RC 24687 (W0811-037), 5 Nov 2008
Computer Science

IBM Research Report

Design of a Secure Smart Card Operating System
for Pervasive Applications

Paul A. Karger, David C. Toll, Elaine R. Palmer,
Suzanne K. McIntosh, and Samuel M. Weber

IBM Research Division
Thomas J. Watson Research Center
P. O. Box 704
Yorktown Heights, NY 10598, USA

Research Division
Almaden — Austin — Beijing — Delhi — Haifa — T.J. Watson — Tokyo — Zurich

Limited Distribution Notice: This report has been submitted for publication outside of IBM and will probably be
copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the
transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer
communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies
of the article (e.g., payment of royalties). Copies may requested from IBM T.J. Watson Research Center, 16-220, P.O. Box 218,
Yorktown Heights, NY 10598 USA (email to reports @us.ibm.com). Some reports are available on the internet at
http://domino.watson.ibm.comvlibrary/CyberDig.nsf/home.

This paper has been submitted to the Seventh Annual IEEE International Conference on Pervasive
Computing and Communications (PerCom 2009)

Design of a Secure Smart Card Operating System
for Pervasive Applications

Paul A. Karger, David C. Toll, Elaine R. Palmer, Suzanne K. McIntosh and Sam Weber
IBM Corporation, Thomas J. Watson Research Center
P. O. Box 704, Yorktown Heights, NY 10598, USA
(karger, samweber) @watson.ibm.com (toll, erpalmer, skranjac)@us.ibm.com

Abstract—The ever-increasing computational power of smart
cards has made them feasible for use in pervasive applications
such as electronic passports, military and public sector identi-
fication cards and cell-phone based financial and entertainment
applications. However, such applications require a secure environ-
ment, which can only be provided with sufficient hardware and a
secure operating system. In this paper we argue that smart card
platforms pose additional security challenges when compared
to traditional computer platforms. We discuss our design for
a secure smart card operating system, named Caernarvon, and
show that it addresses these challenges, which include secure
application download, protection of cryptographic functions from
potentially malicious applications, resolution of covert channel
issues, and assurance of both security and data integrity in the
face of arbitrary power losses.

I. INTRODUCTION

Credit-card sized computers, called smart cards, are in-
creasingly available and their computing ability is increasing
at a fast rate. Their ability to perform computation, instead
of just storing data like standard credit or memory cards,
makes them suitable for applications where card readers
need authentication before accessing card data, or where a
transaction has to occur without access to a central authority.
Currently, smart cards are being used for both civilian and
military identification cards, for electronic passports, and cell-
phone based financial and entertainment applications. For a
good overview of smart card technology in general, see [28].

As the prime uses of smart cards are identification, autho-
rization and encryption, it is crucial that sufficient trust be
established between different applications executing on the
same card. The lack of a trusted secure operating system for
smart cards has resulted in users having a “necklace of cards”,
each one hosting a different application. The Caernarvon
project was started to create such a secure smart card operating
system. An overview of the Caernarvon system can be found
here [34].

In this paper we argue that secure operating system develop-
ment provides challenges as well as opportunities for pervasive
systems. Two major areas of the security aspects of the
Caernarvon operating system have already been published —
the security model [30] and the authentication protocol [31],
both of them describing the platform-independent system
aspects. This paper, in contrast, will focus on the challenges
and solutions related to pervasive platforms in general and
smart-card devices specifically.

A. Background — Smart Cards

Secure operating systems research for traditional computers
has a long history. However, hardware and protocol issues pose
additional challenges for secure pervasive systems.

Besides the weak processing capabilities and small memo-
ries of these devices, until recently their CPUs did not offer
memory protection or separate supervisor and user states [22].
Without these features, an operating system cannot prevent
untrusted code from taking over the entire device. Although
some currently-used chips do have these features, hardware
issues regarding power and memory technology remain.

Pervasive devices, by their nature, have limited power
sources. Smart cards do not have any self-contained power
and are entirely reliant on current supplied by their readers,
which can be removed at any time. Even devices which do
contain batteries are subject to sudden failures. When power
is removed, any in-progress storage writes will fail, scrambling
the relevant storage locations. Attackers can make use of this
fact by removing power at critical moments.

Pervasive devices generally use EEPROM or flash memories
to hold data when the device is off. Memory locations in both
of these technologies will fail if too many write operations are
performed, and secure systems have to defend against attackers
deliberately causing failures at critical locations.

Turning our attention to protocol issues, smart cards are
constrained by pre-existing specifications, of which the most
important is ISO 78164 [19]. This specification defines the
application programming interfaces (APIs) between a card and
its reader using Application Protocol Data Units (APDUs).
There are two kinds of APDUs — command APDUs that go
from the reader to the card, and response APDUs that return
results. Of particular note is the “SELECT” APDU which
instructs the card to execute the application which is specified
by the command’s argument. (See Section II-B.)

Although 7816—4 does not specify the internals of a smart
card operating system, it has implications on the file system
design. Smart card filesystems are hierarchic, like those of
many conventional operating systems. However, the smart card
industry uses its own terminology for many of the common
components. The unique root of the file system is called the
“MF” (Master File). DFs (Dedicated Files) act as directories,
while EFs (Elementary Files) are basic data files. The MF and
each DF can contain EFs and DFs. Each MF, DF and EF is

given a 16-bit file id, rather than a text name as in most other
operating systems. Each application is associated with a DF
(not a file, as one might expect), but not vice-versa.

B. Background — Security Policy Models

Security policy models can be broken down into three major
categories, listed in order of complexity:

o Preventing unauthorized disclosure of information,
« Preventing tampering or sabotage, and
« Preventing denial of service.

1) Preventing Unauthorized Information Disclosure: The
first requirement of most security systems is preventing unau-
thorized disclosure of information. This section examines
two classes of mechanisms: discretionary access controls and
mandatory access controls.

Discretionary access controls are found in most operating
systems to determine the access rights users get to files. These
are typically access control lists or permission bits, based on
the fully general Lampson access matrix [25]. They are called
discretionary, because the access rights to an object may be
determined at the discretion of the owner or controller of the
object. The presence of Trojan horses in the system can cause
great difficulties with discretionary controls. The Trojan horse
could surreptitiously change the access rights on an object or
could make a copy of protected information and give that copy
to some unauthorized user.

Harrison, Ruzzo, and Ullman [17] have shown that the
confinement problem, which is that information cannot flow
to unauthorized recipients, is undecidable for general discre-
tionary access controls. They show that solving the confine-
ment problem is equivalent to solving the Turing-machine
halting problem.

Mandatory access controls have been developed to deal
with the Trojan horse problems. The distinguishing feature
of mandatory access controls is that the system manager
or security officer may constrain the owner of an object in
determining who may have access rights to that object.

Lipner [26] and Denning [12] have shown that lattice
security models, unlike the general Lampson access matrix,
can solve the Trojan horse problem. Most mandatory controls
have been based on lattice security models.

A lattice security model consists of a set of access classes
that form a partial ordering. Any two access classes may
be less than, greater than, equal to, or not ordered with
respect to one another. There is no requirement for strict
hierarchical relationships between access classes. The U.S.
military services use a set of access classes that have two
parts: a secrecy level and a set of categories that represent
compartments of information for which an individual must be
specially cleared. To gain access to information in a category,
an individual must be cleared, not only for the secrecy level
of the information, but also for the relevant categories.

Lattice models were first developed by Bell and La-
Padula [5] to formalize the military security model and to
develop techniques for dealing with Trojan horses that attempt
to leak information. At the time, no one knew how to deal

with Trojan horses at all, and it came as quite a surprise that
two quite simple properties could prevent a Trojan horse from
compromising sensitive information.

First, the simple security property says that if a subject
wishes to gain read access to an object, the access class
of the object must be less than or equal to the access of
the subject. This is just a formalization of military-security-
clearance procedures that one may not read a document unless
one is properly cleared.

Second, the *-property requires that if a subject wishes to
gain write access to an object, the access class of the subject
must be less than or equal to the access class of the object.
Enforcing the *-property means that any Trojan horse that
attempts to steal information from a particular access class
cannot store that information anywhere except in objects that
are classified at least as high as the source of the information.

2) Preventing Tampering and Sabotage: To address the
problems of tampering and sabotage, Biba [6] developed a
model of mandatory integrity that is a mathematical dual
of the Bell and LaPadula mandatory-security model. Biba
defines a set of integrity access classes that are analogous
to security access classes and defines simple-integrity and
integrity-confinement properties that are analogous to the
simple-security and confinement properties. The difference
between integrity and secrecy is that a program of high
integrity is prevented from reading or executing low integrity
objects that could be the source of tampering or sabotage.

3) Preventing Denial of Service: Preventing denial of ser-
vice is much more difficult than all of the other security
requirements, as a fully general solution would appear to
require solving the Turing machine halting problem. However,
as this paper will show, denial of service issues are addressed
in a number of areas of the Caernarvon operating system,
including particularly the area of quota enforcement. (See
section III-AS.)

C. Background — Covert and Side Channels

The paths over which a Trojan horse leaks information are
called covert channels [16]. Covert channels can be divided
into two major categories: storage channels and timing chan-
nels. Information can be leaked through a storage channel
by changing the values of any of the state variables of the
system. Thus, contents of files, names of files, and amount
of disk space used are all examples of potential storage
channels. A Trojan horse can leak information through a
storage channel in a purely asynchronous fashion. There are no
timing dependencies. By contrast, information can be leaked
through a timing channel by modifying the length of time that
system functions take to complete. For example, a Trojan horse
could encode information into deliberate modifications of the
system page-fault rate. Timing channels all use synchronous
communication and require some form of external clocking.

Side channels are closely related to covert channels, but
with one major difference. Side channels do not require the
presence of a Trojan horse to leak information. Side channel
attacks can be mounted either external to the system, such

as power analysis attacks [24], or by software, such as cache
timing analysis attacks on cryptographic algorithms [27].

D. Background — Common Criteria

With the growing needs for better computer security, indus-
try and governments have developed a concept of indepen-
dent third-party evaluation to enable purchasers of computer
systems (both hardware and software) to have an unbiased
assessment of the quality of the security implementations. In
concept, these evaluations would be similar to the unbiased
evaluations carried out by consumer magazines, such as Con-
sumers Reports. A variety of countries developed national
criteria, culminating in the Common Criteria for Information
Technology Security Evaluation [11] which has become an
ISO standard. The Common Ceriteria specifies both functional
requirements that specify security feature and assurance levels
running from EAL1 to EAL7 that assess how much you can
trust the quality of an implementation.

II. SMART CARD APPLICATIONS CODE AND SECURITY
A. Security Policy

The Caernarvon system builds on previous work on manda-
tory security policies to provide multi-level security within the
system. Security within the Caernarvon system is enforced
using a mandatory security policy [30] that is based on
modifications of the Bell and LaPadula secrecy model [5] and
the Biba integrity model [6]. The modifications provide three
major improvements. First, the integrity policy is changed
to permit high integrity programs to examine and possibly
sanitize low integrity data while still preventing executing
of low integrity program code or scripts. Second, both the
secrecy and integrity models are generalized to support broad
commercial organizations that may not agree on any common
security authorities. Third, the Caernarvon model provides a
framework for downloading code based on objective standards
for determining the level of trustworthiness of that code. These
security policies are all discussed in detail in [21].

1) Authentication and Authorization: Enforcement of a
meaningful security policy requires that there be a secure
mechanism to ensure that the use of the desired ACs is valid
and correct. In Caernarvon, each time the smart card is inserted
into a reader, the system and the outside world perform a two-
way authentication, which verifies each party’s identity to the
other and then sets up a secure channel. This authentication
must be performed by the operating system itself and not by
an application, so that the operating system is guaranteed,
and can guarantee to others, that the authentication has been
correctly completed. The operating system then knows with
high assurance the identity of the user, which is typically
the host system behind the smart card reader. The operating
system can use this knowledge to safely grant the user access
to files and other system objects; conversely, it can also use
this knowledge to ensure, with high assurance, that a user is
denied access to anything he is not authorized to see or use.
The full description of this authentication protocol is beyond

the scope and space limitations of this paper; more information
is available in [31].

B. Application Selection Control

The Caernarvon system consists of a kernel, running in su-
pervisor mode, and user-mode applications. These applications
are stored in the file system as files marked as executables.
In a multi-application smart card, with multiple access classes
specifying different levels of access to files, the security policy
applies equally to running a program file as it does to any
other file access—insufficient access to a file implies that the
program in that file cannot be run in the current session. Calls
from user-mode applications to system-level code are referred
to as Supervisor Calls (SVCs) in this environment.

The Caernarvon kernel contains a component, the APDU
Dispatcher, which examines every incoming command, and
determines if it is an APDU to be handled by the system, for
example those for the authentication process. Other APDUs
(those that are not explicitly handled by the system) are passed
to the currently selected application.

The SELECT APDU is handled directly by the APDU
dispatcher. Assuming that the access class(es) for the current
session, selected during authentication, allow the reader to
execute the requested program, it is started by the APDU
dispatcher. Subsequent APDUs are sent to this application,
which reads the commands and returns responses through
communications SVCs. If, while the application is running,
another SELECT APDU is received to run a new application,
then this APDU is intercepted by the APDU dispatcher and is
not passed to the existing application. Otherwise, the existing
application could masquerade as the new one. Instead the cur-
rent application is notified that it must terminate. If the current
application continues to run and attempts any communication
with the outside world, that program is forcibly terminated.

C. Cryptographic Facilities

Many modern smart card processors contain cryptographic
hardware to implement (or at least significantly ease the
implementation of) algorithms such as DES and triple-DES,
AES, RSA, DSA and ECC. Where such hardware is not
provided, any cryptographic algorithms must be implemented
entirely in software. Smart cards are physically small, with
little protection from attacks of various types, including side-
channel attacks or even direct probing of the memory. These
attacks are well documented in the literature, e.g. [24], [1].
Protection of cryptographic functions against attack requires
a combination of hardware counter measures and specific
software coding techniques. For example, if a DES engine
was in use by one process, and is now to be re—assigned to
another process, it is necessary to ensure that any keys loaded
into the hardware by the first process cannot be read by the
second. An example of a poor implementation is the attack on
DSA if the nonce k is not calculated correctly each time [32].

The Caernarvon system was designed from the very be-
ginning to allow application programs to be written by
anyone—indeed, the design allows entirely untrusted or even

deliberately malicious code to be run. This design aim has
repercussions, in that poorly written applications can, either
accidentally or deliberately, directly or indirectly, leak crypto-
graphic information (primarily keys). The Caernarvon system
makes use of the processor’s hardware protection to ensure that
the crypto hardware can be accessed only in supervisor state—
that is, applications have no access to the cryptographic hard-
ware. Hence the kernel provides crypto functions, accessed by
SVCs, to implement the various cryptographic algorithms for
applications. This removes the possibility of an application
mis-using the crypto hardware, for example “accidentally”
seeing DES keys that belong to another process, or running the
hardware in such a manner as to cause it to leak information
via side-channels.

Cryptographic algorithms within applications may be poorly
written, or not optimized for the particular processor on which
they are executing. The result of this could be information
leakage by means of side channels or from poor software
design. Conversely, the cryptographic code in the Caernarvon
kernel is carefully written to provide all possible protection
from attacks and information leakage. The cryptographic code
has completed an evaluation under the Common Criteria at
EALS5+ (and would need to be re—evaluated at EAL7 when
Caernarvon is evaluated). Thus if applications use the crypto
functions in the kernel, they get the best possible protection
for crypto on this processor. Using the kernel crypto functions
also saves time and effort in implementing the application, and
avoids duplicated code within the smart card.

Another potential problem with cryptographic functions,
particularly in smart cards with their susceptibility to attack, is
the key management. If the application handles the key itself,
it may inadvertently leak information (for example, some bits
of the key) by such simple operations as copying the key from
one memory location to another. Further, there is nothing to
prevent a malicious program from deliberately leaking the key
to outside the smart card.

Caernarvon provides secure key management facilities
within the kernel. Keys can be loaded into the card by the
kernel, so that the application never see the key; the application
refers to the key by a name of its choosing. The keys are
effectively stored in the file system with file IDs for names and
hierarchical file paths, the same as for regular files. This avoids
covert channel problems that could arise in the names of keys,
if the keys were stored in a flat file system. However, the key
names are a separate name space from the file names, and, to
ensure security of the key, these key “files” cannot be accessed
as regular files. An application, when it wishes to use one of
these secure keys, issues a request quoting the key’s file path,
and the operating system returns a key handle; the subsequent
crypto requests use this handle to specify the key. All key
operations are then kept within the kernel, where appropriate
measures can be taken to protect against attacks. In addition,
keys can be marked, for example, to be encryption keys or
to be signing keys; the kernel can then prevent a signing key
from being used for encryption, or vice versa. This prevents
certain cryptographic weaknesses where a key is used for more

than one purpose.

Unfortunately, a few smart card standards (such as the
Global Platform standard [4]) require that the keys be visible
to applications (or in the Global Platform case, the application
security domain). To satisfy this requirement, Caernarvon also
supports a “raw” key mode, where the keys are handled
entirely by the application. Alternative crypto functions are
provided in the kernel that have their keys supplied in buffers,
instead of using a handle as is the case for a secure key. While
applications may find this mode a necessity, its use is strongly
discouraged, since the secure kernel cannot ensure any security
for these raw keys.

Certain smart card application standards specify weak cryp-
tographic protocols, such as the standards for cryptography
for GSM phones that have been broken [3]. Currently the
Caernarvon kernel contains implementations of only known
secure, standardized, crypto algorithms, such as DES, AES
and RSA. If implementations of weak algorithms were added
to Caernarvon, the algorithm would still be weak—there is no
way a high security system can magic a weak algorithm into
a strong one. The only way to avoid such problems is to not
devise standards with weak cryptography.

Another problem that can arise is that a program can develop
its own cryptographic code, for example to implement an
algorithm devised specially for that application. Running such
code on top of a high security kernel provides no guarantee
of the quality of the implementation of the cryptography,
including particularly immunity to side channel attacks. Again,
the only way to avoid the problem is to design the application
to use only the strong crypto (and secure key management)
provided by the Caernarvon kernel.

III. SECURITY DESIGN CHALLENGES
A. File System

The Caernarvon system implements a smart card file system,
as described in Section I-A. Besides the inherent challenges
caused by the specification and hardware restrictions, the
filesystem must also conform to and enforce the system’s
security policy. In addition, there must be a quota mechanism
and support for memory-mapped files. We now describe these
challenges and our resultant design in more detail.

1) File System Integrity: It is imperative to maintain the
integrity of the file system in a smart card, even when
the power source is unexpectedly removed, as described in
Section I-A. In Caernarvon, the functionality is divided into
two separate components:

1) the Persistent Storage Manager (PSM), which handles
the physical memory blocks, and ensures their integrity.
The PSM is described in the section III-B.

2) the File System, which handles the logical file system
structure within memory blocks provided and main-
tained by the PSM.

This avoids the necessity of maintaining the integrity of the

persistent storage within the code that is controlling the logical
file structure.

2) ISO7816 File System: In addition to the standard MF,
DFs and EFs, the Caernarvon system extends ISO 7816 by
defining another file type, an “XF” (Executable File), which
are EFs that contain an executable program.

As an implementation optimization, the MF and DFs do
not keep a table of the file names that they contain; instead,
each DF and EF in the system has a pointer to its parent. This
means that file system searches require examining every file in
the system; however, since the amount of persistent memory
is limited, there can be only a small number of files in any
given smart card, so this extended search does not create a
performance problem. Obviously, this algorithm does not scale
to large memories with lots of files. However, if there was a
large amount of memory there would be no necessity to shrink
directories in this manner.

ISO 7816-4 defines certain types of record structure files;
the Caernarvon kernel does not implement these (this is left
as a user program function); in the Caernarvon file system, all
files are treated as unstructured sequences of bytes.

Although this is not required by ISO 7816, Caernarvon
requires that the file ids be unique within a DF or the MF.

3) DFNames: ISO 7816 defines the concept of a DF Name.
These names are used to select executable programs from
outside the card, without having to know the numeric file IDs.
They consist of a string name assigned to the DF containing
the application. The DF Names are unique to the card, and,
(as defined in ISO 7816) constitute a global address space.

Global address spaces cause two different operational prob-
lems. First, if two different application developers happen to
choose the same DFName, then the first such name loading
onto a particular card will win. Since ISO 7816-4 assumed
all applications would be preloaded onto the card, this was
never a problem. However, once you have multiple application
providers downloading applications to a card after the card has
already been issued, the name collision problem can become
serious. Second, such name collisions could be used as a covert
channel to bypass mandatory access controls.

Caernarvon, to avoid these problems, stores the DF Names
prepended with the current AC chosen during the authentica-
tion for the current session. This makes the DF Name space
into a name space that is private to the current access class.
The ISO 7816 rules for DF Names are then applied within
each access class, rather than system wide. Within an access
class, DF Names must be unique, but the same DF Name may
be repeated in a different access class.

4) Access Classes and the File System: In order to reduce
memory usage, files (EFs and XFs) do not have associated
access classes while DFs may but are not required to. DFs
without an access class of their own, and EFs and XFs, inherit
the access class of their immediate parent DF. Note that the
MF has secrecy access class System Low, and the secrecy
access classes are monotonically increasing as the file system
tree is traversed away from the MF. Similarly, the MF has
integrity access class System High, and the integrity access
classes are monotonically decreasing as the file system tree is
traversed away from the MF.

Access to a DF, and hence to the files within it, is controlled
by comparing the current access class of the process (for
example, the AC chosen during system authentication) to the
access class of the target file.

A program, if it has appropriate access to a file, may change
the access class of that file, for example to raise its secrecy
level or to lower its integrity level. In either case, it is quite
likely that, having changed the access class of the file, the
program no longer has access to the file. In this case, any
open file handles for the file in question are marked, and then
the program can perform no more operations such as read
and write using the file handle until it has closed the file and
attempted to re-open it. If the program no longer has access
to the file then the re-open will fail.

This facility to change the access class of a DF (and hence
of all the files within it) can be used to move data from one
access class to another. Thus if a program at AC a wishes
to move a DF (also at AC a) to AC b then the program must
change the DF to the AC a+b. Note that this is quite legitimate
- a program may always change a file to a higher secrecy
level. Having done this, the program, which is still at AC a,
no longer has access to the DF. At this stage, a special guard
process must be run; this is an evaluated application that has
been certified as fit to perform the downgrade of secrecy level
a+b to a. This guard program would verify that it is indeed
legitimate to downgrade the secrecy of the DF, and if all is
well, change the AC of the DF to b.

5) Quota: In order to protect against both inadvertent and
malicious denial of service attacks when one application takes
all the persistent storage on the card, Caernarvon provides
a quota facility. This also enables the card issuer to control
(and charge for) the amount of space on the card used by each
application or, possibly more importantly to the card issuer, by
each application provider. Covert channels whereby a Trojan
horse could signal by either allocating all memory or freeing
some are prevented.

The algorithms used for the quota allocation are basically
those from Multics operating system [35, section 3.7.3.1],
except that in Caernarvon, due to the severe limitations of
the platform on persistent storage space, we are more careful
about including system overhead such as control blocks in the
quota calculations.

Each DF may (but need not) have a quota; if the DF does
not have its own quota then that DF and all the files within
it are charged against the quota of the nearest parent DF that
does have a quota. When a new top-level DF is created for an
application, then that DF would normally be allocated its own
quota. The application can quite legitimately give some of its
quota to a DF below its own top-level DF. If a DF is moved
from one AC to another (as described above), then the quota
occupied by that DF and all the files within it is also moved
to the new parent DF of the DF that has been moved.

6) Discretionary Security Policy - Capabilities: The
Caernarvon system, in addition to the mandatory security
policy, provides capabilities—these are discretionary security
policy rules that may be associated with an individual exe-

cutable program (an XF). These capabilities take two forms:

1) a bit array that specifies whether that program is, or
is not, permitted to issue certain SVCs or groups of
SVCs. For example, there is a special, evaluated, Admin
Application issued with the system that is used for the
administration of (in particular, the creation of) Access
Classes and top-level DFs for applications. This program
uses certain special SVCs for the administration of ACs;
the capability bit for this group of SVCs is unset for
every other XF in the system, so that no other program
can issue those SVCs.

2) there can be special access rules to allow or forbid access
to individual files by this program. Note that any access
granted by these rules is still subject to the mandatory
security policy—that is, a capability rule cannot grant
access to a file when the access class comparison would
forbid it.

It is important to note that these capabilities are not a
fully general capability system, as defined by Dennis and Van
Horn [13]. In particular, Caernarvon capabilities cannot be
passed from one process to another.

B. Persistent Storage Manager - PSM

In the Caernarvon system, the physical blocks of storage
are managed by the Persistent Storage Manager (PSM). The
principal client of the PSM is the File System; the PSM is also
used by the Access Class Manager and the Key Management
system.

A solution to the errors that ensue when power is removed
during a write is to ensure that all memory transactions, for
example a request to extend a file and update its contents,
be treated as a single atomic operation. That is, the entire
transaction must be completed in its entirety, or not performed
at all. There is a back-trace buffer where, when memory is to
be updated, the old values are stored before the new data is
written. This is done for every step of the operation - the
backtrace buffer is cleared only when the entire transaction
is completed. When the card is powered-up, if the backtrace
buffer is not empty, the items in the backtrace buffer are
restored one-by-one, in the reverse order to which the original
steps were performed. In this case, when the backtrace buffer
has been emptied, the state of the memory is as if the
transaction had never been started.

The PSM takes two measures to prevent or recover from
memory corruption due to the cells wearing out. The first is
that, on every write to persistent memory, once the write is
completed and before control is returned to its caller, the low-
level code that wrote the data compares the updated contents
of the memory with the data in the caller’s buffer (in RAM).
If a mismatch is detected, an error is returned; in this case, the
data that was to be written is still available in the buffer. The
second protective measure employed by the PSM is to place
a checksum on every memory object under its management,
including any control blocks or descriptors that define the
memory blocks. This checksum is verified on read operations,
and hence memory failures can be detected—an attempt is

then made to recover the lost data byte(s). Once a memory
error is detected, the block in question is marked as bad, and
the data is re-written to a different location.

C. Application Download

A primary aim of the Caernarvon system is to allow for the
secure download of applications in the field. The download
process is to be under the control of the card issuer—it
is up to the card issuer to allow or forbid the download
of applications, and when download is permitted, to control
which organizations are or are not allowed to install their
applications on the card and the amount of file quota to be
allocated to each organization. It should be noted that, in the
context of download, the term “application” is not limited to
just XFs; it may also encompass DFs, EFs, file quota, keys,
etc.

The download process can be divided into two main steps:

1) creation of access classes for organizations that currently
are not present on the card, and allocation of file quota.

2) download of application files, including executable pro-
grams, for an organization that is present on the card.

Obviously, download of an application for a new organization
requires the completion of both of these steps.

1) Creation of Access Classes: The creation of a new
access class is a tricky operation on a smart card, because
the card is physically in the possession of an end user who
may not be privileged to create access classes. The smart card
also does not have a system administrator or security officer
who can perform such operations. Requiring the card holder
to carry the card back to the card issuer to have access classes
installed would be unacceptable to most customers.

Instead, the Caernarvon operating system includes secure
cryptographic protocols to perform the following operations:

1) create the Access Class.
2) create the necessary top-level DF associated with the
new access class, and set its allocated quota.

A full description of these protocols is beyond the scope and
space limitations of this paper, and will be the subject of a
future paper.

2) File Download: Once an organization has been au-
thorized to be present on a Caernarvon card, that is, once
any necessary access class(es) have been created, then that
organization may download such files as it needs, subject to
the file space the quota imposed by the card issuer.

A file is downloaded simply by authenticating at the appro-
priate access class, running a program to create any required
DFs and EFs, and writing the appropriate data to those
files. The Caernarvon system includes a utility program, the
ISO7816 application, which implements many of the APDUs
specified in ISO 7816-4 and which can be used under any
access class to perform such file operations. An executable
file, once it is downloaded, must be “activated” to convert the
file from an EF to an XF.

The card issuer may wish to restrict the programs that are
run. For example, only approved applications or Common

Criteria evaluated applications might be allowed. In the former
case the application would have a signature from the card
issuer, while in the latter case a signature from the certification
agency would exist. If such restrictions are in place, the
Caernarvon kernel will validate the necessary restrictions when
the activate operation executes.

D. Side Channel Issues

Just as for other pervasive devices, the Caernarvon operating
system could be subject to power analysis, RF analysis, or
timing attacks against its cryptographic mechanisms. We made
use of standard techniques for addressing these attacks, as
described in [8], [1].

We also had to consider the implications of side chan-
nel attacks on random number generators (RNGs). Common
Criteria evaluation of hardware random number generators
requires consideration of possible hardware failure modes. As
a result, Germany requires [15] that the random numbers from
a hardware RNG be tested prior to use. However, the act
of testing the random numbers could easily leak the values
of the numbers via power or RF analysis. To overcome this
problem, the Caernarvon operating system includes a new kind
of RNG that will be the subject of a future paper. Currently,
a description can be found here [9].

E. Chip Initialization

Smart card chips containing the Caernarvon system are in-
tended to be high security devices. To this end, it is imperative
that each individual chip be secure right from the point of
manufacture, with no opportunity for the chip or its contents to
be compromised while in the factory, nor between the factory
and the end user. Manufacture and initialization are the most
security-sensitive stages in the chip’s entire lifecycle, because
the chip is in its most vulnerable, exposed state, and it is during
these stages that important roles and security parameters are
set for the remainder of the chip’s lifecycle. A fundamental
assumption is that the manufacturing line is secure, which
requires the chip manufacturer to assure that it is safe from
tampering, collusion, theft, and other threats, including those
from insiders.

In a typical smart card chip manufacturing facility, manufac-
turing test software is built into each chip to assure the viability
of the chip. The test software tests the processor, memory
subsystem, internal peripherals, and other subsystems such
as cryptographic accelerators. These tests typically destroy
the contents of writable memory, thus, the chips cannot be
initialized with unique persistent data until all manufacturing
tests are complete, and the chip is known to be good. Once
the manufacturing tests have completed successfully, the test
software downloads a copy of the initial file system for that
chip, decrypting it with a strong cryptographic key held in
read-only memory, and used only once (during manufacture).
The image of each chip’s initial file system is pre-calculated
by the chip manufacturer by filling in the values of security-
relevant data items in predefined locations. Some of these

items include certificates, private and public keys, Diffie-
Hellman [14] key parameters used for authentication, a chip-
unique seed for random number generation, initial access
classes, and uncertified application binary files. Because it
is difficult for the smart card chip’s processor to meet the
demanding speed required by the manufacturing line, these
security-relevant items are not typically generated on-chip.
Instead, they must be generated and digitally signed in advance
in hardware security modules such as the IBM 4764 [18],
and injected into each smart card chip at very high speeds.
Additionally, the chip manufacturer digitally signs a certificate
unique to each chip, thus enabling off-chip applications to
verify (as part of an interactive authentication protocol) that
communications come from an authentic Caernarvon chip, and
not an imposter. This chip certificate includes a serial number
and public key unique to each chip, a chip type / configuration
code, the Caernarvon software hash value, version number, and
evaluation assurance level.

The chip makes use of a public key hierarchy to establish
identities and public keys of the actors that set the final
configuration of the chip’s software and data. Actors include
the chip manufacturer, the smart card enabler, the smart card
personalizer, the smart card issuer, the application certifying
body, and others. During initialization, some of the public keys
and roles of these actors are set by the chip manufacturer.
Others are initialized later in the chip’s lifecycle, and can only
be set by an actor authenticated in a specific role.

After the test code has completed the initialization of a
chip, it disables itself so that it can never be run again. At
this point in the chip’s lifecycle, the OS is fully functional
and secure. Thus, when the chip is first powered up for
any purpose outside of the manufacturing line (for example,
for personalization of the smart card for the end user), the
Caernarvon system is in control. In particular, full system
authentication is required to perform any operations such as
personalization or the installation of applications.

IV. COMMON CRITERIA PROBLEMS SOLVED

During the Caernarvon development, we ran a number of
Common Criteria related issues, including the lack of appropri-
ate protection profiles and the extensive testing requirements.

A. Protection Profiles

The Common Criteria uses protection profiles to define the
set of functional and assurance requirements appropriate to
a class of products. Standardized protection profiles make it
easier to compare evaluations of different products.

One major problem we encountered is that none of the
smart card protection profiles available at the time adequately
described the requirements of the Caernarvon operating sys-
tem. In particular, all the protection profiles assumed that all
smart card software was fully trustworthy and installed prior
to the issuance of the card to end users. To overcome this
lack of appropriate protection profiles, Helmut Kurth (of atsec
information security) helped us develop a security target that
addressed the many new security requirements we faced.

B. Testing

Thorough testing is well-recognized as an important part of
the development process for secure software and is required
for Common Ceriteria certification. Full code coverage testing
(that is, ensuring that all code is executed during testing) is
often performed. Branch coverage, ensuring that both branches
of every conditional are executed, should be the minimum
standard of testing for high-assurance code. Ideally, one would
like to make sure all possible execution paths are tested. This
clearly can’t be done for any code with a non-trivial number
of conditional tests, as the number of execution paths is either
exponential in the number of tests, or infinite (in the case of
unbounded loops).

Even if full path testing were accomplished, this would
still not be sufficient to prove system security, as Trojan
horses have been demonstrated that exploit data flow, not just
control flow. Testing is not a panacea, but it does serve as an
independent check upon the design and code of the system.

Test strategies for smart cards must also consider that
the persistent memories (EEPROM or flash) will fail if too
many write cycles are carried out. The limits on write cycles
have gotten much better in recent years, so that normal pre-
deployment testing is not likely to be a problem, because
many of the test cases will abort before actually performing
a write operation. However, if the card issuer or any servers
with which the card communicates require too many self-test
sequences that involve writing to persistent storage, then the
memories could begin to fail.

V. APPLICATIONS AND IMPACT OF THE TECHNOLOGY

A number of applications could benefit from a commer-
cially available high assurance smart card operating system.
In general terms, those applications have data or software
from multiple parties co-residing on the same card, and
require some level of data sharing between the parties. The
trust relationship of those parties ranges from friendly (e.g.
allies and business partners) to mistrustful (e.g. coalitions) to
hostile (e.g. competitors or military combatants). The threats
addressed range from honest mistakes in software to attacks
by financially-motivated cardholders to industrial espionage
to comprehensive logical and physical attacks by hostile
adversaries and insiders. Below is a list of sample applications:

« an intelligent electronic passport issued by one govern-
ment, with electronic entry/exit timestamps added by
other governments, some potentially hostile. Caernarvon
enables extensions of electronic passports to include e-
Visas; indeed, our demo for the Caernarvon security
policy was of e-Visas on a passport.

« one card for access to multiple security levels of govern-
ment networks, ending the “necklace of cards”

« a corporate/school campus card, with multiple application
providers for copiers, vending machines, canteens, public
transit, and building and room access

o a frequent traveler ID card with loyalty software from
multiple airlines, rental car companies, and hotels, etc.

e an ID card for coalition military forces for access to
physical and logical services

« a subscriber identity module for mobile phones to hold
credentials for multiple institutions, e.g. financial institu-
tions, governments, and phone service providers

There are roadblocks hindering the commercialization of a
high assurance smart card operating system. First, the devel-
opment, evaluation, and commercialization of such a system
could not be described as “low hanging fruit.” Significant
investment in time and funding is required by multiple insti-
tutions. The skills required cross several domains, and are not
typically found in any one organization: hardware design, op-
erating system design, formal methods, software and hardware
testing, vulnerability analysis, and evaluation methodology.
Second, some existing smart card application specifications
have mandated protocols that preclude a high level of se-
curity. For example, the electronic passports specified by
the International Civil Aviation Authority (ICAO) require the
use of weak cryptographic authentication protocols [23], and
while the protocols of the Federal Employee Personal Identity
Verification (PIV) program are cryptographically strong, they
also require some very sensitive information to be transmitted
in unencrypted form [20].

Although the Caernarvon OS is not commercially available,
the technology created as part of the project has had impact in
multiple areas. The privacy-preserving authentication protocol
is now part of the European CEN standard for application
of digital signatures in smart cards [2]. The Caernarvon
cryptographic library has been certified under the Common
Criteria at EAL5+ in Germany [7]. The mandatory security
policy is a fundamental part of the Fuzzy Multi-Level Security
Model [10] for System S, a large-scale, distributed, stream
processing system for analyzing large amounts of unstructured
data [36]. The mandatory security policy has also been incor-
porated into the Simple Linux Integrity Module (SLIM) in a
Trusted Linux Client [29]. Lastly, the lessons learned from a
developer’s perspective were documented in [33].

VI. CONCLUSION

The Caernarvon operating system project has shown the
feasibility of building smart card systems with much higher
levels of security. It is possible to download applications from
multiple sources that may be mutually hostile, yet still prevent
these applications from interfering with each other or the
operating system.

These goals required reconsideration of many traditional
smart card software practices, as well as solving many security
problems that are not present in larger-scale computers.

ACKNOWLEDGEMENTS

The Caernarvon project involved work by a number of
people in addition to the authors of this paper, and we wish to
acknowledge the contributions of Vernon Austel, Ran Canetti,
Suresh Chari, Vince Diluoffo, Jonathan Edwards, Giinter Kar-
joth, Gaurav Kc, Rosario Gennaro, Hugo Krawczyk, Mark
Lindemann, Tal Rabin, Josyula Rao, Pankaj Rohatgi, Helmut

Scherzer (now with Giesecke & Devrient), and Michael Steiner
from IBM, Helmut Kurth of atsec, Hans—Gerd Albertsen,
Christian Brun, Ernst Haselsteiner, Stefan Kuipers, Thorwald
Rabeler, and Thomas Wille of Philips Semiconductors (now
NXP), Wolfgang Reif, Georg Rock and Gerhard Schellhorn
of the University of Augsburg, Germany, Axel Schairer and
Werner Stephan of the German Research Center for Artificial
Intelligence (DFKI), and Stefan Wittmann of the Bundesamt
fiir Sicherheit in der Informationstechnik (BSI) in Germany.

[1]

2

[3]

[4]

[5]

[6]

[7

—

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15

[16]

(17]

REFERENCES

D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi, “The EM
side-channel(s),” in Cryptographic Hardware and Embedded Systems -
CHES. LNCS Vol. 2523, Springer, 13-15 August 2002, pp. 29-45.
“Application interface for smart cards used as secure signature creation
devices — part 1: Basic requirements,” Comité Européen de Normalisa-
tion, Brussels, Belgium, CWA 14890-1, March 2004, ftp://ftp.cenorm.
be/PUBLIC/CWAs/e-Europe/eSign/cwal4890-01-2004-Mar.pdf.

E. Barkan, E. Biham, and N. Keller, “Instant ciphertext-only cryptanal-
ysis of GSM encrypted communications,” Technion - Israel Institute of
Technology, Haifa, Israel, Tech. Rep. CS-2006-07, 2006, http://www.cs.
technion.ac.il/users/wwwb/cgi-bin/tr- get.cgi/2006/CS/CS-2006-07.pdf.
S. Z. Béguelin, “Formalisation and verification of the GlobalPlatform
card specification using the B method,” in Construction and Analysis
of Safe, Secure, and Interoperable Smart Devices, Second International
Conf. LNCS Vol. 3956, Springer, 811 March 2005, pp. 155-173.

D. E. Bell and L. J. LaPadula, “Computer Security Model: Unified Ex-
position and Multics Interpretation,” The MITRE Corporation, Bedford,
MA, HQ Electronic Systems Division, Hanscom AFB, MA, ESD-TR-
75-306, Jun. 1975.

K. J. Biba, “Integrity Considerations for Secure Computer Systems,” The
MITRE Corporation, Bedford, MA, HQ Electronic Systems Division,
Hanscom AFB, MA, ESD-TR-76-372, Apr. 1977.

“Certification Report for Tachograph Card Version 1.0 128/64 R1.0
from ORGA Kartensysteme GmbH,” Bundesamt fiir Sicherheit in der
Informationstechnik, Bonn, Germany, Tech. Rep. BSI-DSZ-CC-0205-
2003, 22 August 2003, http://www.bsi.de/zertifiz/zert/reporte/0205a.pdf.
S. Chari, C. Jutla, J. R. Rao, and P. Rohatgi, “Towards sound counter-
measures to counteract power analysis attack,” in Proc. of Crypto ’99.
LNCS Vol. 1666, Springer, August 1999, pp. 398-412.

S. N. Chari, V. V. Diluoffo, P. A. Karger, E. R. Palmer, T. Rabin,
J. R. Rao, P. Rohatgi, H. Scherzer, M. Steiner, and D. C. Toll,
“Method, apparatus and system for resistence to side channel attacks
on random number generators,” United States Patent Application No.
US 2006/0104443A1, Filed 12 November 2004.

P-C. Cheng, P. Rohatgi, C. Keser, P. A. Karger, G. M. Wagner, and
A. S. Reninger, “Fuzzy multi-level security: An experiment on quantified
risk-adaptive access control: Extended abstract,” in Proc. IEEE Symp.
on Security and Privacy. Oakland, CA: IEEE Computer Society, 20-23
May 2007, pp. 222-227.

“Common Criteria for Information Technology Security Evaluation,
Parts 1, 2, and 3, Version 3.1 CCMB-2006-09-001, CCMB-
2006-09-002, and CCMB2006-09-003, September 2006, http://www.
commoncriteriaportal.org/thecc.html.

D. E. Denning, “A lattice model of secure information flow,” Comm.
ACM, vol. 19, no. 5, pp. 236-243, May 1976.

J. B. Dennis and E. C. Van Horn, “Programming semantics for multi-
programmed computations,” Comm. ACM, vol. 9, no. 3, pp. 143-155,
Mar. 1966.

W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE
Trans. on Information Theory, vol. IT-22, no. 6, pp. 644—654, Nov. 1976.
“Functionality classes and evaluation methodology for physical random
number generators,” Bundesamt fiir Sicherheit in der Information-
stechnik (BSI), Bonn, Germany, AIS 31, Version 1, 25 Sept. 2001,
http://www.bsi.bund.de/zertifiz/zert/interpr/ais31e.pdf.

V. D. Gligor, “A guide to understanding covert channel analysis of
trusted systems,” National Computer Security Center, Fort George
G. Meade, MD, Tech. Rep. NCSC-TG-030, Version 1, Nov. 1993,
http://www.radium.ncsc.mil/tpep/library/rainbow/NCSC-TG-030.pdf.
M. A. Harrison, W. L. Ruzzo, and J. D. Ullman, “Protection in operating
systems,” Comm. ACM, vol. 19, no. 8, pp. 461-471, Aug. 1976.

[18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

[33]

[34]

[35]

[36]

“IBM 4764 Model 001 PCI-X Cryptographic Coprocessor,” Data
Sheet G221-9091-05, http://www-03.ibm.com/security/cryptocards/
pdfs/4764-001_PCIX_Data_Sheet.pdf.

“ISO 7816-4, Identification cards - Integrated circuit(s) with contacts -
Part 4: Interindustry commands for interchange, First edition,” Interna-
tional Standards Organization, ISO Standard 7816-4, September 1995.
P. A. Karger, “Privacy and security threat analysis of the federal
employee personal identity verification (PIV) program,” in Proc. 2nd
Symp. on Usable Privacy and Security. Pittsburgh, PA: ACM Press,
12-14 July 2006, pp. 114-121.

P. A. Karger, V. R. Austel, and D. C. Toll, “A New Mandatory Security
Policy Combining Secrecy and Integrity,” IBM Thomas J. Watson
Research Center, Yorktown Heights, NY, RC 21717 (97406), 15 March
2000, http://domino.watson.ibm.com/library/CyberDig.nsf/home.

P. A. Karger, D. C. Toll, and S. K. MclIntosh, “Processor requirements for
a high security smart card operating system,” in Proc. Eighth e-Smart
Conference. Sophia Antipolis, France: Eurosmart, 19-21 September
2007, available as IBM Research Division Report RC 24219 (W0703-
091), http://domino.watson.ibm.com/library/CyberDig.nsf/Home.

G. S. Kc and P. A. Karger, “Preventing attacks on machine readable
travel documents (MRTDs),” IBM Thomas J. Watson Research Center,
Yorktown Heights, NY, Tech. Rep. RC 23909 (W0603-079), 10 March
2006, http://domino.research.ibm.com/library/cyberdig.nsf/index.html.
P. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis: Leaking
Secrets,” in Proc. of Crypto '99. LNCS Vol. 1666, Springer Verlag,
August 1999, pp. 143-161.

B. W. Lampson, “Protection,” Operating Systems Review, vol. 8, no. 1,
pp. 18-24, Jan. 1974, Proc. Fifth Princeton Conf. on Information
Sciences and Systems, Princeton, NJ, USA, March 1971, pp. 437-443.
S. B. Lipner, “A comment on the confinement problem,” Operating
Systems Review, vol. 9, no. 5, pp. 192-196, Nov. 1975, Proc. of the
Fifth Symp. on Operating Systems Principles, Unversity of Texas at
Austin, Austin, TX, USA, 19-21 November 1975.

C. Percival, “Cache missing for fun and profit,” Tech. Rep., 2005, http:
/Iwww.daemonology.net/papers/htt.pdf.

W. Rankl and W. Effing, Smart Card Handbook: Third Edition. Chich-
ester, England: John Wiley & Sons, 2003, translated from Handbuch der
Chipkarten, 4th edition, Carl Hanser Verlag, Munich, 2002.

D. Safford and M. Zohar, “Trusted computing and open source,”
Information Security Technical Report, vol. 10, no. 2, pp. 74-82, 2005.
G. Schellhorn, W. Reif, A. Schairer, P. Karger, V. Austel, and D. Toll,
“Verification of a formal security model for multiapplicative smart
cards,” in 6th European Symp. on Research in Computer Security
(ESORICS). LNCS Vol. 1895, Springer, 2000, pp. 17-36.

H. Scherzer, R. Canetti, P. A. Karger, H. Krawczyk, T. Rabin, and D. C.
Toll, “Authenticating Mandatory Access Controls and Preserving Privacy
for a High-Assurance Smart Card,” in 8th European Symp. on Research
in Computer Security (ESORICS). LNCS Vol. 2808, Springer Verlag,
13-15 October 2003, pp. 181-200.

G. J. Simmons, “Subliminal communication is easy using the DSA,” in
Advances in Cryptology — Eurocrypt '93. Berlin: LNCS Vol. 765,
Springer, 23-27 May 1993, pp. 218-232.

D. Toll, S. Weber, P. A. Karger, E. R. Palmer, and S. K. MclIntosh,
“Tooling in Support of Common Criteria Evaluation of a High Assurance
Operating System,” Tech. Rep., 3 April 2008, https://buildsecurityin.
us-cert.gov/daisy/bsi/articles/knowledge/lessons/961.html.

D. C. Toll, P. A. Karger, E. R. Palmer, S. K. McIntosh, and S. We-
ber, “The Caernarvon secure embedded operating system,” Operating
Systems Review, vol. 42, no. 1, pp. 32-39, 2008.

J. Whitmore, A. Bensoussan, P. Green, D. Hunt, A. Kobziar, and J. Stern,
“Design for Multics security enhancements,” Honeywell Information
Systems, Inc., HQ Electronic Systems Division, Hanscom AFB, MA,
ESD-TR-74-176, Dec. 1973, http://csrc.nist.gov/publications/history/
whit74.pdf.

K.-L. Wu, P. S. Yu, B. Gedik, K. Hildrum, C. C. Aggarwal, E. Bouillet,
W. Fan, D. George, X. Gu, G. Luo, and H. Wang, “Challenges and
experience in prototyping a multi-modal stream analytic and monitoring
application on System S,” in Proc. of the 33rd Intl. Conf. on Very Large
Data Bases, Vienna, Austria, 23-27 September 2007, pp. 1185-1196.

