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Oktay Günlük1 · Jeff Linderoth2

Perspective Reformulations of Mixed Integer
Nonlinear Programs with Indicator Variables

June 20, 2008

Abstract. We study mixed integer nonlinear programs (MINLP)s that are driven by a col-
lection of indicator variables where each indicator variable controls a subset of the decision
variables. An indicator variable, when it is “turned off”, forces some of the decision variables
to assume fixed values, and, when it is “turned on”, forces them to belong to a convex set.
Many practical MINLPs contain integer variables of this type. We first study a mixed integer
set defined by a single separable quadratic constraint and a collection of variable upper and
lower bound constraints, and a convex hull description of this set is derived. We then extend
this result to produce an explicit characterization of the convex hull of the union of a point and
a bounded convex set defined by analytic functions. Further, we show that for many classes
of problems, the convex hull can be expressed via conic quadratic constraints, and thus relax-
ations can be solved via second-order cone programming. Our work is closely related with the
earlier work of Ceria and Soares (1996) as well as recent work by Frangioni and Gentile (2006)
and, Aktürk, Atamtürk and Gürel (2007). Finally, we apply our results to develop tight for-
mulations of mixed integer nonlinear programs in which the nonlinear functions are separable
and convex and in which indicator variables play an important role. In particular, we present
computational results for three applications – quadratic facility location, network design with
congestion, and portfolio optimization with buy-in thresholds – that show the power of the
reformulation technique.

Key words. Mixed-integer nonlinear programming – perspective functions

1. Introduction

A popular and effective approach to solving mixed integer nonlinear programs
(MINLP)s is to approximate the continuous relaxation of the MINLP with some
form of linearization and to use this relaxation in an enumeration algorithm [27,
9, 1]. Since software for nonlinear programs continues to become more efficient
and robust, it is natural to consider using strong non-linear relaxations of the
MINLP in algorithms instead. In this paper, we describe a simple and fairly
general scheme to strengthen non-linear relaxations of a class of {0,1}-mixed
integer nonlinear programs. Our approach is complementary to linear and non-
linear cutting approaches as it can be used together with cuts.

More precisely, we study MINLPs that are driven by a collection of indicator
variables where each indicator variable controls a subset of the decision variables.
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In particular, we are interested in MINLPs where an indicator variable, when
it is “turned off”, forces some of the decision variables to assume fixed values,
and, when it is “turned on”, forces them to belong to a convex set. We call such
programs indicator-induced {0,1}-mixed integer nonlinear programs.

A generic indicator-induced {0-1}-MINLP can be written as

z∗
def= min

(x,z)∈X×(Z∩B|I|)
{cT x + dT z | gj(x, z) ≤ 0 ∀j ∈ M, (xVi , zi) ∈ Si ∀i ∈ I}, (1)

where z are the indicator variables, x are the continuous variables and xVi de-
notes the collection of continuous variables (i.e. xj , j ∈ Vi) controlled by the
indicator variable zi. In the formulation, the sets may intersect, that is, for some
i 6= j we can have Vi ∩ Vj 6= ∅. Sets X ⊆ Rn and Z ⊆ R|I| are polyhedral sets
of appropriate dimension and Si is the set of points that satisfy all constraints
associated with the indicator variable zi:

Si
def=

{
(xVi , zi) ∈ R|Vi| × B

∣∣∣∣∣ xVi
= x̂Vi

if zi = 0
xVi ∈ Γi if zi = 1

}
,

where

Γi
def= {xVi ∈ R|Vi| | fj(xVi) ≤ 0 ∀j ∈ Ci, uk ≥ xk ≥ `k ∀k ∈ Vi}

is bounded for all i ∈ I. Notice that, due to the definition of Si, we have zi ∈
{0, 1} for all i ∈ I. The objective function in (1) is assumed to be linear without
loss of generality. If necessary, an additional variable can be used to move the
nonlinearity from the objective function to the constraint set.

In this paper we study the convex hull description of the sets Si when Γi is a
convex set. An important observation is that Γi can be a convex set even when
some of the functions fj defining the set are non-convex. Let Sc

i = conv(Si).
Using Sc

i , one can write a “tight” continuous relaxation of (1) as

zPR def= min
(x,z)∈X×Z

{cT x + dT z | gj(x, z) ≤ 0 ∀j ∈ M, (xVi , zi) ∈ Sc
i ∀i ∈ I}, (2)

where Si in (1) is replaced by its convex hull. We call (2) the perspective relax-
ation of (1), as the description of Sc

i involves perspective functions, as described
subsequently in Section 3.

When all fj are convex and bounded for j ∈ Ci, another convex relaxation
of Si can simply be obtained as follows:

SR
i

def= {xVi ∈ R|Vi| | fj(xVi) ≤ (1− zi)fj(x̂Vi) ∀j ∈ Ci,

ukzi ≥ xk − (1− zk)x̂Vi ≥ `kzi ∀k ∈ Vi},

which leads to what we call the natural continuous relaxation of (1):

zNR def= min
(x,z)∈X×Z

{cT x + dT z | gj(x, z) ≤ 0 ∀j ∈ M, (xVi , zi) ∈ SR
i ∀i ∈ I} (3)
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where Si in (1) is replaced with SR
i . Notice that as SR

i is convex and Si ⊂ SR
i ,

we have Sc
i ⊆ SR

i for all i ∈ I. Therefore,

z∗ ≥ zPR ≥ zNR.

In general, as Sc
i is the smallest convex set that contains Si, the perspective

relaxation (2) leads to an effective computational approach provided that (i)
it can be solved efficiently, and, (ii) it gives a good approximation of z∗. We
later present computational results that show that this indeed is the case for a
number of problems. We also show that in some cases, Sc

i is representable as a
quadratic cone and this improves computational effectiveness of our approach
even further.

Indicator-induced MINLPs can be used to model many interesting problems.
We study three applications in this paper: the quadratic-cost uncapacitated fa-
cility location problem recently studied by Günlük et al. [20], a network design
problem under queuing delay, first discussed by Boorstyn and Frank [10], and
a portfolio optimization problem with minimum buy-in thresholds [26, 7, 21].
In addition, certain classes of unit commitment problems for electrical power
generation can be formulated as indicator-induced MINLPs [12], and Aktürk
et al. [2] give an indicator-induced MINLP for a job-scheduling problem with
controllable processing times.

There has been some recent work on generating strong relaxations for con-
vex MINLPs. One line of work has been on extending general classes of cutting
planes from mixed integer linear programs. Specifically, Stubbs and Mehrotra
[28] explain how the disjunctive cutting planes of Balas et al. [4] can be applied
for MINLP, Cezik and Iyengar [14] extend the Gomory cutting plane procedure
[17], and Atamtürk and Narayanan [3] extend the mixed integer rounding proce-
dure of Nemhauser and Wolsey [25] to conic mixed integer programs. A second
line of work has focused on generating problem specific cutting planes, for ex-
ample see Günlük et al. [20] for different families of inequalities for a quadratic
cost facility location problem. In some cases these inequalities can be used to
strengthen the perspective relaxation even further.

Related to this work, Frangioni and Gentile [15] have introduced a class of
linear inequalities called perspective cuts for indicator-induced MINLPs. As we
discuss in Section 4.2, perspective cuts are outer approximation cuts for Sc

i and
therefore the perspective relaxation (2) can be viewed as implicitly including
all (infinitely many) perspective cuts to a straightforward relaxation of (1). An-
other related work is that of Grossmann and Lee [18], who extend the convex
hull characterization of Ceria and Soares [13] to general (convex) disjunctive
programs. The characterization relies on perspective functions. Concurrent with
this work, Aktürk et al. [2] independently gave a strong characterization of Sc

i

when Γi = {x ∈ R2 | xt
1 − x2 ≤ 0, u ≥ x1, x2 ≥ 0} for t ≥ 1. They use this

characterization in an algorithm for solving some classes of nonlinear machine
scheduling problems.

The remainder of the paper is divided in four sections. In Section 2, we
study a mixed integer set defined by a single separable quadratic constraint and a
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collection of variable upper and lower bound constraints. In Section 3, we extend
our observations to more general sets. Section 4 discusses connections between
our work and earlier work by Ceria and Soares [13] and Frangioni and Gentile
[15]. Finally in Section 5, we demonstrate the strength of our reformulation ideas
by applying it to three problems: a quadratic uncapacitated facility location
problem, a network design problem with nonlinear congestion constraints and
a portfolio optimization model with buy-in thresholds. Some conclusions are
offered in Section 6.

2. A Quadratic Set with Variable Bounds

The purpose of this section is to present a convex hull description of the following
set:

Q =
{

w ∈ R, x ∈ Rn
+, z ∈ Bn : w ≥

n∑
i=1

qix
2
i , uizi ≥ xi ≥ lizi, i = 1, 2, . . . , n

}
,

(4)
where qi ∈ R+ and ui, li ∈ R for all i = 1, 2, . . . , n. The set Q appears in a number
of non-linear mixed-integer programs as a substructure, and some examples are
given in Section 5. To our knowledge, the first convex hull description of Q was
stated without proof in the unpublished Ph.D. thesis of Stubbs [29]. Building
on intuition gained from our study of Q, we are able to derive the convex hull
of more general mixed integer nonlinear sets in Section 3.

2.1. A Low Dimensional Analogue

To understand the set Q, we first study a simpler mixed-integer set with only 3
variables, which can be obtained by setting n = 1 and q1 = 1 in (4). Let

S =
{

(x, y, z) ∈ R2 × B : y ≥ x2, uz ≥ x ≥ lz, x ≥ 0
}

,

where u, l ∈ R. In Lemma 1 we show that the convex hull of S is given by

Sc =
{
(x, y, z) ∈ R3 : yz ≥ x2, uz ≥ x ≥ lz, 1 ≥ z ≥ 0, x, y ≥ 0

}
.

Geometrically, the set Sc consists of all points that lie above a line segment
connecting the origin to the point (t, t2, 1) for each t ≥ 0. The set is shown in
Figure 1.

Note that even though x2 − yz is not a convex function (its Hessian is not
positive semi-definite), the set Sc still defines a convex set in R3

+. To see this
first note that Sc is convex if T c = {(x, y, z) ∈ R3 : yz ≥ x2, x, y, z ≥ 0}
is convex. To see that T c is convex, let pi = (xi, yi, zi) ∈ T c, for i = 1, 2, and
consider p3 = p1/2 + p2/2. We start with showing that

y1z2 + y2z1 ≥ 2x1x2 (5)
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x

y

z = 1

z

y ≥ x2

Fig. 1. The set Sc

holds. As p1, p2 ≥ 0, inequality (5) holds when at least one of x1 or x2 is zero.
Next consider the case when x1, x2 > 0. To simplify notation, let a = y1/x1,
b = z1/x1, c = y2/x2, d = z2/x2, and note that a, b, c, d > 0. As p1, p2 ∈ T c, we
have ab ≥ 1 and cd ≥ 1 and therefore b ≥ 1/a and c ≥ 1/d. We now write

ad + bc− 2 ≥ ad +
1
ad

− 2 =
1
ad

(ad2 − 2ad + 1) =
1
ad

(ad− 1)2 ≥ 0.

Therefore, inequality (5) holds when x1, x2 > 0 as well. Using this property we
can now show

y3z3 = (1/2y1 + 1/2y2) (1/2z1 + 1/2z2) = 1/4(y1z1 + y1z2 + y2z1 + y2z2)

≥ 1/4x2
1 + 1/2x1x2 + 1/4x2

2 = (1/2x1 + 1/2x2)2 = x2
3

implying that p3 ∈ T c, and therefore T c is convex.

Lemma 1. conv(S) = Sc.

Proof. First note that S = S0 ∪ S1 where S0 =
{
(0, y, 0) ∈ R3 : y ≥ 0

}
, and

S1 =
{
(x, y, 1) ∈ R3 : y ≥ x2, u ≥ x ≥ l, x ≥ 0

}
.

As S0, S1 ⊂ Sc and Sc is a convex set, we have conv(S) ⊆ Sc.
Next, consider a point p̄ = (x̄, ȳ, z̄) ∈ Sc. If z̄ = 0, then p̄ = (0, ȳ, 0) where

ȳ ≥ 0 and p̄ ∈ S0. If, on the other hand, z̄ 6= 0, then p̄ = p′ + d where p′ =
(x̄, x̄2/z̄, z̄) ∈ Sc and d = (0, ȳ− x̄2/z̄, 0) ≥ 0. Furthermore, p′ = (1− z̄)p0 + z̄p1

where p0 = (0, 0, 0) ∈ S0 and p1 = (x̄/z̄, x̄2/z̄2, 1) ∈ S1. As 1 ≥ z̄ ≥ 0, we have
p′ ∈ conv(S). In addition, (0, 1, 0) is an (extreme) direction of S0 and S1, and
therefore a direction of conv(S), implying p̄ ∈ conv(S). Therefore Sc ⊆ conv(S).
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2.2. An Extended Formulation for Q

Consider the following extended formulation of Q

Q̄
def=

{
w ∈ R, x ∈ Rn, y ∈ Rn, z ∈ Rn : w ≥

∑
i

qiyi,

(xi, yi, zi) ∈ Si, i = 1, 2, . . . , n
}

where Si has the same form as the set S discussed in the previous section except
the bounds u and l are replaced with ui and li. Note that if (w, x, y, z) ∈ Q̄
then (w, x, z) ∈ Q, and therefore proj(w,x,z)(Q̄) ⊆ Q. On the other hand, for any
(w, x, z) ∈ Q, letting let y′i = x2

i gives a point (w, x, y′, z) ∈ Q̄. Therefore, Q̄ is
indeed an extended formulation of Q, or, in other words, Q = proj(w,x,z)(Q̄).

Before we present a convex hull description of Q̄ we first define some basic
properties of mixed-integer sets which are not necessarily polyhedral. Using these
definitions, we then show some elementary observations which are known for
polyhedral sets.

Definition 1. Given a closed set P ⊂ Rn, point p ∈ P is called an extreme
point of P if it can not be represented as p = 1/2p1 + 1/2p2 for p1, p2 ∈ P ,
p1 6= p2. Set P is called pointed if it has extreme points.

Definition 2. A closed, pointed set P ⊂ Rn is called integral with respect to a
subset of the indices I ⊆ {1, . . . , n} if for any extreme point p ∈ P , pi ∈ Z for
all i ∈ I.

Lemma 2. For i = 1, 2 let Pi ⊂ Rni be a closed and pointed set which is integral
with respect to indices Ii. Furthermore, let P ′ = {(x, y) ∈ Rn1+n2 : x ∈ P1, y ∈
P2}.

(i) P ′ is integral with respect to I1 ∪ I2.
(ii) conv(P ′) = {(x, y) ∈ Rn1+n2 : x ∈ conv(P1), y ∈ conv(P2)}.

Proof. (i) A point p = (x′, y′) is an extreme point of P ′ if and only if x′ is an
extreme point of P1 and y′ is an extreme point of P2. As all extreme points of
P1 and P2 are integral, p is integral as well.

(ii) Similarly, p = (x′, y′) ∈ conv(P ) if and only if (x′, y′) =
∑

j λj(xj , yj)
where

∑
j λj = 1, λ > 0 and all (xj , yj) ∈ P . This is possible if and only if∑

j λjxj ∈ P1 and
∑

j λjyj ∈ P2, or, in other words, if and only if x′ ∈ conv(P1)
and y′ ∈ conv(P2).

Lemma 3. Let P ⊂ Rn be a given closed, pointed set and let P ′ = {(w, x) ∈
Rn+1 : w ≥ ax, x ∈ P} where a ∈ Rn.

(i) If P is integral with respect to I, then P ′ is also integral with respect to
I.

(ii) conv(P ′) = P ′′ where P ′′ = {(w, x) ∈ Rn+1 : w ≥ ax, x ∈ conv(P )}.
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Proof. (i) Let p′ = (w′, x′) be an extreme point of P ′. Clearly, w′ = ax′, oth-
erwise p′ = 1/2(ax′, x′) + 1/2(ax′ + 2(w′ − ax′), x′) and therefore it can not be
extreme.

If x′ is an extreme point of P , then x′ and therefore p′ is integral.
On the other hand, if x′ is not an extreme point of P , then there exists

two distinct points x1, x2 ∈ P such that x′ = 1/2x1 + 1/2x2. In this case p′ =
1/2(ax1, x1) + 1/2(ax2, x2) where (ax1, x1), (ax2, x2) ∈ P ′ and therefore p′ can
not be extreme.

(ii) Let p = (w̄, x̄) ∈ conv(P ′) and therefore (w̄, x̄) =
∑

j λj(wj , xj) where∑
j λj = 1, λ > 0 and (wj , xj) ∈ P ′ for all j. As (wj , xj) ∈ P ′, xj ∈ P for all j.

Therefore
∑

j λj(axj , xj) = (ax̄, x̄) ∈ P ′′ and as w̄ ≥ ax̄, we have (w̄, x̄) ∈ P ′′.
Conversely, assume p = (w̄, x̄) ∈ P ′′. As x̄ ∈ conv(P ), x̄ =

∑
j λjxj where

xj ∈ P and
∑

j λj = 1, λ > 0. In this case, clearly
∑

j λj(axj , xj) = (ax̄, x̄) ∈
conv(P ′) and therefore (w̄, x̄) ∈ conv(P ′) as w̄ ≥ ax̄.

We are now ready to present the convex hull of Q̄. Let

Q̄c =
{

w ∈ R, x ∈ Rn, y ∈ Rn, z ∈ Rn : w ≥
∑

i

qiyi,

(xi, yi, zi) ∈ Sc
i , i = 1, 2, . . . , n

}
.

Lemma 4. The set Q̄c is integral with respect to the indices of z variables. Fur-
thermore, conv(Q̄) = Q̄c.

Proof. Let D = {x ∈ Rn, y ∈ Rn, z ∈ ×Rn : (xi, yi, zi) ∈ Si, i = 1, 2, . . . , n} so
that Q̄ = {w ∈ R, x ∈ Rn, y ∈ Rn, z ∈ ×Rn : w ≥

∑n
i=1 qiyi, (x, y, z) ∈ D}.

By Lemma 3, the convex hull of Q̄ can be obtained by replacing D with its
convex hull in this description. By Lemma 2, this can simply be done by taking
convex hulls of Si’s, that is, by replacing Si with conv(Si) in the description of
D. Finally, by Lemma 3, Q̄c is integral.

2.3. Convex hull description in the original space

Let

Qc =
{

(w, x, z) ∈ R2n+1 : w
∏
i∈S

zi ≥
∑
i∈S

qix
2
i

∏
l∈S\{i}

zl, S ⊆ {1, 2, . . . , n} (Π)

uizi ≥ xi ≥ lizi, xi ≥ 0, i = 1, 2, . . . , n
}

Notice that a given point p̄ = (w̄, x̄, z̄) satisfies the nonlinear inequalities in
the description of Qc for a particular S ⊆ {1, 2, . . . , n} if and only if one of
the following conditions hold: (i) z̄i = 0 for some i ∈ S, or, (ii) if all zi > 0,
then w̄ ≥

∑
i∈S qix̄

2
i /z̄i. Based on this observation we next show that these

(exponentially many) inequalities are sufficient to describe the convex hull of Q
in the space of the original variables.
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Lemma 5. Qc = proj(w,x,z)(Q̄c).

Proof. Let p̄ = (w̄, x̄, ȳ, z̄) ∈ Q̄c and define S(p̄) = {i : zi > 0}. Clearly
uiz̄i ≥ x̄i ≥ liz̄i and x̄i ≥ 0 for all i = 1, 2, . . . , n. Furthermore, inequality (Π) is
satisfied for all S such that S 6⊆ S(p̄). In addition, notice that, as q ≥ 0,

w̄ ≥
∑

i∈S(p̄)

qiȳi ≥
∑

i∈S(p̄)

qix̄
2
i /z̄i ≥

∑
i∈S′

qix̄
2
i /z̄i

for all S′ ⊆ S(p̄). Therefore p̄ satisfies inequality (Π) for all S and proj(w,x,z)(Q̄c) ⊆
Qc.

Next, let p̄ = (w̄, x̄, z̄) ∈ Qc be given and let

ȳi =
{

0 z̄i = 0
x̄2

i /z̄i otherwise.

It is easy to see that (x̄i, ȳi, z̄i) ∈ Si for all i ∈ {1, 2, . . . , n}. Furthermore,

w̄ ≥
∑

i∈S(p̄)

qix̄
2
i /z̄i =

∑
i∈S(p̄)

qiȳi =
n∑

i=1

qiȳi

implying that (w̄, x̄, ȳ, z̄) ∈ Q̄c and therefore Qc ⊆ proj(w,x,z)(Q̄c).

Also note that all of the exponentially many inequalities that are used in the
description of Qc are indeed necessary. To see this, consider a simple instance
with ui = li = qi = 1 for all i ∈ I = {1, 2, . . . , n}. For a given S̄ ⊆ I, let
pS̄ = (w̄, x̄, z̄) where w̄ = |S̄| − 1, z̄i = 1 if i ∈ S̄, and z̄i = 0 otherwise, and
x̄ = z̄. Note that pS̄ 6∈ Qc. As z̄i = qix̄

2
i , inequality (Π) is satisfied by p̄ for

S ⊆ I if and only if
(|S̄| − 1)

∏
i∈S

z̄i ≥ |S|
∏
i∈S

z̄i.

Note that unless S ⊆ S̄, the term
∏

i∈S z̄i becomes zero and therefore inequal-
ity (Π) is satisfied. In addition, inequality (Π) is satisfied whenever |S̄| > |S|.
Combining these two observations, we can conclude that the only inequality
violated by pS̄ is the one with S = S̄.

2.4. SOCP Representation

A second-order cone constraint is a constraint of the form

‖Ax + b‖2 ≤ cT x + d. (6)

The set of points x that satisfy (6) forms a convex set, and efficient and robust
algorithms exist for solving optimization problems containing second-order cone
constraints [30, 24]. An interesting and important observation from a computa-
tional standpoint is that the nonlinear inequalities in the definitions of the sets
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Sc and Q̄c can be written as second-order cone constraints. All the nonlinear
constraints in the definition Sc and Q̄c are of the simple form

x2 ≤ yz with y ≥ 0, z ≥ 0, (7)

and this is algebraically equivalent to the second-order cone constraint

‖(2x, y − z)T ‖ ≤ y + z.

Constraints of the form (7) are often called rotated second order cone constraints.
The computational benefit of dealing with inequalities (7) as second-order cone
constraints rather than general nonlinear constraints will be demonstrated in
Section 5.1.

3. The Convex Hull of the Union of a Point and a Convex Set

We next extend the observations presented in Section 2 to describe the convex
hull of a point x̄ ∈ Rn and a bounded convex set defined by analytic functions.
In other words, using an indicator variable z ∈ {0, 1}, define W 0 =

{
(x, z) ∈

Rn+1 : x = x̄, z = 0
}
, and

W 1 =
{
(x, z) ∈ Rn+1 : fi(x) ≤ 0 for i ∈ I, u ≥ x− x̄ ≥ l, z = 1

}
where u, l ∈ Rn

+, and I = {1, . . . , t}. We are interested in the convex hull of
W = W 1 ∪W 0. Clearly, both W 0 and W 1 are bounded and W 0 is a convex set.
Furthermore, if W 1 is also convex then

conv(W ) = {p ∈ Rn+1 : p = αp1 + (1− α)p0, p1 ∈ W 1, p0 ∈ W 0, 1 ≥ α ≥ 0}.

We next present a description of conv(W ) in the space of original variables. To
simplify notation we assume that x̄ = 0 in the remainder of this section. Note
that there is no loss of generality as this is an affine transformation. We next
write the description of conv(W ) in open form

conv(W ) =
{

(x, z) ∈ Rn+1 : 1 ≥ α ≥ 0,

x = αx1 + (1− α)x0, z = αz1 + (1− α)z0,

x0 = 0, z0 = 0,

fi(x1) ≤ 0 for i ∈ I, u ≥ x1 − x̄ ≥ l, z1 = 1
}

.

(XF)

The additional variables used in this description can be projected out to
obtain a description in the space of the original variables.

Lemma 6. If W 1 is convex, then conv(W ) = W− ∪W 0, where

W− =
{

(x, z) ∈ Rn+1 : fi(x/z) ≤ 0 for i ∈ I, uz ≥ x ≥ lz, 1≥ z > 0
}

.
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Proof. As x0, z0 and z1 are fixed in (XF), it is possible to substitute out these
variables. In addition, as z = α after these substitutions, we can eliminate α.
Furthermore, as x = αx1 = zx1, we can eliminate x1 by replacing it with x/z
provided that z > 0. If, on the other hand, z = 0, clearly (x, 0) ∈ conv(W ) if
and only if (x, 0) ∈ W 0.

We next show that W 0 is contained in the closure of W−.

Lemma 7. For 1 ≥ z > 0, let Qc(z) =
{
x ∈ Rn : fi(x/z) ≤ 0 for i ∈ I, uz ≥

x ≥ lz
}
. If all fi(x) are bounded in [l, u], then,

limz→0+ Qc(z) =
{

x ∈ Rn : x = 0
}

Proof. Let {zk} ⊂ (0, 1) be a sequence converging to 0. As, by definition, Qc(z) 6=
∅ for z ∈ (0, 1), there exists a corresponding sequence {xk} such that xk ∈
Qc(zk). Clearly, uz ≥ xk ≥ lz and therefore {xk} converges to 0.

Combining the previous lemmas, we obtain the following result.

Corollary 1. conv(W ) = closure(W−).

We would like to emphasize that even when f(x) is a convex function fi(x/z)
may not be convex. However, for z > 0 we have

fi(x/z) ≤ 0 ⇔ ztfi(x/z) ≤ 0 (8)

for any t ∈ R. In particular, taking t = 1 gives zfi(x/z) which is known to
be convex provided that f(x) is convex. We discuss this further in Section 4.1.
We also note that if f(x) is SOCP-representable, then zfi(x/z) is also SOCP-
representable and in particular, if W 1 is defined by SOCP-representable func-
tions, then so is conv(W ). We will show the benefits of employing SOC solvers
for (non-quadratic) SOC-representable sets in Section 5.2.

We next show that when all fi(x) that define W 1 are polynomial functions,
convex hull of W can be described explicitly.

Lemma 8. Let fi(x) =
∑pi

t=1 cit

∏n
j=1 x

qitj

j for all i ∈ I. Let qit =
∑n

j=1 qitj and
i = maxt{qit}. If all fi(x) are convex and bounded in [l, u], then conv(W ) = W c,
where

W c =
{

(x, z) ∈ Rn+1 :
pi∑

t=1

citz
qi−qit

n∏
j=1

x
qitj

j ≤ 0 for i ∈ I, zu≥ x ≥ lz, 1 ≥ z ≥ 0,
}

.

Proof. Note that fi(x/z) =
∑pi

t=1 citz
−qit

∏n
j=1 x

qitj

j . Therefore, multiplying fi(x/z) ≤
0 by zqi , one obtains the expression above. Clearly, W c ∩ {z > 0} = W− and
W c ∩ {z = 0} = W 0
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4. Connections to Earlier Work

In this section, we explain how our results are related to earlier works that have
appeared in the open literature.

4.1. Convex Hulls of the Union of Convex Sets

Given a collection of bounded convex sets, it is easy to define an extended formu-
lation to describe their convex hull using additional variables, similar to (XF).
Producing a description in the space of original variables, however, appears to
be very hard. The particular case we considered in the previous section involves
only two sets, one of which consists of a single point. For the sake of completeness
we next summarize some related results from Ceria and Soares [13].

Ceria and Soares [13] use perspective functions of the functions that define the
original sets to produce an extended formulation for the convex hull description.
If the original sets are defined by convex functions, their perspective functions
are also convex. More precisely, for t = 1, . . . , p, let Gt : Rn → Rmt be a mapping
defined by convex functions and assume that the corresponding set

Kt = {x ∈ Rn : Gt(x) ≤ 0}

is bounded. Let G̃t : Rn+1 → Rmt be the perspective mapping defined as

G̃t(λ, x) =

λGt(x/λ) if λ > 0
0 if λ = 0
∞ otherwise

We next state a important observation from Ceria and Soares [13] that shows
the use of perspective functions to obtain convex hulls of convex sets.

Lemma 9 ([13]). Let Kt be defined as above for t ∈ T = {1, . . . , T |}, and let
K = conv(∪|T |t=1K

t). Then, x ∈ K if and only if the following nonlinear system
is feasible:

x =
|T |∑
t=1

xt;
|T |∑
t=1

λt = 1; G̃t(λt, x
t) ≤ 0, λt ≥ 0, ∀t ∈ T.

Furthermore, all G̃t are convex mappings provided that all Gt are convex.

Put into this context, our observations in Section 3 specialize Lemma 9 to
the case when |T | = 2 and one of the sets contain a single point. In this special
case Corollary 1 and Lemma 8 show that a description of the convex hull in the
original space can be obtained easily.
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4.2. Perspective Cuts

Building on the work of Ceria and Soares [13], Frangioni and Gentile [15] intro-
duce the class of perspective cuts for mixed integer programs of the form

min
(x,z)∈Rn×B

{
f(x) + cz | Ax ≤ bz

}
,

where (i) X = {x | Ax ≤ b} is bounded (also implying {x | Ax ≤ 0} = {0}),
(ii) f(x) is a convex function that is finite on X, and (iii) f(0) = 0. Under these
assumptions, they are able to show that for any x̄ ∈ X and s ∈ ∂f(x̄), the
perspective cut

v ≥ f(x̄) + c + sT (x− x̄) + (c + f(x̄)− sT x̄))(z − 1) (9)

is valid for the equivalent mixed integer program

min
(x,z,v)∈Rn×B×R

{
v | v ≥ f(x) + cz,Ax ≤ bz

}
.

Frangioni and Gentile [15] derive the linear inequalities (9) from a first-order
analysis of the convex envelope of the perspective function of f(x). A similar first-
order argument can be used to derive inequality (9) from the characterization
of the convex hull of the union of a convex set and a point given in Section 3.
First define P 0 def=

{
(x, z, v) ∈ Rn+2 : x = 0, z = 0, v = 0

}
, and

P 1 def=
{
(x, z, v) ∈ Rn+2 : Ax ≤ b, f(x) + c− v ≤ 0, ux ≥ x ≥ lx, uv ≥ v ≥ lv, z = 1

}
where bounds on variables x and v are introduced without loss of generality.
Corollary 1 states that conv(P 0 ∪ P 1) is the closure of

P− def=
{

(x, z, v) ∈ Rn+2 | Ax ≤ b, zf(x/z) + cz − v ≤ 0, uxz ≥ x ≥ lxz,

uvz ≥ v ≥ lvz, 1 ≥ z ≥ 0
}

.

For any z̄ > 0, a first-order (outer)-approximation of the nonlinear constraint
zf(x/z) + cz − v ≤ 0 about the point (x̄, z̄, v̄) gives

0 ≥ z̄f(x̄/z̄) + cz̄ − v̄ +

 s
(−1/z̄)x̄T sx/z + f(x̄/z̄) + c

−1

T x− x̄
z − z̄
v − v̄

 ,

where s ∈ ∂f(x̄) and sx/z ∈ ∂f(x̄/z̄). Taking z̄ = 1, v̄ = f(x̄)+c, and rearranging
terms gives inequality (9) above.

The implication of this analysis is that the perspective cuts of Frangioni and
Gentile [15] are outer approximation cuts for conv(P 0 ∪P 1). Thus, the strength
of the perspective relaxation is equivalent to that of adding all (infinitely-many)
perspective cuts to the formulation. The disadvantage of the perspective refor-
mulation over perspective cuts is that the inequalities used in the reformulation
are nonlinear. We discuss a direct computational comparison between the non-
linear perspective reformulation and perspective cuts in Section 5.3.
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5. Applications

In this section, three applications are described: a quadratic uncapacitated facil-
ity location problem, a network design problem with nonlinear congestion con-
straints, and a portfolio optimization model with buy-in thresholds. In each case,
the positive impact of the perspective reformulation and the ability to model the
nonlinear inequalities in the reformulations as second-order cone constraints is
demonstrated.

5.1. Separable Quadratic UFL

The Separable Quadratic Uncapacitated Facility Location Problem (SQUFL)
was introduced by Günlük et al. [20]. In the SQUFL, there is a set of customers
(N = {1, 2, . . . , n}), a set of facilities (M = {1, 2, . . . ,m}), and each customer
must have its demand for a single commodity met by an open facility. There is
a fixed cost ci for opening a facility i ∈ M . Meeting the demand of customer
j ∈ N from facility i ∈ M costs an amount proportional to the square of the
quantity delivered. A mixed integer nonlinear program for the SQUFL is

min
∑
i∈M

cizi +
∑
i∈M

∑
j∈N

qijx
2
ij

subject to xij ≤ zi ∀i ∈ M,∀j ∈ N,∑
i∈M

xij = 1 ∀j ∈ N,

xij ≥ 0 ∀i ∈ M,∀j ∈ N,

zi ∈ {0, 1} ∀i ∈ M.

The variables zi indicate if facility i ∈ N is open, and xij is a decision variable
representing the fraction of customer j’s demand met from facility i.

To write SQUFL as an indicator-induced MINLP, the auxiliary variables
yij ∀i ∈ M, j ∈ N are introduced. The objective function is changed to the
linear function

min
∑
i∈M

cizi +
∑
i∈M

∑
j∈N

qijyij ,

and the constraints

x2
ij − yij ≤ 0 ∀i ∈ M, j ∈ N (10)

yij ≤ zi ∀i ∈ M, j ∈ N (11)

are added. In this reformulation, if the indicator variable zi = 0, then xij =
yij = 0 ∀j ∈ N and the constraints (10) become redundant, while if zi = 1, the
constraints (10) become active. Thus, the constraints (10) can be replaced by
their perspective counterparts

x2
ij − ziyij ≤ 0 ∀i ∈ M,∀j ∈ N, (12)

and the resulting relaxation should be significantly tighter.
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5.1.1. Computational Results To test the strength of the perspective refor-
mulation, random instances were constructed with facilities and locations uni-
formly distributed in the unit square. The fixed cost ci of opening facility i ∈ M
was taken to be randomly and uniformly distributed between 1 and 100. If
pi ∈ [0, 1]2 was the location of facility i ∈ M and rj ∈ [0, 1]2 was the loca-
tion of customer j ∈ N , then the variable cost parameter was calculated as
qij = 50‖pi − rj‖2. Günlük et al. [20] constructed instances in a similar manner.
For m ∈ {10, 20, 30, 20} and n ∈ {30, 50, 100, 200}, ten instances were created
and solved using the nonlinear branch-and-bound algorithm available in the
open-source MINLP code BONMIN [9]. The instances were solved using both the
original formulation and the perspective reformulation. All instances were solved
on a 1.8GHz AMD Opteron CPU.

Table 1 shows the results of this experiment. In the table, z̄R represents the
average value of the root relaxation of the original formulation, z̄P the average
value of the root relaxation of the perspective reformulation, and z̄∗ the aver-
age value of the optimal solution found by BONMIN. The table also displays the
number of instances out of 10 (# Sol.) that were solved within a time limit of 8
hours, the average number of nodes (N̄) required to solve the instances, and the
average CPU time (T̄ ) in seconds for both the original and perspective formula-
tions. Clearly, reformulating the problem via the perspective reformulation has
an enormous impact on the ability to solve the problem. In many cases, the num-
ber of nodes in the branch-and-bound tree is orders of magnitude smaller with
the perspective reformulation. Also of interest is that nearly all of the integrality
gap is closed at the root node by using the perspective reformulation.

Table 1. Relaxation Values and Solution Times for SQUFL

Original Formulation Perspective Formulation
m n z̄R z̄P z̄∗ # Sol. N̄ T̄ # Sol. N̄ T̄
10 30 105.8 196.5 197.9 10 333 8.9 10 15 3.7
10 50 160.4 312.6 314.6 10 406 18.0 10 11 4.9
10 100 266.5 460.4 462.0 10 441 36.7 10 9 7.7
10 200 470.7 733.6 737.0 10 350 59.7 10 7 15.2
20 30 81.7 185.3 185.6 10 3452 213.7 10 37 39.9
20 50 111.6 274.8 276.2 10 5526 601.4 10 31 85.9
20 100 166.3 412.7 414.5 7 25901 12263.9 10 35 677.1
20 200 283.5 650.8 653.1 0 - - 10 27 1925
30 30 64.1 157.8 159.4 9 17837 1822.7 10 62 192.8
30 50 82.1 241.6 243.3 1 61062 23760.2 10 56 650.3
30 100 126.0 343.4 345.6 0 - - 10 51 4565.4
30 200 200.7 545.8 547.4 0 - - 9 44 16858.5
40 30 58.6 146.4 147.7 7 55660 9319.6 10 71 224.3
40 50 74.1 198.7 200.0 0 - - 10 85 3030.6
40 100 109.6 309.8 311.2 0 - - 10 64 8420.8
40 200 161.4 478.3 - 0 - - 0 - -

The results in Table 1 indicate that the CPU time required to solve one
node of the branch-and-bound tree increases dramatically when the perspective
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formulation is applied. For example, for n = 30 and m = 200, each node takes
on average 383 CPU seconds to evaluate. BONMIN uses the interior-point solver
Ipopt [31] for solving relaxations that arise at nodes of the branch-and-bound
tree. Ipopt is a solver for general nonlinear programs and is unable to exploit
the special second-order cone structure of the inequalities in the perspective
reformulation. Furthermore, as the that since the functions x2 − yz appearing
in the perspective reformulation are not convex, Ipopt cannot guarantee con-
vergence to a stationary point and its performance is highly dependent on the
quality of the initial iterate provided. For the experiments, a starting point of
xij = 1/m ∀i, j, zi = 1/M ∀i, and yij = 1/(|M |2)∀i, j was used at the root node.

To eliminate the obstacles faced by a general NLP solver, the conic formula-
tions were solved with Mosek (version 5) [24], a code specialized for problems of
this type. Table 2 shows the number of nodes (N) and CPU seconds (T ) required
by Mosek v5.0 to solve large random instances of SQUFL formulated with the
perspective reformulation wherein the nonlinear inequalities are represented in
second-order-cone form. The table also shows the time per node (T/N) when
the relaxation is solved by both the SOCP solver and the NLP solver. Note the
order-of-magnitude improvement in solution time, which comes solely from the
reduced time to solve relaxations at nodes of the branch-and-bound tree. In ad-
dition, by using a SOCP solver for the relaxations, larger instances (up to size
n = 50, n = 200) can be solved.

Table 2. Solution Times for SOC-Perspective Reformulation of SQUFL

m n T N T/N(SOCP) T/N(NLP)
20 100 3.8 12 0.3 19.3
20 200 9.6 11 0.9 71.3
30 100 9.6 30 0.3 89.5
30 200 141.9 63 2.3 383.1
40 100 76.4 54 1.4 131.6
40 200 101.3 45 2.3 -
50 100 61.6 49 1.3 -
50 200 140.4 47 3.0 -

Günlük et al. [20] derive three classes of cutting planes aimed at strengthening
the SQUFL formulation. Table 3, taken from Table 1 of their paper, shows the
effectiveness the new cutting planes at reducing the optimality gap at the root
node on five instances of different sizes. The perspective reformulation was also
performed on these same five instances. In the table, zR is the value of the root
relaxation of the original formulation, zGLW is the value of the root relaxation
with three classes of valid inequalities added, zP is the value of the root relaxation
of the perspective reformulation, and z∗ is the optimal solution value. The table
shows that the perspective reformulation is significantly better at closing the
integrality gap than are the cutting planes of Günlük et al. [20].

The largest of the instances in Table 3 was solved to optimality by Lee [22]
using BONMIN. The solution required 16,697 CPU seconds and 45,901 nodes for
the original formulation, and a 21,206 CPU seconds and 29,277 nodes for the
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Table 3. Comparison of Relaxation Bounds for SQUFL

m n zR zGLW zP z∗

10 30 140.6 326.4 346.5 348.7
15 50 141.3 312.2 380.0 384.1
20 65 122.5 248.7 288.9 289.3
25 80 121.3 260.1 314.8 315.8
30 100 128.0 327.0 391.7 393.2

formulation with additional inequalities added. The same instance was solved
using Mosek on the perspective reformulation wherein the nonlinear inequalities
were written as second-order cone constraints. Solution of the instance required
only 44 branch-and-bound nodes and 23 CPU seconds to solve on Intel Pentium
4 CPU with a clock speed of 2.60GHz, a speedup factor of more than 700.

5.2. Network Design with Congestion Constraints

The next application demonstrating the effectiveness of the perspective refor-
mulation is a model for constructing a communication network at minimum cost
meeting a design specification for total queuing delay. Similar models appear in
the work of Boorstyn and Frank [10], Bertsekas and Gallager [6], and Borchers
and Mitchell [11]. In the problem, there is a set of commodities K to be shipped
over a capacitated directed network G = (N,A). The capacity of arc (i, j) ∈ A is
uij , and each node i ∈ N supplies or demands a specified amount bk

i of commod-
ity k. There is a fixed cost cij of opening each arc (i, j) ∈ A, and we introduce
{0-1} decision variables zij to indicate whether arc (i, j) ∈ A is opened. The
quantity of commodity k routed on arc (i, j) is measured by the decision vari-
able xk

ij . A typical function to measure the total weighted congestion (or queuing
delay) of a flow fij =

∑
k∈K xk

ij in the network is

ρ(f) def=
∑

(i,j)∈A

rij
fij

1− fij/uij
,

where rij ≥ 0 is a user-defined weighting parameter for the relative importance
of the queuing delay that occurs on arc (i, j). We use a decision variables yij to
measure the contribution of the congestion on arc (i, j) to the total congestion
ρ(f). The network should be designed so as to keep the total queuing delay less
than a given value β, and this is to be accomplished at minimum cost. The
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resulting optimization model (NDCC) can be written as

min
∑

(i,j)∈A

cijzij

subject to
∑

(j,i)∈A

xk
ij −

∑
(i,j)∈A

xk
ij = bk

i ∀i ∈ N, ∀k ∈ K,

∑
k∈K

xk
ij − fij = 0 ∀(i, j) ∈ A,

fij ≤ uijzij ∀(i, j) ∈ A, (13)

yij ≥
rijfij

1− fij/uij
∀(i, j) ∈ A, (14)

∑
(i,j)∈A

yij ≤ β,

zij ∈ {0, 1} ∀(i, j) ∈ A,

x ∈ R|A|×|K|
+ , y ∈ R|A|

+ , f ∈ R|A|
+ .

An observation not previously made in the literature regarding this network
design problem is that the congestion inequalities (14) can be written as second-
order cone constraints. Multiplying both sides of (14) by 1−fij/uij > 0, adding
rijf

2
ij to both sides of the inequality, and factoring the left-hand-side gives an

equivalent constraint

(yij − rijfij)(uij − fij) ≥ rijf
2
ij . (15)

Because the inequalities yij ≥ rijfij and uij ≥ fij most hold in any feasible
solution, (15) is precisely a constraint in rotated second-order cone form (7).

The cut-set inequalities strengthen the relaxation of linear versions of network
design problems (without the nonlinear congestion constraints) considerably.
The most basic and effective cut-set inequalities simply impose an integral lower
bound τi on the number of arcs, incident to a given node i ∈ N , that has to be
opened. More precisely, let δi denote the total flow originating from node i and
τi ∈ Z+ be such that

∑
ij∈A′ uij < δi for all A′ ⊂ A such that |A′| ≤ τi − 1. In

this case the associated cut-set inequity for node i is∑
(i,j)∈A

zij ≥ τi.

In our computational experiments, we have strengthened the relaxation of the
problem by adding these inequalities for both incoming and outgoing arcs for
all nodes i ∈ N . More elaborate inequalities could be added (see [8]), but our
goal in this work is to examine the impact of the perspective reformulation, not
strong linear inequalities.
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In the formulation of NDCC, note that if zij = 0, then the constraints (13)
force fij = 0, and the constraints (14) are redundant for the arc (i, j). However, if
zij = 1, then the definitional constraint (14) for the corresponding yij must hold.
So the formulation can be strengthened using the perspective reformulation.
Specifically, each constraint (14) can be replaced by its perspective counterpart:

zij

[
rijfij/zij

1− fij/(uijzij)
− yij

zij

]
≤ 0. (16)

The constraints (16) can also be written as second order cone constraints in
a similar fashion to the non-perspective version (14). Specifically, simplifying the
left-hand size of the inequality (16), adding rijf

2
ij to both sides of the simplified

inequality and factoring gives the equivalent constraints

(yij − rijfij)(uijzij − fij) ≥ rijf
2
ij ,

which is a rotated second-order cone constraint since yij ≥ rijfij and uijzij ≥ fij

for any feasible solution. The fact that the inequalities in the perspective refor-
mulation of (14) are SOC-representable is no surprise. In fact, Ben-Tal and
Nemirovski [5] (Page 96, Proposition 3.3.2) show that the perspective transfor-
mation of a function whose epigraph is a SOC-representable set is (under mild
conditions) always SOC-representable.

5.2.1. Computational Results To assess the strength of the perspective refor-
mulation of the NDCC, random instances were created. The connectivity of the
networks was random, with each potential arc appearing (independently) with
probability 0.2. For each instance, the number of commodities was equal to the
number of nodes, and each node acted as the unique source for exactly one
commodity. For notational purposes, let s(k) be the source node for commodity
k ∈ K, and let B =

∑
k∈K

∑
i∈I\{s(k)} bk

i be the total demand for all commodi-
ties. The remainder of the parameters for the instances were created randomly
as follows:

bk
i = dU(5, 25)c ∀k ∈ K ∀i ∈ (I \ {s(k)}),

bk
s(k) = −

∑
i∈I\{s(k)}

bk
i ∀k ∈ K

uij = dU(1.0, 5.0)B/|A|c ∀(i, j) ∈ A

rij = 1.0 ∀(i, j) ∈ A

cij = U(1, 4) ∀(i, j) ∈ A

β = κB,

where κ ∈ {1, 2, . . .} is the smallest integer necessary to make the linear re-
laxation of the formulation feasible, U(a, b) is a uniformly distributed random
number in the interval (a, b), and dxc is the closest integer to x.
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All of the instances were created in the GAMS modeling language and solved
using the branch-and-bound mixed integer SOCP code of Mosek. A time limit of
4 hours was imposed on each instance. Networks of size |N | = 20 and |N | = 30
were created. Full tables of results comparing the two formulations can be found
in Tables 5 and 6 in the appendix. The computational results show that the
perspective reformulation helps the solvability considerably. Of the 35 instances
of size |N | = 20, 2 can be solved in a four hour time limit with the original
formulation, and 29 can be solved with the perspective reformulation. Of the 6
that don’t solve, 4 fail due to numerical difficulties with solving the relaxation,
and 2 hit the time limit. Of the 35 instance of size |N | = 30, neither the original
formulation nor perspective formulation are able to solve any of these instances.
However, the average remaining optimality gap after 4 hours was 57.1% for the
original formulation and 7.03% for the perspective formulation.

5.3. Mean-Variance Optimization

A canonical optimization problem in financial engineering is to find a minimum
variance portfolio that meets a minimum return requirement [23]. In the problem,
there is a set N of assets available for purchase. The expected return of asset i ∈
N in given by αi, and the covariance of the returns between every pair of assets
is given in the form a positive-definite matrix Q ∈ Rn×n. The canonical problem
is often augmented with a number of business rules that require the introduction
of binary variables in straightforward optimization models. For example, there
may be minimum (`i) and maximum (ui) buy-in thresholds for each asset i ∈ N ,
resulting the the following optimization problem (MVOBI):

min{xT Qx | eT x = 1, αT x ≥ ρ, `izi ≤ xi ≤ uizi ∀i ∈ N}, (17)

where the decision variable xi is the percentage of the portfolio invested in asset
i and zi is a binary variable indicating the purchase of asset i. Imposing a cardi-
nality constraint on the number of different assets purchased can be achieved by
adding a constraint

∑
i∈N zi ≤ K. Unfortunately, direct application of the per-

spective reformulation to (17) is not possible, as the objective is not a separable
function of the decision variables x.

However, in many practical applications, the covariance matrix is obtained
from a factor model and has the form Q = BΩBT + ∆2, for a given exposure
matrix, B ∈ Rn×f , positive-definite factor-covariance matrix Ω ∈ Rf×f , and
positive definite, diagonal specific-variance matrix ∆ ∈ Rn×n [26]. If a factor
model is given, a separable portion of the objective function is easily extracted
by introducing variables yi, changing the objective to

minxT (BΩBT )x +
∑
i∈N

∆iiyi,

and enforcing the constraints yi ≥ x2
i ∀i ∈ N .

Even if the covariance matrix Q does not directly have embedded diagonal
structure from a factor model, then, as suggested by Frangioni and Gentile [15], it
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is still possible to extract a separable component from Q. Specifically, the matrix
Q may be decomposed into Q = R + D, for some positive, diagonal matrix D
such that R = Q − D remains positive-definite. The objective can be changed
to min xT Rx + xT Dx, and xT Dx is separable in x. Frangioni and Gentile [15]
suggest using D = λnI, where λn > 0 is the smallest eigenvalue of Q. In our
computational experimentns, we follow their advice and use D = (λn−ε)I, where
ε = 0.001 so that R is strictly positive definite.In subsequent work, Frangioni and
Gentile [16] show how “more” of the separable structure of Q can be extracted
into D through the solution of a semidefinite program.

In order to solve the instance entirely in a second-order cone programming
framework, we use the well-known transformation [5] of a convex quadratic pro-
gram into a second order cone program. To transform the instance, a Cholesky
factorization of R = MMT , is taken, the auxiliary variables w = MT x are
introduced, so that ‖w‖ = xT Rx.

minv +
∑
i∈N

Diiyi (18)

subject to w −MT x = 0
v − ‖w‖ ≥ 0 (19)

yi − x2
i ≥ 0 ∀i ∈ N (20)∑

i∈N

xi = 1 (21)∑
i∈N

αuxi ≥ ρ (22)

`izi ≤ xi ≤ uizi ∀i ∈ N (23)

The inequalities (19) can easily be placed in rotated second order cone form (7).
Since zi = 0 implies that constraint (20) is redundant, and, while zi = 1 implies
that we would like the inequality to hold, the perspective reformulation may be
applied, replacing the constraints (20) with inequalities

yizi − x2
i ≥ 0∀i ∈ N. (24)

The inequalities (24) are precisely in the rotated second order cone form (7), so
they can be effectively handled by software such as Mosek.

In Table 4 we summarize computational results of an experiment aimed at
measuring the effectiveness of the perspective reformulation. In the experiment,
twenty instances of the MVOBI problem (ten instances of size |N | = 200 and
ten instances of size |N | = 300) were solved using Mosek with both the original
formulation and the perspective reformulation of the constraints (20). The in-
stances were created by Frangioni and Gentile [15], and optimal solutions for the
instances are reported at http://www.di.unipi.it/optimize/Data/MV.html.
Mosek was allowed to run for 10,000 CPU seconds on each instance and formula-
tion. If zR is the value of the SOCP-relaxation at the root node, z∗ is the optimal
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solution of the problem, zL and zU are (respectively) the best lower and upper
bounds found by the Mosek branch-and-bound solver, the table reports the root
gap to optimal (RGO = 100(z∗ − zR)/zR), the final gap to optimal (FGO =
100(z∗ − zL)/zL), the final gap (FG = 100(zU − zL)/zL)), and the number of
nodes of the search tree completed in 10,000 seconds.

Table 4. Integrality Gaps of Formulations for MVOBI

Original Formulation Perspective Formulation
Instance RGO FGO FG Nodes RGO FGO FG Nodes
P200 a 828.66 244.64 244.64 57287 5.56 2.70 3.71 9838
P200 b 350.71 98.35 106.26 19510 6.60 1.15 0.00 5041
P200 c 344.06 85.46 87.98 23775 6.45 1.70 4.74 6695
P200 d 435.82 120.06 123.73 27395 5.61 1.07 1.35 6015
P200 e 866.25 227.47 233.59 61933 8.12 3.43 3.71 7453
P200 f 820.97 232.60 232.60 45802 6.09 2.47 4.17 8289
P200 g 504.14 130.23 130.23 22253 6.57 2.06 1.56 6999
P200 h 862.87 247.57 257.44 51560 9.38 5.72 8.50 11867
P200 i 808.00 210.97 210.97 62168 6.17 2.92 5.12 8679
P200 j 856.25 221.04 223.73 57111 9.42 6.47 8.88 10308
P300 a 1252.47 507.80 507.80 54394 5.24 4.01 6.17 1968
P300 b 1280.82 552.70 552.70 59721 6.42 4.22 7.75 3211
P300 c 1083.71 449.07 449.29 29049 5.97 3.43 4.50 2828
P300 d 1249.21 527.54 528.89 46800 6.34 4.10 5.69 1980
P300 e 1242.95 515.04 515.04 60751 5.67 3.69 6.29 2164
P300 f 1259.50 513.26 513.74 63967 6.27 4.39 5.50 1946
P300 g 729.05 281.33 282.84 17336 5.05 2.13 5.36 2320
P300 h 1264.86 515.83 517.68 28822 5.80 3.95 4.63 3621
P300 i 1178.57 444.54 451.12 34831 6.52 4.64 7.27 2079
P300 j 1252.22 581.12 581.12 60628 6.26 3.93 6.13 2490

In all cases except one, the Mosek conic IP solver was unable to solve the
instance to optimality within the 10,000 second time limit. Nevertheless, the
results in the table demonstrate convincingly that the perspective reformulation
significantly improves the lower bound. In general, the performance of the conic
mixed-integer solver Mosek on the perspective formulation appears inferior to
the approach used by Frangioni and Gentile [15] for these instances (see Table 2
in [15].) Their approach is equivalent to linearizing the perspective reformulation
at various points, then using the mixed-integer quadratic programming solver
CPLEX on the tightened relaxation of the original formulation. The improved
performance of a linearization-based approach points to the need for improve-
ments in conic IP software.

6. Conclusions

In this work we derive an explicit characterization of the convex hull of the
union of a point and a bounded convex set defined by analytic functions. This
characterization can be used to produce strong “perspective” reformulations of
many practical mixed integer nonlinear programs. We also show that in many
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cases, the nonlinear inequalities in the perspective reformulation can be cast
as second-order cone constraints, a transformation that greatly improves an
instance’s solvability. Computational results show the power of the proposed
techniques—in one case solving instances multiple orders of magnitude faster
than reported in the literature. Continuing work has two primary thrusts: (1)
Automatic detection of structures to which the perspective transformation can
be applied; and (2) Studying additional simple structures occurring in practical
MINLPs in the hope of deriving strong relaxations.
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7. Appendix

Table 5. Impact of Perspective Reformulation on Network Design Instances. |N | = |K| = 20

Original Formulation Perspective Formulation
# zroot zL zU N t zroot zL zU N t
1 102.6 195.5 217.9 28201 14400 213.8 217.9 217.9 816 208
2 83.5 116.0 152.8 44458 14400 147.5 152.8 152.8 6260 1665
3 70.4 112.6 169.9 34679 14400 142.3 161.3 161.3 35454 11901
4 78.9 196.3 243.7 24615 14400 211.4 232.4 232.4 8041 3874
5 77.3 154.0 188.8 35720 14400 168.7 181.7 181.7 2291 662
6 82.4 150.6 189.5 26029 14400 177.2 181.9 181.9 8793 3220
7 73.2 143.8 174.0 36257 14400 154.1 170.6 170.6 6440 1950
8 65.8 105.0 149.0 32688 14400 120.4 140.3 140.3 15757 5400
9 87.3 135.8 167.4 39213 14400 159.4 164.4 164.4 8260 2775
10 77.0 185.1 185.1 4427 2835 173.6 185.1 185.1 530 121
11 76.4 151.8 182.7 36294 14400 158.6 179.4 179.4 6590 2124
12 83.6 126.2 152.5 53915 14400 147.0 152.5 152.5 2538 624
13 83.7 111.9 162.0 53709 14400 137.1 159.1 159.1 3479 691
14 72.1 124.2 186.2 29646 14400 146.4 -1.0 -1.0 -1 66
15 74.5 107.7 142.2 43044 14400 134.9 140.9 140.9 14323 3995
16 75.5 119.7 151.3 41475 14400 127.6 149.4 149.4 11224 3117
17 82.3 106.5 141.5 54256 14400 133.3 140.2 140.2 8990 1723
18 75.4 116.5 191.1 26689 14400 148.8 170.5 170.5 8806 3637
19 88.3 172.1 204.6 32815 14400 189.4 203.3 203.3 1722 468
20 81.9 124.2 175.9 40232 14400 144.4 167.7 167.7 22215 7481
21 88.3 130.0 180.7 22024 14400 168.1 173.3 173.3 5332 2096
22 73.8 157.5 184.0 25888 14400 173.6 181.3 181.3 19585 11498
23 78.5 137.5 216.3 17155 14400 181.8 184.6 190.1 30640 14400
24 75.9 138.9 160.3 41641 14400 140.6 156.9 156.9 1897 550
25 75.8 143.0 176.3 12152 14400 -1.0 -1.0 -1.0 -1 0
26 78.2 209.5 241.0 16793 14400 234.6 238.0 238.0 5584 2969
27 84.0 146.7 195.0 19067 14400 178.1 181.8 181.8 9137 5246
28 90.0 167.8 206.9 38080 14400 184.0 203.9 203.9 22566 8276
29 80.4 141.1 195.3 21225 14400 175.6 182.0 196.7 23303 14400
30 81.9 119.9 166.3 27933 14400 153.3 159.8 159.8 30514 10209
31 101.7 186.2 204.6 14914 14400 197.1 204.2 204.2 1280 350
32 71.9 128.9 172.2 25998 14400 159.6 -1.0 -1.0 -1 14400
33 73.1 117.0 185.2 15279 14400 163.4 -1.0 -1.0 -1 14400
34 78.6 135.8 195.6 25830 14400 154.3 182.6 192.4 28384 14400
35 97.7 229.9 229.9 10678 12043 220.5 229.9 229.9 1019 319
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Table 6. Impact of Perspective Reformulation on Network Design Instances. |N | = |K| = 30

Original Formulation Perspective Formulation
# zroot zL zU N t zroot zL zU N t
1 167.0 243.6 396.6 3812 14400 375.7 377.8 397.8 5381 14400
2 149.9 248.1 387.4 4211 14400 346.5 348.0 373.0 5931 14400
3 126.3 205.0 355.2 4711 14400 296.3 298.3 329.6 6643 14400
4 137.0 383.8 434.0 3805 14400 425.0 427.5 433.2 5122 14400
5 152.3 235.1 397.5 4304 14400 345.0 346.2 376.1 5634 14400
6 158.5 435.6 479.0 3716 14400 465.0 466.8 477.0 4772 14400
7 172.9 229.6 452.0 3914 14400 374.1 375.2 410.9 4750 14400
8 164.4 343.9 516.4 3305 14400 474.8 476.3 495.8 3512 14400
9 159.6 230.2 381.6 2312 14400 355.2 356.5 375.2 3630 14400
10 137.0 250.6 363.4 3509 14400 340.8 343.2 372.4 5221 14400
11 172.7 244.5 466.8 4513 14400 386.5 389.4 423.1 5660 14400
12 144.6 394.8 446.7 3817 14400 434.3 436.9 442.9 4819 14400
13 141.7 202.0 389.3 3610 14400 326.9 328.2 361.3 4920 14400
14 143.3 294.9 355.7 4724 14400 340.0 344.0 348.1 8848 14400
15 335.5 336.4 358.7 5330 14400 -1.0 -1.0 -1.0 -1 14400
16 144.0 217.0 350.5 4215 14400 328.8 330.9 357.6 4729 14400
17 119.2 180.2 304.3 4408 14400 284.5 286.4 332.3 5522 14400
18 143.3 224.8 360.5 4210 14400 331.2 332.3 362.1 6643 14400
19 126.3 204.9 355.2 4311 14400 296.2 298.9 329.5 6041 14400
20 140.6 201.7 361.2 3607 14400 310.5 311.3 348.0 4434 14400
21 140.3 237.0 366.4 4208 14400 332.4 335.0 357.9 6043 14400
22 131.2 181.6 269.7 6708 14400 248.3 254.6 271.3 11942 14400
23 128.1 230.2 360.7 4507 14400 311.9 314.3 336.6 7962 14400
24 167.3 464.6 522.9 2915 14400 512.0 512.6 522.9 3549 14400
25 154.3 215.3 354.0 3013 14400 338.1 339.7 363.9 3227 14400
26 130.7 198.9 341.6 2407 14400 309.9 311.2 332.0 3632 14400
27 138.7 406.3 428.6 3160 14400 423.4 425.7 426.5 3647 14400
28 130.5 197.2 392.5 3614 14400 307.0 309.1 342.6 4737 14400
29 150.0 203.9 433.2 4412 14400 337.6 338.9 366.6 4728 14400
30 139.6 274.4 349.1 3714 14400 331.0 333.6 344.2 6059 14400
31 137.0 236.4 349.9 3511 14400 322.9 325.2 345.3 6633 14400
32 162.6 313.3 412.1 3208 14400 376.1 379.4 389.2 4616 14400
33 140.1 205.2 433.9 2907 14400 320.5 322.8 367.5 3822 14400
34 152.4 274.6 424.5 2405 14400 397.3 397.8 417.3 4526 14400
35 135.4 199.4 376.3 4106 14400 318.5 319.8 364.3 5442 14400


