
RC24704 (W0812-047) December 8, 2008 - REVISED April 2, 2009
Computer Science

IBM Research Report

Optimizing Sparse Matrix-Vector Multiplication on GPUs

Muthu Manikandan Baskaran
Department of Computer Science and Engineering

The Ohio State University
Columbus, OH

USA

Rajesh Bordawekar
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598
USA

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Optimizing Sparse Matrix-Vector Multiplication on GPUs

Muthu Manikandan Baskaran
Dept. of Computer Science and Engineering

The Ohio State University, Columbus, OH, USA
baskaran@cse.ohio-state.edu

Rajesh Bordawekar
IBM TJ Watson Research Center

Hawthorne, NY, USA
bordaw@us.ibm.com

Abstract

We are witnessing the emergence of Graphics Pro-
cessor units (GPUs) as powerful massively parallel sys-
tems. Furthermore, the introduction of new APIs for
general-purpose computations on GPUs, namely CUDA
from NVIDIA, Stream SDK from AMD, and OpenCL, makes
GPUs an attractive choice for high-performance numerical
and scientific computing. Sparse Matrix-Vector multiplica-
tion (SpMV) is one of the most important and heavily used
kernels in scientific computing. However with indirect and
irregular memory accesses resulting in more memory ac-
cesses per floating point operation, optimization of SpMV
kernel is a significant challenge in any architecture.

In this paper, we evaluate the various challenges in
developing a high-performance SpMV kernel on NVIDIA
GPUs using the CUDA programming model and propose
optimizations to effectively address them. The optimizations
include: (1) exploiting synchronization-free parallelism, (2)
optimized thread mapping based on the affinity towards op-
timal memory access pattern, (3) optimized off-chip mem-
ory access to tolerate the high access latency, and (4) ex-
ploiting data reuse. We evaluate our optimizations over
two classes of NVIDIA GPU chips, namely, GeForce 8800
GTX and GeForce GTX 280, and we compare the perfor-
mance of our approach with that of existing parallel SpMV
implementations such as (1) the one from NVIDIA’s SpMV
library, (2) the one from NVIDIA’s CUDPP library, and (3)
the one implemented using optimal segmented scan primi-
tive. Our approach outperforms the CUDPP and segmented
scan implementations by a factor of 2 to 8. Our approach is
either in par with NVIDIA’s SpMV library in performance
or achieves up to 15% improvement over NVIDIA’s SpMV
library.

1 Introduction

Modern computer architecture has shifted towards de-
signs that employ multiple processor cores on a chip, so

called multicore processors. However, the current multicore
systems are so architecturally diverse that to fully exploit
the potential of multiple processors, the applications have to
be specialized for the underlying system using architecture-
specific optimization strategies.

One of the key reasons for the architectural diversity
is the need to balance memory and processor capabilities.
Memory bandwidth has always been a performance bottle-
neck in traditional computer architectures, and it is even
more pronounced in multicore systems. The trend in com-
puter architecture shows that increasing processor cores on
a chip is more cost effective than increasing memory band-
width. Hence, memory bottleneck is going to remain as
the key performance bottleneck in future multicore archi-
tectures. Traditionally, a multi-level cache hierarchy is used
to alleviate the memory bottleneck. Due to various rea-
sons concerning power efficiency and performance, many
modern multicore processors, instead of caches, support
fast explicitly managed on-chip memories, often referred
to as scratchpad memories or local stores. The scratch-
pad memories are software-managed, unlike caches that are
hardware-controlled, and hence the execution times of pro-
grams using scratchpad memories can be more accurately
predicted and controlled.

Thus, many of the architecture-specific optimization
strategies involve specific optimizations targeted towards
improving memory throughput of an application. These
optimizations enable parallel applications to yield higher
performance by tolerating the underlying memory bottle-
neck while utilizing the computational power of the multi-
core system. Such memory optimizations are better appre-
ciated in applications that are inherently memory-bound.
One such memory-bound application kernel that is heavily
used in many scientific and engineering applications is the
Sparse Matrix-Vector Multiplication (SpMV) kernel. The
SpMV kernel computes a vector x as a result of multiplying
a sparse matrix A by a vector y (x = Ay).

Although SpMV is a prominent kernel used in many en-
gineering and scientific applications, it is well known that
SpMV yields only a small fraction of machine peak perfor-

1

(c)C Code for the SpMV Kernel (x=Ay)

(b) CSR Storage Representation

0 2 3 2 3 4 5 4 8 95 8 9 2 6 7 2 3 6 7 2 3 8 2 8

Row Pointer Array

Value Array

Index Array

for (int i=0; i <n; i++){

}

float t=0;
int lb = rowPtr[i];
int ub = rowPtr[i+1];
for (int j=lb; j < ub; j++){

int index = ind[j]
t += val[j]*y[index]

}
x[i] = t;

(a) Sparse Matrix

(ind)

(rowPtr)

(val)

Figure 1. Sparse Matrix-Vector Multiplication
and CSR Sparse Matrix Storage Format

mance [20]. Sparse matrix computations involve far more
memory accesses per floating point operation, due to indi-
rect and irregular memory accesses. Higher performance
for SpMV computation requires optimizations that best uti-
lize the properties of the sparse matrix and also the under-
lying system architecture. The storage format of sparse ma-
trix is also very important in determining the performance.
The most common sparse matrix storage format is the Com-
pressed Sparse Row (CSR) format (Figure 1). The non-zero
elements of each row in the sparse matrix are stored con-
tiguously in a dense array, val. A dense integer array, ind,
stores the column index of each non-zero element. Another
dense integer array, rowPtr, stores the starting position of
each row of the sparse matrix in val (and ind). Figure 1(c)
presents the SpMV kernel code in C. Some basic character-
istics of the SpMV computation can be inferred from the
kernel presented in Figure 1(c). They include: (1) exis-
tence of synchronization-free parallelism across the rows,
(2) existence of reuse of input and output vector elements,
(3) non-existence of data reuse of matrix elements, and (4)
more memory accesses per floating operation involving a
non-zero element.

Graphics Processing Units (GPUs) are one of the most
powerful multi-core systems currently in use. For exam-
ple, the NVIDIA GeForce 8800 GTX GPU chip has a
peak performance of over 350 GFLOPS and the NVIDIA
GeForce GTX 280 chip has a peak performance of over 900
GFLOPS. In addition to the primary use of GPUs in accel-
erating graphics rendering operations, there has been con-
siderable interest in exploiting GPUs for General Purpose
computation (GPGPU) [8]. Until very recently, GPGPU
computations were performed by transforming matrix oper-
ations into specialized graphics processing such as texture
operations. The introduction of new parallel programming

interfaces for general purpose computations, such as Com-
pute Unified Device Architecture (CUDA) [15], Stream
SDK [1], and OpenCL [16], have made GPUs powerful
and attractive choice for developing high-performance nu-
merical and scientific computations. Unfortunately, many
modern GPUs exhibit a complex memory organization with
multiple low latency on-chip memories in addition to the
off-chip DRAM. In addition, they also exhibit a hybrid
cache and local-store hierarchy (Figure 2). The access la-
tencies and the optimal access patterns of each of the mem-
ories vary significantly, posing a significant challenge to de-
vise techniques that optimally utilize the various memories
to tolerate the latency and improve the memory throughput.
The memory hierarchy along with the highly parallel exe-
cution model make application optimizations difficult. The
challenges increase many-fold when the application to be
optimized is a memory-intensive kernel like SpMV.

In this work, we investigate the problem of optimiz-
ing SpMV kernels on a modern GPU, specifically, on the
NVIDIA GTX series using the CUDA parallel program-
ming model. First, we evaluate the NVIDIA GPU archi-
tecture and the CUDA execution model using a naive non-
optimized implementation of the SpMV kernel. Our exper-
iments reveal two key inter-related obstacles in improving
the SpMV performance on the NVIDIA GPUs: thread map-
ping and data access strategies. We address these concerns
by proposing various optimizations that take into account
both the application and the architectural characteristics.
The optimizations include: (1) exploiting synchronization-
free parallelism, (2) optimized thread mapping based on
the affinity towards optimal memory access pattern, (3) op-
timized off-chip memory access to tolerate the high ac-
cess latency, and (4) exploiting data reuse. We evalu-
ate our optimizations using two different NVIDIA GPUs,
namely, GeForce 8800 GTX, and GeForce GTX 280, us-
ing a large set of sparse matrices derived from real appli-
cations. We compare our approach against three existing
SpMV CUDA implementations, namely, NVIDIA’s SpMV
library [2], NVIDIA’s CUDPP [5] library and the one im-
plemented using optimal segmented scan primitives from
Dotsenko et al. [7].

Our work makes the following key contributions:

1. We provide solutions to address two key inter-related
concerns in improving the performance of memory-
bound applications like SpMV on NVIDIA GPUs,
namely, thread mapping and data access strategies.

2. We implement an effective and optimized SpMV ker-
nel on NVIDIA GPUs. Our implementation (which
optimizes over the CSR storage format) achieves a
comparable or better performance than the implemen-
tation using the new sparse matrix storage format
(“Hybrid” format) proposed in NVIDIA’s SpMV li-

2

brary. Our implementation outperforms the NVIDIA
CUDPP library and the implementation using optimal
segmented scan by a factor of 2 to 8.

The rest of the paper is organized as follows: Section 2
presents an overview of the NVIDIA GPU architecture and
the CUDA programming model. The problem statement is
presented in Section 3. Section 4 describes the proposed
SpMV optimizations in detail. Experimental results are pre-
sented in Section 5. Section 6 discusses related work. Fi-
nally, we conclude in Section 7.

2 GPU Architecture and the CUDA Pro-
gramming Model

In this Section, we discuss about the GPU parallel com-
puting architecture and the CUDA programming interface.

GPU Computing Architecture: The GPU parallel com-
puting architecture comprises of a set of multiprocessor
units called the streaming multiprocessors (SMs), each one
containing a set of processor cores (called the streaming
processors (SPs)). There are various memories available
in GPUs for a programmer. The memories are organized in
a hybrid cache and local-store hierarchy. The memories are
as follows: (1) off-chip global memory, (2) off-chip local
memory, (3) on-chip shared memory, (4) off-chip constant
memory with on-chip cache, (5) off-chip texture memory
with on-chip cache, and (6) on-chip registers. Fig. 2 illus-
trates the memories in GPUs along with their hierarchical
order and access latencies.

The global memory is a large memory and has a very
high latency. The shared memory is present in each SM
and is organized into banks. When multiple addresses be-
longing to the same bank are accessed at the same time,
it results in bank conflict. Each SM has a set of registers.
The constant and texture memories are read-only regions in
the global memory space and they have on-chip read-only
caches. Accessing constant cache is faster, but it has only a
single port and hence it is beneficial when multiple proces-
sor cores load the same value from the cache. Texture cache
has higher latency than constant cache, but it does not suf-
fer greatly when memory read accesses are irregular and it
is also beneficial for accessing data with 2D spatial locality.

CUDA Programming Model: Programming GPUs for
general-purpose applications is enabled through an easy-
to-use C/C++ language interface exposed by the NVIDIA
Compute Unified Device Architecture (CUDA) technol-
ogy [15]. The CUDA programming model provides an ab-
straction of the GPU parallel architecture using a minimal
set of programming constructs such as hierarchy of threads,
hierarchy of memories, and synchronization primitives. A

CUDA program comprises of a host program which is run
on the CPU or host and a set of CUDA kernels that are
launched from the host program on the GPU device. The
CUDA kernel is a parallel kernel that is executed on a set of
threads. The threads are organized into groups called thread
blocks. The threads within a thread block synchronize
among themselves through barrier synchronization prim-
itives in CUDA and they communicate through a shared
memory space that is available to the thread block. A ker-
nel comprises of a grid of one or more thread blocks. Each
thread in a thread block is uniquely identified by its thread
id (threadIdx) within its block and each thread block is
uniquely identified by its block id (blockIdx). Each CUDA
thread has access to various memories at different levels
in the hierarchy. The threads have a private local memory
space and register space. The threads in a thread block share
a shared memory space. The GPU DRAM is accessible by
all threads in a kernel.

The GPU computing architecture employs a Single In-
struction Multiple Threads (SIMT) model of execution. The
threads in a kernel are executed in groups called warps,
where a warp is an unit of execution. The scalar SPs within
a SM share a single instruction unit and the threads of a
warp are executed on the SPs. All the threads of a warp ex-
ecute the same instruction and each warp has its own Pro-
gram Counter.

1

Registers

Shared
Memory

Global Memory

Texture, Constant
Cache

Host Memory

200-300
cycles

200-300
cycles

1-2 cycles

Constant, Texture
Memory

PCI-Express
latency

1-2 cycles

> 100
cycles

Figure 2. Memory Hierarchy in the NVIDIA
GPUs.

3 Problem Statement

GPUs are massively data-parallel systems with very high
parallelism per-chip. A NVIDIA GTX 280 GPU has a theo-
retical peak performance of around 933 GFlops and a peak
off-chip memory bandwidth of over 141 GBps. However,
the off-chip memory latency is as high as 200 clock cycles.
To fully exploit the massive computing resources of the
GPUs, the off-chip memory latency needs to be efficiently
hidden. Thus, optimizations for enhancing the memory per-

3

formance are critical to GPU systems for utilizing their raw
computing power. Furthermore, in future systems, where
there will be even more processor cores on chip, memory
bottleneck will increasingly become a very critical issue.
Hence, reducing the memory footprint and tolerating the
memory access latency are very important for high perfor-
mance, especially for memory bound applications.

Matrix vector multiplication is a memory-bound appli-
cation kernel in which each matrix element that is brought
from memory is used only once in the computation. Hence,
the kernel is characterized by a high memory overhead per
floating point operation. When the matrix is sparse, it incurs
further complexity in terms of memory overhead because
of the indirect and irregular memory accesses. Sparse ma-
trix vector (SpMV) multiplication involves, on an average,
more than two memory operations for accessing a single
non-zero matrix element and is heavily memory-bound. In
addition, the SpMV-specific optimizations depend heavily
on the structural properties of the sparse matrix, many of
which might be known only at run-time.

As discussed in Section 2, the GPU architecture has
multiple low latency memories in addition to the off-chip
DRAM, and has a hybrid cache and local-store hierarchy.
The characteristics of the various memories available in
the GPU are diverse in terms of latency, optimal memory
access pattern, and control (either hardware-controlled or
software-controlled). This imposes several challenges to ef-
fectively reduce memory footprint and hide latency. The
optimal access pattern is also dependent on the manner in
which threads are mapped for computation and also on the
number of threads involved in global memory access as
involving more threads would assist in hiding the global
memory access latency. Hence, there has to be an optimal
thread mapping to ensure optimized memory access.

In summary, enhancing memory performance is key for
utilizing the high computation power of GPU systems, es-
pecially for memory-bound applications such as the SpMV
kernel. However, there are significant challenges to be ad-
dressed, both in the context of the underlying architecture
and the application. In this work, we develop techniques for
optimizing SpMV computations on GPUs that match appli-
cation requirements against the architectural constraints.

4 Implementation of the Optimizations

In this Section, we discuss the implementation of our
techniques for optimizing SpMV computations on GPUs.
There are various storage formats (as explained in [2]) for
sparse matrices, some of which may be well suited for spe-
cific patterns of sparse matrices. However, we base our op-
timizations on the more general CSR format and discuss
ways to adapt CSR storage format to suit the GPU archi-
tecture. We first explain how we devise the architecture-

specific optimizations for SpMV kernel and also then val-
idate the applicability of these optimizations in attaining
good performance by illustrating with a few performance
results.

int tid = threadIdx.y;

int bid = blockIdx.y;

int myi = bid * BLOCKSIZE + tid;

if (myi < n) {

float t=0;

int lb = rowPtr[myi];

int ub = rowPtr[myi+1];

for (int j=lb; j<ub; j++) {

int index = ind[j];

t += val[j] * y[index];

}

x[myi] = t;

}

Figure 3. Naive CUDA SpMV code

Exploiting Synchronization-free Parallelism: The
CUDA programming model provides an API to syn-
chronize across all threads belonging to a thread block.
However, there is no API in CUDA to synchronize between
thread blocks. To synchronize between thread blocks, the
CUDA programmer has to explicitly implement synchro-
nization primitives using atomic reads/writes in the global
memory space, which incurs a high overhead. Hence, it is
critical to utilize synchronization-free parallelism across
thread blocks. In SpMV computation, the parallelism
available across rows makes it a natural choice to distribute
computations corresponding to a row or a set of rows to
a thread block. The naive way of parallelizing SpMV
(in CSR format) is to allocate one thread to perform the
computation corresponding to one row and a thread block
to handle a set of rows. Figure 3 shows the CUDA code
corresponding to such a naive mapping in which a one-
dimensional grid of thread blocks and a one-dimensional
block of threads are used to compute SpMV.

Optimized Thread Mapping: In GPUs, thread mapping
for computation should ensure that sufficient threads are in-
volved to hide global memory access latency and also en-
sure that the global memory access is optimized, as it is
very critical for performance. The most optimal pattern of
access for global memory is the hardware optimized coa-
lesced access pattern that would be enabled when consecu-
tive threads of a half-warp (i.e. group of 16 threads) access
consecutive elements. It is, therefore, necessary to involve

4

multiple threads for the computation corresponding to each
row, and also arrive at a thread mapping based on the affinity
towards optimal memory access pattern. Our thread map-
ping strategy maps multiple threads (16 threads) per row
such that consecutive threads access consecutive non-zero
elements of the row in a cyclic fashion to compute par-
tial products corresponding to the non-zero elements. The
threads mapped to a row then compute the output vector
element corresponding to the row from the partial prod-
ucts through parallel sum reduction. The partial products
are stored in shared memory as they are accessed only by
threads within a thread block.

Optimized (Aligned) Global Memory Access: Before
we proceed to explain our optimization to enable hardware
optimized global memory coalesced accesses, we discuss
about global memory access coalescing in NVIDIA GPUs.
Global memory access coalescing is applicable to memory
requests issued by threads belonging to the same half-warp.
The constraints for global memory accesses of a half-warp
to get coalesced are slightly different for NVIDIA GeForce
8800 GTX and NVIDIA GeForce GTX 280. The global
memory can be assumed to be consisting of aligned mem-
ory segments. We further base our discussion to memory
requests for 32-bit words. In 8800 GTX device, when all 16
words requested by the threads of a half-warp lie within the
same 64 byte memory segment and if consecutive threads
access consecutive words, then all the memory requests of
the half-warp are coalesced into one memory transaction.
But if that access pattern is not followed among the threads
of a half-warp, then it results in 16 separate memory re-
quests. However, in GTX 280 device, the access pattern
need not be so strict for coalescing to happen. In GTX 280,
the hardware detects the number of 128 byte memory seg-
ments that hold the 16 words requested by the threads of a
half-warp and issues as many memory transactions. There
is no restriction on the sequence of access within the threads
of a half-warp.

In both GPU devices, when the base address of global
memory access requests issued by the threads of a half-warp
is aligned to memory segment boundary and the threads ac-
cess words in sequence, it results in fewer memory trans-
actions. It is a strict requirement for coalescing in GeForce
8800 GTX, however it is beneficial even in GeForce GTX
280. Hence we need to adjust the computation to force the
access pattern to be aligned in the above-mentioned manner.

In the SpMV kernel, the number of non-zeros in a row
varies across rows, and hence the starting non-zero of a row
might be in an non-aligned position in the value array that
stores the non-zeros of the sparse matrix. If the alignment is
not adjusted, it might result in the entire row being accessed
in an non-optimal manner and eventually result in increased
memory access cost. This is avoided in our approach in two

different ways – (1) the computation involving a row is ad-
justed to first access the non-aligned portion of the row, be-
fore proceeding to access the aligned portion, and (2) zeros
are padded to ensure that the number of entries in each row
is a multiple of 16.

Exploiting Data Reuse: The input and output vectors
are the ones that exhibit data reuse in SpMV computation.
The reuse of output vector elements is achieved by exploit-
ing synchronization-free parallelism with optimized thread
mapping, which ensures that partial contributions to each
output vector element are computed only by a certain set of
threads and the final value is written only once. The reuse
pattern of input vector elements depends on the non-zero
access pattern of the sparse matrix. Exploiting data reuse
of the input vector elements can be technically achieved
by caching the elements in on-chip memories. The on-chip
memory may be (1) texture (hardware) cache, (2) registers
or (3) shared memory (software) cache. Utilizing registers
or shared memory to cache input vector elements requires
the programmer to identify the portions of vector that are
reused, which in turn, requires the identification of dense
sub-blocks in the sparse matrix. This requires an analysis of
the sparse matrix (possibly at runtime). However using the
hardware texture cache does not necessarily require analy-
sis of the sparse matrix pattern. We use texture memory to
store the input vector and utilize the read-only texture cache
to achieve performance gains due to input vector reuse.

We also perform an optional runtime preprocessing of
the sparse matrix to identify and extract dense sub-blocks.
We implement a block storage format that suits the GPU
architecture. The features of our format are: (1) We stick
to constant block sizes that enable fine-grained thread-level
parallelism, to avoid the memory access penalty in reading
block size and block index (which is needed if the block
size is allowed to vary), (2) We enforce that starting col-
umn of a block should adhere to the alignment constraints of
global memory coalescing, and (3) We do not make the en-
tire block dense by filling up zeros, instead, we allow each
row in a block to have variable number of entries, and fill up
minimal zeros that are just enough to make the number of
entries in each row of a block to be a multiple of half warp
size.

For every block, the required input vector elements are
loaded from global memory to shared memory, and they are
reused across the rows of a block. The number of input vec-
tor elements loaded for every block is equal to the block
size along column, and since the size is fixed, there is no
additional memory access involved to read the block size.
By enforcing the constraint that starting column index must
be a multiple of half warp size and that number of entries
in each row of a block must be a multiple of half warp size,
our block storage along with optimized thread mapping en-

5

ship raefsky3 ex11 rim rma10 fxm4_6 para-7 e40r0100
Sparse Matrices

0

5

10

15

Sp
M

V
 P

er
fo

rm
an

ce
 (

G
FL

O
PS

)

Naive Implementation
Optimized Thread Mapping
Aligned Global Memory Accesses (without cache)
Aligned Global Memory Accesses (with cache)

8 Different matrices on NVIDIA GTX280

Figure 4. Evaluation of our Optimizations on
GeForce GTX 280

sures that the input vector elements and the sparse matrix
elements are accessed in a coalesced manner.

The loads from global memory to shared memory are
optimal if they involve 16 coalesced accesses. However
in many practical sparse matrices, the dense sub-blocks
present are very small. Hence our run-time preprocessing
to identify and extract dense sub-blocks, in its current state
of implementation, does not yield better performance for
most of the matrices. The approach of using texture cache
for data reuse outperforms the approach of performing run-
time preprocessing and using shared memory cache for data
reuse. This is substantiated from the performance numbers
in Figure 5.

4.1 Performance Evaluation of the Opti-
mizations

We exemplify the effectiveness of the afore-mentioned
optimizations through performance measures taken over a
set of sparse matrices. Figure 4 shows the SpMV perfor-
mance (in GFLOPS) for a set of sample sparse matrices
on GTX 280 GPU after applying the optimizations. The
performance consistently increases after applying each op-
timization (in the order mentioned above).

Coalesced Accesses # Non-Coalesced Accesses
Matrix Naive Thread Aligned Naive Thread Aligned

Mapping Access Mapping Access
raefsky3 172 18898 30457 582784 292676 114466
rma10 414 3693 48289 894942 847676 295968

lp 273 413 19181 1085155 189438 134673

Table 1. Profiling Coalesced and Non-
coalesced Accesses on 8800 GTX. Number
of coalesced accesses increases as the op-
timizations are applied.

CUDA 2.x supports a profiling infrastructure to instru-

ment architectural metrics such as number of coalesced
accesses, number of non-coalesced accesses, number of
instructions executed, number of branch instructions exe-
cuted, etc. We instrumented some of the matrices to check
for the number of non-coalesced accesses before and af-
ter the application of our optimizations. Table 1 provides
the summary of coalesced and non-coalesced accesses for
GeForce 8800 GTX. These results clearly indicate substan-
tial improvement in coalesced accesses (and corresponding
reduction in non-coalesced accesses) through our optimiza-
tions.

5 Experimental Results

We experimentally evaluated our system using two GPU
processors - NVIDIA GeForce 8800 GTX and NVIDIA
GeForce GTX 280, connected to a host x86/Linux system.
The architectural configurations of the two NVIDIA proces-
sors are presented in Table 3. The CUDA kernels were com-
piled using the NVIDIA CUDA Compiler (nvcc) to gener-
ate the device code that was then launched from the CPU
(host). The GPU device was connected to the CPU through
a 16-x PCI Express bus. The host programs were compiled
using the gcc compiler at -O3 optimization level. We used
CUDA version 2.1 for our experiments.

For our evaluation, we used 19 sparse matrices from
the sparse matrix collection described in [6]. The selected
sparse matrices represent a wide variety of real applica-
tions including finite element method (FEM) based model-
ing, structural engineering, vibroacoustics, and linear pro-
gramming. The selected matrices also cover a spectrum of
properties with respect to number of rows/columns of ma-
trix, number of non-zeros in matrix, presence of uniformly
or non-uniformly aligned dense sub-blocks of single block
size, presence of dense sub-blocks of varied size, presence
of irregularity in the structure, etc.

Feature 8800 GTX GTX 280

Multiprocessors (SMs) 16 30
Processor cores (SPs) 8 8

Processor Clock 1.35 GHz 1.296 GHz
Off-chip Memory Size 768 MB 1 GB
Off-chip Memory BW 86.4 GBps 141.7 GBps

Peak Performance 388.8 GFLOPS 933.12 GFLOPS

Table 3. Architectural configurations of
NVIDIA GeForce 8800 GTX and GeForce GTX
280

5.1 Existing Implementations

Parallel SpMV Implementations using Scan Primitives:
NVIDIA has released a library called CUDPP [5] for data-
parallel algorithm primitives, which has an implementation
for SpMV for NVIDIA GPUs. The CUDPP library imple-
ments the SpMV kernel using segmented scan approach as

6

Without Cache With Cache
NVIDIA Ours NVIDIA Ours

matrix CSR HYB Thread Aligned CSR HYB Aligned
Mapping Access Access

tunnel 6.23 11.92 6.39 8.38 8.11 20.72 12.13
ship 5.77 8.63 5.89 6.94 6.68 12.36 11.73

protein 6.82 7.29 7.17 7.23 9.42 13.07 14.02
rail4284 3.98 2.10 4.52 4.68 4.16 2.53 4.87
mc2depi 1.44 7.1 1.84 2.20 1.84 8.56 4.44
raefsky3 8.09 14.31 8.27 9.75 10.25 16.80 14.51

olafu 6.34 10.09 5.90 6.91 8.81 12.98 10.42
bcsstk35 6.02 7.24 5.19 6.17 8.43 9.99 9.17
venkat01 5.73 9.61 6.40 8.29 8.41 15.26 12.02
nasasrb 5.69 8.64 5.68 7.20 8.16 12.98 10.66

ex11 6.06 9.85 6.37 6.39 8.85 13.54 13.43
rdist1 4.12 2.19 3.16 3.65 4.16 1.91 4.79

orani678 2.40 0.21 2.77 2.81 2.98 0.19 3.41
rim 5.50 7.20 5.91 6.20 7.81 9.70 11.41

rma10 5.97 7.17 6.75 6.93 8.34 11.08 13.48
lp 0.58 0.08 0.30 0.30 0.64 0.08 0.33

fxm4 6 3.19 3.00 2.86 3.88 3.47 3.08 4.70
para-7 2.94 3.96 3.34 3.58 5.60 6.19 7.69

e40r0100 5.00 4.84 4.97 5.66 7.12 6.72 9.39

Table 2. Performance Measures (in GFLOPS) on GeForce GTX 280

proposed by Sengupta et al. [17]. Their algorithm [17] is
extended from the scan algorithms proposed by Blelloch et
al. [4].

The SpMV implementation (x = Ay) using segmented
scan can be performed in three steps – (1) Compute the
product Ai jy j for each non zero element Ai j and the result
would be an array of products, (2) Perform a segmented
scan using addition operator on the array of products (Each
row in the sparse matrix corresponds to a segment), and (3)
Gather the sum accumulated in the first (or last) element of
each segment in the output vector.

The implementation of segmented scan in CUDPP li-
brary uses a tree-based technique. This has several per-
formance limitations as pointed out by Dotsenko et al. [7].
The CUDPP implementation has inefficient global mem-
ory accesses, shared memory accesses with bank conflicts
in some stages of their algorithm, and higher synchroniza-
tion across threads. Dotsenko et al. [7] have implemented
fast scan algorithms on GPUs using a matrix-based tech-
nique, which outperforms the scan primitives in CUDPP.
The matrix-based segmented scan algorithm significantly
reduces the shared memory bank conflicts, improves global
memory accesses, and reduces synchronization. The algo-
rithm is explained in detail in [7]. We implemented the seg-
mented scan algorithm from [7] and implemented SpMV
using the matrix-based segmented scan algorithm, follow-
ing the afore-mentioned steps. We refer to this implementa-

tion of SpMV in further discussion as the Segmented Scan
implementation. We use CUDPP version 1.0 alpha for our
comparative evaluation.

NVIDIA SpMV Library: NVIDIA has recently released
a library specifically for SPMV computation. They dis-
cuss various standard storage formats for sparse matrices
and their applicability on NVIDIA GPUs. The formats
with which sparse matrices are represented in the library
are (1) Diagonal (DIA) format suited for matrices restricted
to a small number of matrix diagonals, (2) ELL format
where non-zeros are stored as a dense matrix, (3) Coor-
dinate (COO) format, (4) CSR format, (5) Hybrid (HYB)
format combining ELL and COO formats, and (6) Packet
(PKT) format which is tailored for symmetric mesh-based
matrices. The details of the implementation are discussed
in [2].

5.2 Performance Evaluation

We first compare the performance of our implementa-
tion with that of CUDPP and Segmented Scan implemen-
tations. Fig. 5 and Fig. 6 show the performance compari-
son measures (in GFLOPS) on 8800 GTX and GTX 280,
respectively, on eight representative diverse matrices (out
of the 19 matrices) belonging to different classes in terms
of sparse matrix structure. “Compile-time Optimizations”

7

ship raefsky3 ex11 rim rma10 fxm4_6 para-7 e40r0100
Sparse Matrices

0

1

2

3

4

5

6

7

8

9

10

Sp
M

V
 P

er
fo

rm
an

ce
 (

G
FL

O
PS

)

CUDPP Implementation
Segmented Scan
Compile-time Optm.(without cache)
Compile-time Optm. (with cache)
Runtime Preprocessing

8 Different Matrices on NVIDIA 8800GTX

Figure 5. Comparison with Existing Ap-
proaches on GeForce 8800 GTX

in Figures 5 and 6 refer to the optimizations such as Opti-
mized Thread Mapping and Aligned Global Memory Ac-
cess discussed in Section 4. It can be clearly observed that
in all cases, our optimizations out-perform both the CUDPP
and Segmented Scan implementations. The CUDPP im-
plementation, as discussed earlier, results in non-optimal
global and shared memory accesses, leading to poor over-
all performance. The Segmented Scan implementation has
an optimized segmented scan primitive. However, as dis-
cussed above, SpMV implementation using segmented scan
requires three steps, and at least the step involving the prod-
uct computation and that involving the segmented scan op-
eration have to be launched as separate kernels. This re-
sults in additional kernel invocation overhead and additional
copy overhead as values have to be written on to global
memory in the first kernel to be used in the second ker-
nel. Also, segmented scan has unwanted memory accesses
and computation as the segmented scan primitive computes
the prefix sum for each element of the segment whereas for
SpMV it is enough to find the prefix sum of the first (or
last) element of the segment. Another major setback with
Segmented Scan implementation is that the segmented scan
primitive works on a block of array and the entire block
is copied on to shared memory. Hence it can work only
on a block that can fit in shared memory, at a time. So
if elements belonging to a segment (in this case, row of a
sparse matrix) span across blocks, then it involves unneces-
sary movement of partial results to and from global memory
resulting in high memory access overhead. Hence it is al-
ways optimal to maintain synchronization-free parallelism
by maintaining the computations of a row within a thread
block. The non-existence of such a partition of computa-
tion is a cause for poor performance of the implementation.
Our SpMV implementation yields about 2× to 8× higher

ship raefsky3 ex11 rim rma10 fxm4_6 para-7 e40r0100
Sparse Matrices

0

5

10

15

Sp
M

V
 P

er
fo

rm
an

ce
 (

G
FL

O
PS

)

NVIDIA CUDPP1.0
Segmented Scan

NVIDIA SpMV CSR (without cache)

NVIDIA SpMV CSR (with cache)

NVIDIA SpMV Hybrid (without cache)

NVIDIA SpMV Hybrid (with cache)

Compile-time Optimizations (without cache)

Compile-time Optimizations (with cache)

8 Different Matrices on NVIDIA GTX280

Figure 6. Comparison with Existing Ap-
proaches on GeForce GTX 280

performance compared to that of CUDPP and Segmented
Scan implementations on 8800 GTX. The performance gap
is even higher (about 2× to 10×) on GTX 280.

We focus the rest of our evaluation on comparison of
our approach against NVIDIA SpMV library. The NVIDIA
SpMV library failed to execute on 8800 GTX and hence
those performance measures are not available. The HYB
format of the NVIDIA SpMV library being the hybrid of
ELL and COO formats, exhibits a better performance than
ELL or COO formats in most cases, as discussed in [2].
The DIA and PKT formats are special formats tailored for
certain specific patterns of sparse matrices. Hence, we com-
pare our implementation only with the implementations us-
ing CSR and HYB formats of the SpMV library. Table 2
shows the performance measures (in GFLOPS) on NVIDIA
GeForce GTX 280, for all 19 sparse matrices taken for
study, for all versions of our implementation and SPMV li-
brary. The columns T hreadMapping and AlignedAccess
refer to our compile-time optimizations such as optimized
thread mapping and aligned global memory access, as ex-
plained in Section 4. It can be noted from Table 2 that we
compare versions that use texture cache and those that don’t
use texture cache.

As explained in Section 4, we base our optimizations on
the CSR format. Hence we first compare our optimized
version (with and without cache) with NVIDIA SpMV
library’s version using optimized CSR format (with and
without cache). The optimized CSR implementation from
NVIDIA SpMV is very similar to our version with “opti-
mized thread mapping” except that (1) they map 32 threads
per row (as opposed to 16 in our version) and (2) they do
not make alignment adjustment and hence their implemen-
tation results in only partial coalescing. Our approach out-
performs their version using optimized CSR format (with

8

and without texture cache) for all matrices under study. Our
approach is less efficient than the version using HYB for-
mat when the number of non-zeros per row is less than 16,
as some threads may remain idle. For the matrix “mc2depi”,
the number of non-zeros per row is very low, which at-
tributes to the poor performance of our approach. The ver-
sion using HYB format exhibits poor performance when
the number of non-zeros per row varies widely across the
matrix (for e.g. “rail4284” matrix [2]). In general, our
approach achieves better or equivalent performance when
compared to NVIDIA SpMV library.

Bell et al. [2] compare the GPU SpMV results obtained
from NVIDIA SpMV library and SpMV results on various
different multi-core platforms obtained by Williams et al.
[22] and illustrate that the GPU results offer the best perfor-
mance. Hence comparing our approach with the NVIDIA
SpMV library will give a clear picture of how our GPU re-
sults would compare against the results on different multi-
core platforms.

6 Related Work

Over the last two decades, there has been significant
amount of work on optimizing sparse matrix computations
(SpMV). Most of the work have concentrated on optimiz-
ing sparse matrix kernels on general-purpose architectures.
SpMV being a memory-bound kernel, most of the optimiza-
tions target performance improvements at various memory
levels in memory hierarchy. The optimizations broadly in-
clude optimal data structure for storing the sparse matrix
[3], exploiting block structures in sparse matrix [21, 9], and
blocking for reuse at the level of cache [14, 19], TLB [14],
and registers [12, 10]. OSKI [20] is a state-of-the-art li-
brary collection providing low-level primitives for automat-
ically tuned kernels on sparse matrices. OSKI uses tech-
niques extensively from the SPARSITY sparse-kernel auto-
matic tuning framework [10] for arriving at optimizations
for sparse kernels. Unfortunately, the optimization tech-
niques proposed for cache-based general-purpose architec-
tures cannot be directly applied for GPU architecture. GPUs
are massively parallel systems in which having more con-
currently active threads are critical for performance, espe-
cially for hiding high latency memory accesses by effective
thread scheduling. This is because when there are more ac-
tive threads, when some threads are busy waiting for the
completion of memory access request, the thread scheduler
can switch control over to other threads, thereby keeping the
system busy without stalling as far as possible. Therefore,
fine-grained thread-level parallelism is beneficial for GPUs,
and hence, in most cases data reuse across threads is better
rather than reuse within a thread. While spatial locality and
temporal locality are very important to exploit at the level
of cache or registers in general-purpose architectures, map-

ping of computation among threads that result in optimal
memory access pattern has to be considered in GPU archi-
tectures which, in some cases, can negate locality, but yet
turn out to be beneficial.

Recently, Williams et al. [22] emphasize and substan-
tiate the need for multicore specific optimization strategies
for various emerging multicore platforms including AMD
dual-core, Intel quad core, STI Cell, and Sun Niagara2
systems. They clearly quantify the extent of significance
of memory bandwidth bottleneck for increasing number of
cores and motivate memory bandwidth reduction for SpMV
computations. Our work also, on the same lines, empha-
sizes optimization strategies that are specific to the GPU ar-
chitecture taking into consideration the complex GPU mem-
ory organization and the non-trivial optimal mapping of
computation among threads.

There are several sparse matrices corresponding to real
applications which possess dense block substructures. Ex-
ploiting the presence of dense blocks will help in enhancing
data reuse, especially, of the input vector elements. The
dense block structure may either contain same size blocks
that are uniformly aligned or same size blocks that are
non-uniformly aligned or varied size blocks that are irreg-
ularly aligned [21]. The Block CSR (BCSR) [9] and Un-
aligned Block CSR (UBCSR) sparse storage formats are
proposed to improve sparse matrix computations by effec-
tively handling dense sub-blocks in sparse matrices. These
approaches identify small dense blocks which are more
suited for register blocking in traditional architectures and
in short-vector processors. Buatois et al. [11] have devel-
oped a sparse linear solver on GPUs and have implemented
SpMV, the primary kernel in the solver, using the BCSR
format for register blocking. They have implemented us-
ing AMD’s (then ATI’s) Close-To-Metal (CTM) API for
general-purpose computation on ATI GPUs. The GPUs
they have targeted are the ATI X1k series which have multi-
ple pipelines and each pipeline has a 4-element vector pro-
cessors. However in modern massively parallel SIMD ar-
chitecture of NVIDIA GPUs which has scalar processors
executing in SIMD fashion in a multiprocessor, the BCSR
format with small dense blocks leads to coarse-grained par-
allelism that enhances register level data reuse, but results
in non-optimal global memory accesses.

There has been several works that perform a runtime
processing to reorder computation and data for locality en-
hancement for cache-based architectures (e.g. [13]). Strout
et al. [18] developed a compile-time framework for com-
posing run-time data and computation reordering for data
locality. However in our work, we neither perform any such
heavy runtime processing nor use a compiler framework to
facilitate such a runtime reordering, but perform only a sim-
ple processing to determine non-zero blocks of fixed block
size that is aligned as per the GPU architectural constraints.

9

NVIDIA’s SpMV library, NVIDIA’s CUDPP [5] library
for data-parallel algorithm primitives and the implementa-
tion of optimized scan primitives by Dotsenko et al. [7] are
the most prominent relevant works on sparse matrix compu-
tations on NVIDIA GPUs. We have discussed these works
in Section 5.

7 Conclusions and Future Work

In this work, we have presented the key architectural
optimizations that have to be addressed in GPUs for effi-
cient execution. We have analyzed the various challenges
in extracting high-performance from a prominent memory-
bound scientific kernel like SpMV on NVIDIA GPUs using
CUDA and have developed optimizations that take into ac-
count both the application and the architectural character-
istics. We have evaluated our techniques over two classes
of NVIDIA GPU chips, namely, GeForce 8800 GTX (hav-
ing 128 cores per chip) and GeForce GTX 280 (having
240 cores per chip). We have obtained significant perfor-
mance improvements over existing parallel SpMV imple-
mentations, on both the GPU chips, clearly indicating the
effectiveness of our approach to scale the performance of
SpMV for increasing number of cores per chip.

We plan to extend our approach to include a more so-
phisticated runtime inspection module that can effectively
reorder data and computation to further exploit data reuse
and optimize memory access. We also plan to integrate auto
tuning infrastructure into our approach to determine optimal
block sizes for arbitrary irregular sparse matrices.

References

[1] AMD Stream SDK.
http://ati.amd.com/technology/streamcomputing/.

[2] N. Bell and M. Garland. Efficient sparse matrix-vector multi-
plication on CUDA. NVIDIA Technical Report NVR-2008-
004, NVIDIA Corporation, Dec. 2008.

[3] A. J. C. Bik and H. A. G. Wijshoff. Automatic data structure
selection and transformation for sparse matrix computations.
IEEE Trans. Parallel Distrib. Syst., 7(2):109–126, 1996.

[4] G. E. Blelloch. Prefix sums and their applications. Technical
report, 1990.

[5] CUDPP: CUDA Data Parallel Primitives Library.
http://www.gpgpu.org/developer/cudpp/.

[6] T. Davis. The university of florida sparse matrix collection.
ACM Trans. on Mathematical Software.
http://www.cise.ufl.edu/research/sparse/matrices.

[7] Y. Dotsenko, N. K. Govindaraju, P.-P. Sloan, C. Boyd, and
J. Manferdelli. Fast scan algorithms on graphics processors.
In ICS ’08: Proceedings of the 22nd annual International
Conference on Supercomputing, pages 205–213, 2008.

[8] General-Purpose Computation Using Graphics Hardware.
http://www.gpgpu.org/.

[9] E.-J. Im and K. A. Yelick. Optimizing sparse matrix com-
putations for register reuse in SPARSITY. In Proceedings of
the International Conference on Computational Science, vol-
ume 2073 of LNCS, pages 127–136, San Francisco, CA, May
2001. Springer.

[10] E.-J. Im, K. A. Yelick, and R. Vuduc. SPARSITY: Frame-
work for optimizing sparse matrix-vector multiply. Interna-
tional Journal of High Performance Computing Applications,
18(1):135–158, February 2004.

[11] Luc Buatois and Guillaume Caumon and Bruno Lvy. Con-
current Number Cruncher: An Efficient Sparse Linear Solver
on the GPU. In High Performance Computation Conference
(HPCC), Springer Lecture Notes in Computer Sciences, 2007.

[12] J. Mellor-Crummey and J. Garvin. Optimizing sparse
matrix-vector product computations using unroll and jam. Int.
J. High Perform. Comput. Appl., 18(2):225–236, 2004.

[13] J. Mellor-Crummey, D. Whalley, and K. Kennedy. Improv-
ing memory hierarchy performance for irregular applications
using data and computation reorderings. Int. J. Parallel Pro-
gram., 29(3), 2001.

[14] R. Nishtala, R. Vuduc, J. Demmel, and K. Yelick. When
cache blocking sparse matrix vector multiply works and why.
In Proceedings of the PARA’04 Workshop on the State-of-
the-art in Scientific Computing, Copenhagen, Denmark, June
2004.

[15] NVIDIA CUDA.
http://developer.nvidia.com/object/cuda.html.

[16] Open Computing Language (OpenCL).
http://www.khronos.org/news/press/releases/
khronos launches heterogeneous computing initiative/.

[17] S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens. Scan
primitives for gpu computing. In GH ’07: Proceedings of
the 22nd ACM SIGGRAPH/EUROGRAPHICS symposium on
Graphics hardware, pages 97–106, 2007.

[18] M. M. Strout, L. Carter, and J. Ferrante. Compile-time com-
position of run-time data and iteration reorderings. In PLDI
’03: Proceedings of the ACM SIGPLAN 2003 conference on
Programming language design and implementation, 2003.

[19] O. Temam and W. Jalby. Characterizing the behavior of
sparse algorithms on caches. In Supercomputing ’92: Pro-
ceedings of the 1992 ACM/IEEE conference on Supercomput-
ing, pages 578–587, 1992.

[20] R. Vuduc, J. W. Demmel, and K. A. Yelick. OSKI: A library
of automatically tuned sparse matrix kernels. In Proceedings
of SciDAC 2005, Journal of Physics: Conference Series, San
Francisco, CA, USA, June 2005. Institute of Physics Publish-
ing.

[21] R. Vuduc and H.-J. Moon. Fast sparse matrix vector multipli-
cation by exploiting variable block structure. In Proceedings
of the International Conference on High-Performance Com-
puting and Communications, LNCS 3726, Sorrento, Italy,
September 2005.

[22] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and
J. Demmel. Optimization of sparse matrix-vector multiplica-
tion on emerging multicore platforms. In SC ’07: Proceed-
ings of the 2007 ACM/IEEE conference on Supercomputing,
pages 1–12, 2007.

10

