId; RelevantQuoteMemId = ParentMemId;
AvQuota = Quota; AvQuota = Quota;
rc = fsManagemQuota(&RelevantQuoataMemId, /* rc = fsManagemQuota(&RelevantQuoataMemId,
&AvQuota, QT_SUB) &AvQuota, QT_SUB)*/

Fault_WrongQuotaCharged AvQuota = HdrExt.qc.Quota; AvQuota = HdrExt.qc.Quota - 1;

TABLE 2
Faults Injected into File System Implementation

influenced by each of the parameters to the service call.
As we know the mapping between service parameters
and model elements, we could therefore detect which
data structures pertained to each model element. Further,
for those code branches that could not be reasonably
covered via feedback, we had to decide whether or not
such a failure should be considered evidence against our
hypothesis.

The latter point deserves careful consideration. Al-
though at first glance it might appear that all uncover-
able code, i.e. code that was not exercised by a given test,
represents a rejection of feedback-directed test genera-
tion, this would be too high a bar to be realistic. We argue
that there are two common cases of legitimate uncovered
code: low-level semantics, and modeling boundaries, as well
as one rare case: impossible cases.

In almost any real system, there are conditions which
are of too low a level to be feasible or useful to be
represented in a system model. For example, most pro-
grams are subject to out-of-memory errors. To com-
pletely model such an error, i.e. be able to determine
exactly when the system will generate a memory error,
would require not only a specification of the size of all
of the program’s data structures, but details about such
things as the malloc/free block consolidation policies.
Not only would such a detailed specification almost
certainly be economically infeasible, it would also be un-
desirable on the grounds that such a specification would
tie the program to a particular system and compiler
version. In our test system, code to deal with both out-of-
memory conditions and hardware failures fell into this
category. The code fragment below demonstrates this
case, where line 463 is not executed in any of our tests
since this requires injection of EEPROM errors.

...
458 rc=PSM_ReadObject(MemId,//PSM_HANDLE handle
459 sizeof(IFINFO),//offset into memory object
460 HdrExtSize, // length
461 (USHORT_P)&TempExt);// output buffer
462 if (rc !=QSVCgood)
463 return(rc);
...

In any modeling endeavor, decisions must be made
about where to draw the line between system aspects
that should be modeled and those that should not. Very
rarely is an entire system modeled, but rather coherent
subsets. Our test case was specifically limited to the file
system, for example, rather than the entire OS. Further,
the file system had operations for memory-mapping
files, and this functionality was omitted because the
successful modeling of these operations would require a
very low-level model. Code to deal with such excluded
functionality does not need to be covered. As a result,
we had to determine whether any uncovered code was
the result of any omitted functionality.

A probably rare occurrence is what we call “im-
possible” conditions. Consider, for example, password
checking code. Commonly, such code performs a
cryptographically-secure hash on the input and com-
pares it to the stored hash of the correct password.
An automatic test generation program, in order to test
the “password correct” execution path, would have to
break the secure hash algorithm and thereby determine
the correct password. Naturally, this is computationally
impossible.

Before we obtained any experimental data, we
planned algorithms for generating feedback. Although
we were open to any techniques that would become
apparent upon viewing the experimental data, the prior
planning enabled us to not only attack the data system-
atically, but also discuss what inferences are infeasible,
without being biased by the actual data.

We observed that error conditions provided signifi-
cant information about the program structure. An error
condition that corresponds to a certain state element
being improper has to be implemented via accesses to
that element. Therefore, the test conditions leading to
that code branch, and the computations in the code
path leading to that test which affect the test’s outcome
must include the data structures that implement that
model element. Further, by comparing the code branches
between different error conditions, one can refine our
inferences about the structure meanings.
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We also expected that recursive model elements would
be implemented via loop or recursive structures. There-
fore, we could attempt to infer the implementations
of such structures by examining the conditions being
looped over.

4.3 Feasibility of Mapping
The process of generating test objectives and the tests
to meet them resulted in 63 objectives and an equal
number of tests, as shown in Objectives column in Table 3.
The number of objectives for each operation can be
considered to be a measure of the complexity of its
specification. For example, Create could produce many
exceptions (file already exists, out of quota, no permis-
sion, and so forth), while Close had few.

The execution of our tests resulted in a total of 142
uncovered or partially covered code blocks. Table 3
contains a breakdown of them by operation.

Automatic refinement of the model to generate addi-
tional test cases is what we define as the opportunity
for automated feedback. As can be seen in Table 3, only
19 of them, or 13%, were classified as opportunity for
automated feedback. The non-opportunity cases repre-
sented those which were too low-level to be feasible,
places which were beyond our modelling boundaries,
and impossible conditions. The last did not occur in
our case study. The relatively small opportunity was
unexpected, and for some purposes this alone would
indicate that feedback-directed test generation was not
sufficiently profitable.

As we progressed through our code inspection, we
found it revealing to sort the lines representing oppor-
tunity into three sub-categories: cases that necessitated
creating the proper system state, cases that involved
obtaining certain parameter values, and those cases that
involved both state and parameters.

The one parameters-only case consisted of a test for a
special case, which simply compared one of the function
parameters to a constant. The code fragment below
demonstrates this case, where line 224 is not executed
since there is no test for ip->PathLen == 0.
...
223 if (ip->PathLen == 0)
224 return(RC_CannotDeleteMF);
...

Here, ip->Pathlen is a field in the structure passed
as an argument to the top level operation invoked from
the external environment. If the model corresponding to
this top level operation also had an input parameter that
represented the same information, the necessary map-
ping to the model parameter would be straightforward.
In this case, the model would not need to be refined to
generate the extra test case. Instead, a new test objective
corresponding to the predicate would be sufficient to
generate the necessary additional test case to cover the
branch.

The cases that involved state, however, turned out to
be problematic. One of the actual examples considered

occurred when testing the Delete operation, whose pur-
pose is to delete files. This operation starts executing
the function FileDelete, which, in turn, can call the
function fsDeleteFile. A branch in this latter function
isn’t taken. This code is shown below:
startidx=0; while (1) {
FCBEntry = fsSeekMemIdinFCB(MemID,

startidx, PROG_NO_PID);
if (FcbEntry == 0)
break;
... unexecuted lines ...

}

In order to understand how to cover these unexecuted
lines, either a human or an automated system has to
determine that:

1) The MemId parameter to fsSeekMemIdinFCB is
an internal representation for the file whose name
is passed into the Delete operation,

2) Because the third parameter to
fsSeekMemIdinFCB is PROG_NO_PID, this
while loop will cause fsSeekMemIdinFCB to
examine all file handles held by all users, and

3) fsSeekMemIdinFCB will only return a non-zero
result if a file handle happens to be both open and
referring to the file represented by MemId.

In fact, these lines can be executed only if someone
(not necessarily the caller) has opened the file to be
deleted. Clearly, this requires detailed understanding of
the internal representation of file handles. The likelihood
of automatically deciphering this is made even more
remote when we observe that the specification of the
Delete operation does not even mention file handles or
the Open SVC – this code is not actually necessary to
implement the delete functionality, but exists to optimize
the read and write SVCs.

Space considerations prevent us from displaying more
system code, and therefore we will content ourselves
with higher-level discussion about feedback generation
obstacles that we discovered.

The Caernarvon filesystem was designed to store its
data in relatively small EEPROM or flash memories.
Filesystem operations tend to fragment memory, mean-
ing that filesystem data has to be relocated in a garbage-
collector-like fashion. As a result, each file object has an
identifier, and references to other objects are made by
these identifiers, not by pointers. In order to locate an
object via its identifier, the system performs a linear scan
of memory until it finds the correct entry.

Additional complications arise with the Create op-
eration (and some others), as a result of the quota
functionality. A check that there is sufficient quota must
be performed before every file creation. Our model,
like most filesystem implementations, describes this as
comparing the requested quota to a “quotaLeft” field.
However, in order to save space, the Caernarvon filesys-
tem does not store this value but instead computes it
by walking through the subtree, counting the quota
actually used, and subtracting it from the quota limit.
Such implementation departures from a user-level model
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no opportunity opportunity
uncovered model

Objectives blocks low-level boundary impossible parameters state both
Create 17 50 21 27 0 0 0 2
Open 16 27 10 12 0 0 0 5
Read 8 13 7 4 0 0 1 1
Write 7 15 7 4 0 0 0 4

Tell 7 2 1 1 0 0 0 0
Close 3 0 0 0 0 0 0 0

Delete 5 35 10 19 0 1 0 5
Totals 63 142 56 67 0 1 1 17

TABLE 3
Coverage Statistics

are not only common in general, but actually usually
considered desirable as they provide an independent
means to verify an implementation’s correctness.

We argue that these obstacles make the use of static
analysis to produce user-model refinement infeasible
at the current state of technology. Shape Analysis (as
described in [24] and similar work) is an active re-
search area that attempts to determine whether code
that uses heap-allocated memory correctly implements
higher data structures such as linked lists and trees. This
body of work provides an illuminating comparison to
our mapping problem.

Currently, Shape Analysis is at the level of deter-
mining whether list and tree implementations that use
pointers agree with a given low-level specification. In
our case study, we have to infer meaning from code in
which references are not pointers but identifiers, deduc-
ing that memory scans are equivalent to dereferences,
and overcome the fact that the filesystem tree implemen-
tation does not represent connections between a direc-
tory and its content. Furthermore, our model describes
only a high-level API, not the low-level implementation
functions. Even though it would suffice for feedback
to give only approximate answers, it is still the case
that generating feedback in our case study would be
considerably harder than Shape Analysis. Since doing
Shape Analysis is itself considered a difficult research
problem, we conclude that our case study code is not
amenable for feedback-directed testing.

5 DISCUSSION

In this section, we discuss the negative results obtained
in the feedback case study. Prechelt [25] has argued
that too few negative results are published in this field,
and that this has resulted in losing insights that such
work provides. We observe that in previous publications,
round-tripping has been proposed and sometimes as-
sumed to be trivial. The results of our case study show
that this problem is not only non-trivial, but also has
serious barriers to success. In this section we discuss how
generalizable these results are.

While our results may not be applicable to other
situations, we do not believe that the results of this

case study are generalizable to other filesystems. Most
other filesystems have APIs that specify more low-level
behavior (like inodes), and have implementations that
are much closer to the specification.

The primary cause of our reverse-mapping difficulties
was the use of state. We distinguish between two classes
of state: explicit and implicit. Explicit state is that which
is articulated in the system specification and included
in the system model. In our test case, this includes
the directory structure, the file names, and so forth.
Implicit state is that which exists in the implementation
but which is at too low a level to be described in the
specification. In our test case, this includes how the
file data is divided into blocks of memory. In other
applications this would include such things as caches
and internal id numbers.

Explicit state is clearly a more tractable venue for
generating feedback than implicit state. This is true be-
cause in the case of explicit state, one has available both
the specification of an entity and the code that directly
implements that entity. Additionally, we do not need
to prove a correspondence between the code and the
specification, we merely need heuristics that are likely to
fruitfully guide further test generation. This is a closer
match to Shape Analysis. In our case study, however, the
uncovered code involved implicit state.

Additionally, we could deduce little information about
the implementation code because error conditions are
a major source of semantic information, but all error
checks in the code happened very early in the code
paths.

Error-checking early is a well-recognized best secure
coding practice: any unexpected input should be rejected
as soon as possible in order to prevent it from affecting
the system state, possibly introducing a vulnerability.
Therefore, we expect that most systems where security
is a concern will do likewise.

We also argue that implicit state is not atypical. Caches
represent implicit state, as do data records with id fields.
Implementations that use such are not uncommon in
medium or large systems. Although it is premature to
conclude a-priori that feedback-directed testing is not
feasible for these systems, we feel that our results do
raise doubts.
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6 CONCLUSION

We have described results of two case studies designed
to satisfy testing requirements as mandated by higher
levels of Common Criteria for security evaluations.
These requirements include 1) Demonstrable indepen-
dence of individual test cases 2) Demonstrable coverage
of both user level specifications and implementation
code.

We conducted two case studies, both based on the
same highly secure smart card operating system. In
the first case study, we developed an approach to au-
tomatically generate self-contained test cases based on
specifications. We used such self-contained test cases to
demonstrate that self-contained test cases are indepen-
dent and do not lead to fault masking.

In the second case study, our goal was to demonstrate
adequate code coverage, while retaining the ability to
generate expected outputs based on specifications. We
first established mappings between the specification and
implementation code elements. We then used test cases
generated from the user level specification to identify
the executed code elements and attempted to use static
analysis to map the unexecuted code elements to the
corresponding elements in the user level specification. In
this second case study, we found that, given a sufficiently
expressive user level specification, and a test generation
system that is able to effectively use such a specification,
the resulting tests will cover the vast majority of the
code branches that are able to be covered. Therefore, the
benefit of a feedback-directed system will be limited. We
further provide evidence that the static analysis required
to generate feedback in these cases tends to be difficult,
involving inferring the semantics of the internal imple-
mentation of data structures. In particular, we observed
that the internal states at the implementation level in a
high security application pose significant challenges to
this mapping process.
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