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ABSTRACT
We describe the ideas and methodologies that we developed
in addressing the KDD Cup 2008 on early breast cancer
detection, and discuss how they contributed to our success.
The most important components of our solution were 1)
the identification of predictive information in the patient
identifier, 2) a linear SVM on the 117 provided features,
and 3) a heuristic post-processing approach to optimize the
evaluation criteria.

1. TASK AND DATA DESCRIPTION
The Siemens KDD Cup 2008 consisted of two prediction
tasks in breast cancer detection from images. The organizers
provided data from 1712 patients for training; of these 118
had cancer. Siemens uses proprietary software to identify
in each image (two views for each breast) suspect locations
(called candidates), that are described by their coordinates
and 117 features. No explanation of the features was given.
Overall the training set includes 102,294 candidates, 623 of
which are positive. A second dataset with similar properties
was used as the test set for competition evaluation. The two
modeling tasks were:

Task 1: Rank the candidates by the likelihood of being can-
cerous in decreasing order. The evaluation criterion for this
task was an area under the FROC curve, which measures
how many of the actual patients with cancer are identified
while limiting the number of candidate false alarms to a
range between 0.2 and 0.3 per image. This was meant to
reflect realistic requirements when the prediction model is
used as an actual decision support tool for radiologists.

Task 2: Suggest a maximal list of patients who are surely
healthy. In this task, including any patient with cancer in
the list will disqualify the entry. This was meant to be ap-
propriate for a scenario where the model is used to save the
radiologist work by ruling out patients who are definitely
healthy, and thus the model was required to have no false
negatives.

Several aspects of the data and the tasks made this compe-
tition interesting, including:

• The presence of leakage, whereby patient IDs turned
carry predictive information about a patient’s likelihood
to have cancer. We discuss this competition’s leakage
and other examples in Section 2.

• Unique data properties, including the presence of ex-
treme outliers and the combination of the features with
neighborhood-based information from the location of can-
didates. These properties and some of our efforts in al-
leviating and using them, are discussed in Section 3.

• The unique FROC score, which treats patients as pos-
itive examples, but candidates as negative examples.
This clearly has implications on the way in which models
should rank candidates, preferentially combining candi-
dates from different patients over many good candidates
from the same patient. We address this in the context of
post-processing schemes for model scores in Section 4.

We present our final submittion briefly in Section 5.

2. LEAKAGE IN PATIENT ID
Leakage can be defined as the introduction of predictive in-
formation about the target by the data generation, collec-
tion, and preparation process. Such information leakage -
while potentially highly predictive out-of-sample within the
study - leads to limited generalization and model applica-
bility, and to overestimation of the predictive performance.

Two of the most common causes for leakage are:

1. Combination of data from multiple sources and/or mul-
tiple time points, followed by a failure to completely
anonymize the data and hide the different sources.

2. Accidental creation of artificial dependencies and addi-
tional information while preparing the data for the com-
petition or proof-of-concept.

This year’s KDD Cup data suffered from leakage that was
probably due to the first cause. The patient IDs in the com-
petition data carried significant information towards iden-
tifying patients with malignant candidates. This is best il-
lustrated through a discretization of the patient ID range,
as demonstrated in Figure 1. The patient IDs are natu-
rally divided into three disjoint bins: between 0 and 20,000
(254 patients; 36% malignant); between 100,000 and 500,000
(414 patients; 1% malignant); and above 4,000,000 (1044
patients, of them 1.7% malignant). We can further observe
that all 18 afflicted patients in the last bin have patient IDs
in the range 4,000,000 to 4,870,000, and there are only 3
healthy patients in this range. This gives us a four-bin divi-
sion of the data with great power to identify sick patients.
This binning and its correlation with the patient’s health
generalized to the test data. Our hypothesis is that this leak-
age reflects the compilation of the competition data from dif-
ferent medical institutions and maybe different equipment,



Figure 1: Distribution of malignant (black) and benign
(gray) candidates depending on patient ID on the X-axis
in log scale. The Y-axes is the score of a linear SVM model
on the 117 features. Vertical lines show the boundaries of
the identified ID bins.

where the identity of the source is reflected in the ID range
and is highly informative of the patient’s outcome. For ex-
ample, one source might be a preventive care institution
with only very low base rate of malignant patients and an-
other could be a treatment-oriented institution with much
higher cancer prevalence1.

While it is clear that such leakage does not represent a useful
pattern for real application, we consider its discovery and
analysis an integral and important part of successful data
analysis. Furthermore, we suggest that the problem in this
dataset may actually run deeper and that all participants
unknowingly benefited somewhat from a leakage problem
and all reported performances are likely to be inflated.

If the predictiveness of the identifiers is caused by the com-
bination of data from different sources , there may be ad-
ditional implicit leakages due to differences in data collec-
tion settings (e.g., machine calibration). This would still
be present even if the patient IDs had been removed. We
test this hypothesis with the following experiment: If such a
leakage exists (say the average grayscale is slightly different),
it should be possible to predict the data source (i.e., one of
the four identifier bins) from negative candidates only. We
cannot include positives because we already know that the
cancer prevalence is correlated with the bins. Our analy-
sis shows that both group 1 (ID below 20000) and group 4
(ID above 4,870,000) are easily identified by a logistic model
from the 117 provided features with AUCs of 0.865 and 0.75
respectively.

Given this result we feel confident to conclude that any rea-
sonable model can infer the patient group to some extent
from the 117 variables and thereby implicitly the cancer
prevalence in that patient population. So all models built
on this data set are likely to overestimate the true predictive
performance of cancer detection when applied to an entirely
different population.
More generally, experience has shown that leakages occur in
many modeling competitions, including KDD-Cup 2007 [4],
where the organizers’ preparation of the data for one task
exposed some information about the response for the other
task, the INFORMS Data Mining Contest in 2008, were
it was possible to identify the partial removal of diagnosis
codes used for the target construction, and KDD-Cup 2000
[1], where internal testing patterns that were left in the data

1The orgainzers later explained that in order to increase the
number of positive examples, the dataset was comprised of
examples from different time periods.

by the organizers supplied a significant boost to those who
were able to identify them.
Exploratory data analysis seems to have become something
of a lost art in the KDD community. In proper exploratory
analysis, the modeler carefully and exhaustively examines
the data with little preconception about what it contains,
and allows patterns and phenomena to present themselves,
only then analyzing them and questioning their origin and
validity. We hope that our discovery of this leakage can
serve as a reminder of the value of open-minded exploratory
analysis.

3. MODELING

3.1 Incorporating IDs
Given the obvious predictive value of the patient ID we
incorporated this information it as a categorical variable
for the classification models with 4 possible bin numbers
{1,2,3,4}. We also explored building 4 separate models,
but this did not yield better results, presumably because
for some of them the number of training points is rather
small.

3.2 Classification
In order to investigate the generalization performance of dif-
ferent methods, we created a stratified 50% training and test
split by patient. We ensured that exactly half of the positive
patients were assigned to each split. All results presented in
Table 1 are based on our internal test set.

We explored the use of various learning algorithms for the
underlying candidate classification problem including Neu-
ral Networks, Logistic regression and various SVM variants
using the SVMPerf package [2]. Ultimately, linear models
(logistic regression or linear SVMs) yielded the most promis-
ing results. In this section we discuss various directions we
explored for improving the initial FROC results from the
linear SVM of 0.0834 without and 0.0882 with a patient bin
variable .

Kernel selection: We compared linear SVMs, RBF kernels
and polynomial kernels of degree 2 and 3. We found that lin-
ear kernels consistently performed best and have the added
advantage of being extremely fast compared to the other ap-
proaches. The RBF kernels not only took the longest time
to run, but also had a dismal performance of 0.0229. Given
these results, we adopted linear SVMs for all of the following
experiments.

Loss function: Most work in the use of SVMs has fo-
cused on minimizing the error rate or zero-one loss func-
tion. In recent work, Joachims [2] presented efficient ways
to train SVMs to maximize alternative multivariate perfor-
mance measures, such as the area under the ROC curve
(AUC). Given that the evaluation metric for Task 1 is re-
lated to AUC, we trained an SVM to maximize AUC. We
also compared maximizing Precision and Recall at k, which
is the Precision/Recall of a classifier that predicts exactly
k instances as positive. In particular, given p positive in-
stances in the training set, we used k = p/2 and k = 2p for
Precision and Recall respectively. Since AUC is most closely
related to the FROC metric, we find that maximizing it per-
forms the best, improving the FROC from 0.0882 to 0.0893
but probably not significantly.



Approach FROC

Linear SVM without ID bin 0.0834
Linear SVM with ID bin 0.0882
Linear SVM without Outliers 0.0858
Polynomial kernel SVM, d=2 0.0803
Polynomial kernel SVM, d=3 0.0774
RBF kernel SVM 0.0229
Linear SVM maximizing AUC 0.0893
Linear SVM maximizing Precision 0.0869
Linear SVM maximizing Recall 0.0865
Bagging linear SVM with c=20 0.0900
Bagging linear SVM c=500 0.0873
Constrained Logistic Regression 0.0793
Bagged Linear SVM with Post Processing 0.0930

Table 1: Comparing FROC of different approaches on our
50% test set.

Regularization and Bagging: As observed by Valentini
and Dietterich [5], bagging can significantly improve clas-
sification accuracy over a single SVM. Since bagging is a
variance-reduction technique, they propose applying bag-
ging to SVMs with low bias and high variance. In particular,
for linear SVMs, they show that decreasing bias by increas-
ing the regularization parameter and then applying bagging
is very effective. We test the effectiveness of bagging in our
setting for maximizing FROC. We applied 10 iterations of
bagging linear SVMs with the regularization parameter c
set to 20 and 500. We observed that with c = 20, bagging
does improve the FROC to 0.090. For c = 500, however the
FROC drops to 0.0873, so the accuracy results do not seem
to carry over in our setting.

3.3 Outlier Treatment
The majority of the 117 features exhibit distributions with
heavy tails and at times significant skew. We explore cut-
ting outliers to improve our models estimation and to avoid
extreme predictions caused by extreme x values on the sub-
mission set. We calculated an upper and lower bound for
each of the 117 features based on the inter-quartile range.
We define Q25

k as the 25th and Q75
k as the 75th percentile of

feature k. We replaced each value xk < Q25
k −3∗(Q75

k −Q25
k )

with the lower bound Q25
k − 3 ∗ (Q75

k −Q25
k ) and xk > Q75

k +
3 ∗ (Q75

k −Q25
k ) with the upper bound Q75

k +3 ∗ (Q75
k −Q25

k ).
This adjustment affected a non-negligible percentage of can-
didates and reduced the linear SVM performance to 0.0858
and so we kept the extreme values unaltered.

3.4 Additional Features
Candidate Location: We considered that the location of
a candidate relative to nipple or breast boundary might be
indicative of malignant candidates. Figure 2 shows the nor-
malized and aligned locations of all candidates. It turned
out that even sophisticated features derived from the loca-
tion such as high-degree polynomials, functions of the dis-
tance from the deduced boundaries etc. yielded no improve-
ment. This indicates that either there are no “high risk”
areas in the breast, or that the 117 original features already
contain the relevant location information of the candidate.

Number of candidates per patient: Another direction

Figure 2: Distribution of location of malignant (black dia-
mond) and benign (gray dot).

that could potentially lead to additional informative features
is the number of candidates belonging to a patient. Once
again, all the attempts to construct features using this quan-
tity lead either to deterioration or non–substantial improve-
ment of the performance on the test data.

3.5 Modeling Neighborhood Dependence
As suggested in one of the hints provided by organizers, a
cancerous lesion should be visible in both views of a breast
(although in extremely rare cases some lesions may only be
visible in one view). We name the two views as v1 and v2.
Therefore it would be useful to examine whether we can for-
mulate meaningful constraints based on this observation and
exploit correlations in classification decisions for the candi-
dates from the same region of a breast.

Constraint Formulation: The data provided contains the
coordinates of each candidate as well as those of the nipple
in the images. There are many meaningful ways to formu-
late the constraints. We choose a simple approach based on
location adjacency, i.e. we compute the Euclidean distance
from the candidates to the nipple in both views for each
breast, select the pairs of candidates from different views
with distance difference less than a threshold (we set the
threshold as 20 in our experiments, resulting in 29139 con-
straints) and make constraints that the selected pairs of ex-
amples (xi,v1

, xi,v2
) should have the same predicted labels,

i.e. f(xi,v1
) = f(xi,v2

).

Pairwise Constraint Kernel Logistic Regression: We
use pairwise kernel logistic regression, which is able to plug
in additional pairwise constraints together with labeled data
to model the decision boundary directly [6]. Suppose we
have a set of training examples {(xi,vj

, yi)}, and a set of
pairwise constraints {(xk,v1

, xk,v2
, +/−)} constructed from

both labeled and unlabeled data, where “+” means that the
example pair xk,v1

and xk,v2
belongs to the same class and

“−” means different classes. In our setting, we only consider
the positive constraints, i.e. the pair of examples belong to
the same class. To make the optimization problem feasible
to solve, we define a convex loss function via the logit loss



as follows:

O(f) =
1

m

m
X

i=1

log(1 + e−yif(xi)) + λΩ(‖f‖H) +

µ

n

X

k∈C

log(1 + ef(xk,v1
)−f(xk,v2

)) + log(1 + ef(xk,v2
)−f(xk,v1

)),

where the first term is the loss on labeled training examples,
the second is the regularizer and third term is the loss as-
sociated with the difference between the predicted labels of
the example pairs. The pairwise constraint coefficient µ is
set to 1. For simplicity, we define f as a linear classifier, i.e.
f(x) = wT x. Since the optimization function is convex, a
gradient search algorithm can guarantee the finding of the
global optimum. It is easy to derive the parameter estima-
tion method using the interior-reflective Newton method,
and we omit the detailed discussion. The constrained logis-
tic regression unfortunately only yielded a FROC of 0.079.

4. POSTPROCESSING
Task 1 uses the predictions from the classification model to
order the candidates and computes the FROC metric based
on this ordering. As observed in Section 3 attempting to
maximize AUC improves ranking of candidates, which in
turn often improves FROC. However, optimizing AUC is not
guaranteed to optimize FROC. The AUC measures the area
under the curve of true positive rate versus false positive
rate, whereas the Y-axis of a FROC curve is the true posi-
tive rate at a patient level. Contrary to AUC, a higher true
positive rate at a candidate-level does not improve FROC
unless the positive candidates are from different patients.
For instance, it is better to have 2 correctly identified candi-
dates from different patients, instead of 5 correctly identified
candidates from the same. So it might be possible to reorder
candidates such that a larger variety of patients are repre-
sented at the top of the list2

In order to do this, we create a pool of the top n candidates,
as ordered by our model. We then select the candidates
with the highest scores for each patient in this pool, and
move these to the top of our list. We repeat this process
iteratively with the remaining candidates in our pool until
we have exhausted all candidates.
We only do this for the top n candidates, since the FROC
metric is based only on the area under the curve for a small
range of false alarm rates at the beginning of the curve. We
leave the ordering of the remaining candidates untouched.
The only parameter this post-processing procedure requires
is the choice of n for the number of top-ranked candidates we
want to re-order. We can select this parameter based on an
estimate of the maximum number of candidates that have to
be classified as positive before we hit the upper bound of the
false alarm rate used in the FROC metric. For the specific
FROC metric used to evaluate Task 1, it can be shown that
the optimum value for n is the number of positive candidates
+ 1.2 × number of patients.

Since the true number of positive candidates in the test set
is not known, we estimate this from the positive rate in the

2We have a theoretical result of an optimal reordering algo-
rithm under the assumption that the model predictions are
the correct probabilities of candidate malignancy. However,
our attempts to calibrate the predictions failed to reach suf-
ficient quality to take advantage of this optimality result.

training set. For our train-test split we used n = 1500,
and report the results before and after post-processing in
Table 1. This re-ordering of model scores had a significant
impact on the resulting FROC, increasing the bagged lin-
ear SVM model score from 0.09 to 0.093 with no additional
modeling.

5. SUBMISSIONS AND RESULTS
Task 1: For our final submission we used the bagged lin-
ear SVM with the ID features, maximizing zero-one loss,
c = 20 and heuristic post processing. This approach scored
the winning result of 0.0933 on the test set.

Task 2: While the ID leakage had some influence on our
Task 1 model, it was clearly essential for our Task 2 submis-
sion. It also explains the huge gap between our submission
and the next best result. We investigated different mod-
els with and without ID features after ranking increasingly
by the maximum candidate score of each patient. Models
without ID typically produce the first false positive patient
within about 200 patients of the training set (interestingly
they are the positive patients from bin 3 just at the bound-
ary between the two bins as seen in Figure 1). Conversely,
we were fairly confident that bin 4 alone (more than 1000 on
the training and 970 on the submission set) had no positive
patients at all. Models with ID features rank all patients
of bin 4 first and next some patients from bin 2. The first
false negatives occur typically around 1100. On this task
- a logistic regression model performs slightly better than
the linear SVM models due to the high sensitivity of likeli-
hood to extreme errors. We finally submitted the 1020 first
ranked patients from a logistic model that included the ID
features in addition to the original 117 provided features.
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