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Abstract

We present 1) a novel application of a pipeline of linguis-
tic analysis engines for understanding contents of a natural
language use case specification; and 2) results of the first
of a kind large scale experiment of application of linguis-
tic techniques to industrial use cases. In spite of the recent
developments in formal specification, natural language re-
mains the predominant mode for specifying requirements.
Therefore, for dependable system development and for au-
tomation of software engineering activities, a robust and
scalable natural language processing technique is required
that can translate natural language textual requirements
into computer based models. We present one such technique
that can process natural language use case descriptions.
The novelty of our technique lies in our choice of architec-
ture, which enables us to configure and extend the analysis
engine to multiple domains and languages. We also report
the results of applying our prototype to 80 industrial and
academic use case descriptions. The results of our experi-
ment indicate that our approach is very promising.

Keywords:[Requirements, Natural language, Validation,
Feedback, Automation]. Word count: 8500 (approx.).
Submission Category: PDS.

1 Introduction
We present implementation of a novel and domain inde-

pendent linguistic technique, which exploits the efficiency
of shallow parsers and configurability of Unstructured In-
formation Management Architecture(UIMA) [10, 7] for on-
line analysis of natural language (NL) use case descriptions.
We also present initial results of applying the technique to
80 industrial and academic textual use cases. To the best
of our knowledge, this is the first report on effectiveness of
applying linguistic analysis to large and diverse set of in-
dustrial use cases.

In spite of the multiple benefits that formal methods has
to offer to a requirements analyst, their adoption has been
slow in software engineering processes (except possibly in
the fields of hardware design and safety critical control sys-

∗Article cleared for submission to DSN 09 from IBM.
†contact author

tems). This is primarily due to the fact that the adoption
overhead (learning, tool support, configurability, etc.) still
overshadows the economic gain. Also, with the onset of
agile methods, the emphasis is on active and continuous
participation of the customer in the development process.
Use of formal methods for requirement elicitation introduce
high entry barrier for customer participation.

Graphical use cases along with their textual specifications
are frequently used to model functional requirements of
software applications [6]. As such, use cases form basis for
verification & validation activities such as consistency and
completeness analysis [24] and test generation [17] (along
with references therein). These analyses require extraction
of a formal behavioral model from use case description. The
manner in which the initial use cases are described varies
widely. For example, Whittle and Jayaraman [27] require
that the use cases be described using notations such as se-
quence or activity diagrams, Ortner and Schienmann [19]
propose a restricted subset of natural language, or [16, 24]
propose a multi-tiered representation combining restricted
subset of natural language with a formal notation such as
PetriNets [16] or predicate logic [24].

Industrial use cases are primarily authored by business
analysts (BA), who do not like formal notations for the fol-
lowing reasons:

1. As previously mentioned, formal notation prevents
customer involvement.

2. Most formal notations are geared towards express-
ing specific properties of a system (functional, perfor-
mance, safety, security, etc.) BAs, on the other hand,
may have to capture a variety of such requirements for
the system. Consequently, even if the BAs are not
scared of choosing a set of formal notations that are
fit for their task, the task of maintaining consistency
across various formal models is error prone and ineffi-
cient.

These and many similar problems create impediments for
adoption of formal authoring of use cases. For dependable
systems, an approach is thus needed that can ensure/assess
dependability of the system requirements based on free-
form NL text.
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Figure 1: Overview of the analysis engine

1.1 How are we different?
As described in detail in section 2, our implementation is

a pipeline of configurable analysis engines using a general
purpose shallow parser (see Figure 1).

Approaches for analyzing textual requirements and use
cases have been reported in the past [11, 1, 23, 9, 20, 22, 28].
These natural language processing (NLP) approaches can
be classified into the following broad categories:

1. Lexical analysis of requirements to identify occur-
rences of certain patterns [28, 9]

2. Semantic analysis with user provided glossary of do-
main concepts [1]

3. Semantic analysis to identify single aspect of a behav-
ior model such as conceptual Entity-Relationship (ER)
models [20] or early aspects [23]

4. Semantic analysis to identify multiple aspects of a be-
havior model such as ER and activity or scenario dia-
grams [11, 22]

The goal of our work is to extract multiple aspects of
the behavioral model from industrial use cases – closely
resembling the works in [11, 22]. However, these two
approaches suffer from several limitations which may pre-
vent their application to industrial use cases. These arise
largely from the relatively monolithic nature of the respec-
tive architectures, and from the fact that they rely, heavily,
on extensive hand-crafted lexical semantic resources (typi-
cally, thousands of application-specific verb categorization
entries). We return to these observations in detail in Sec-
tion 5. In contrast our implementation is configurable and
can be easily adopted to different domains and languages.

Note in Figure 1 that our implementation uses a shal-
low parser while both [11, 22] use a form of semantic
parser. Along with the grammatical roles of phrases, the
deep parsers yield configurational information (i.e., how the
phrases are related to each other). This information can be
used to better understand NL text. However, as has been
reported in [15], deep parsing is extremely vulnerable to
noise (unwanted information) in text. In contrast shallow
parsers and, consequently, our implementation are much
more robust in handling noise. We have observed (see sec-
tion 4 )that use case text frequently contain noise in forms of
parenthesis, acronyms, labels, etc. This leads us to believe

that a shallow parser based linguistic engine, like ours, is
better suited for parsing use case text.

Further, we use a Finite State Transducer (FST) based
implementation of shallow parser [5], which is faster than
several other implementations. This enables our linguistic
engine to support online analysis. By online analysis we
mean analysis of the text as and when they are created by
the author. None of the existing techniques including the
ones described in [11, 22] have online analysis capabilities.
This capability is important as we realize that even with the
most sophisticated NLP technique, the translation process
preserves most problems from the source NL description –
omissions, inconsistencies, incompatible granularities, poor
structurings, unmeasurable properties, etc. In online analy-
sis, authors can be informed about the errors as and when
they are committed. Thus, in a way, the authors can be in-
duced to create error free use cases.

Further, [11, 22] do not report results of applying their
approaches to industrial use cases. In fact, very few pub-
lished results of applying linguistic analysis in industrial re-
quirements context are available. Wilson et al. [28] report
their findings on lexical scans of requirements developed
in NASA. Gervasi and Nuseibeh [12] report results of ap-
plying the validation technique of [1] to part of a NASA
requirement specification. Törner et al. [26] applied the cri-
teria defined in [22] using a manual review process to report
defects in 43 automotive use cases. However, none of these
works discusses the effectiveness of the underlying linguis-
tic analysis technique itself.

The specific contributions of this paper can, therefore, be
identified as:

1. A novel application of a robust linguistic technique for
deriving a computer model of use case descriptions
based on outputs of a general purpose shallow parser.

2. Results of applying a state of the art linguistic tech-
nique to industrial use cases.

2 The Linguistic Analysis Engine
The linguistic analysis engine (LE) consists of multi-

ple configurable components (see Figure 1) integrated us-
ing the Unstructured Information Management Architecture
(UIMA) [10, 7]. UIMA is an open, industrial-strength, scal-
able and extensible platform for building analytic applica-
tions or search solutions that process text or other unstruc-
tured information. UIMA provides a simple but rich repre-
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sentation for unstructured information, which can be used
by different analysis compoenents to share and extend their
analysis results. Additionally, UIMA enables developers to
compose and configure such components and also to com-
bine them with existing/third-party components.

Configurability and composeability aspects of the UIMA
pipeline lends our implementation a unique advantage
over traditional problem specific architectures as described
in [11, 22]. Use case descriptions can contain NL text from
a variety of application domains, ranging from aerospace
to communication systems to ATMs. The current LE is
developed with domain independence as focus, thus yield-
ing almost uniformly accurate text processing across vari-
ous domains. However, certain domain specific activities
may require greater accuracy. The compose-ability aspect
is a great help in retargeting the domain independent LE to
a domain specific text by allowing easy a replacement for
an existing component. For instance, retargeting the lexi-
cal analysis to a health-care-domain use case can be easily
accomplished by swapping in a medical text-aware lexical
processor.

Configurability is a great boon when we need to adapt the
existing components to changing input language, changing
structure, etc. For instance, by configuring the Lexical Pro-
cessor to refer to a German rule set and plugging in a shal-
low parser for German we can extend the capabilities of the
existing LE to handle inputs in German.

Below we will refer more than once to a training cor-
pus, which was used to develop the components and subse-
quently, to create linguistic knowledge bases. The training
corpus is a selection of 300 different use case text from an
initial pool of use cases collected from practitioners in the
industry and examples in the published literatures [22, 6].
The primary objective while selecting for the corpus was
to vary the application domains of the use case text. We
also ensured that UCD sentences were approximately in
accordance to the recommended best practices [6]. The
use cases were compiled from the application domains of
ACCOUNTING, AEROSPACE, CONTROL SYSTEM, DIS-
TRIBUTED SYSTEM, NETWORK MANAGEMENT, OPER-
ATING SYSTEM and SERVICE MANAGEMENT.

In the following sub-sections we describe the primary
components of our LE. Each sub-section describes the con-
tributions of the respective component to the processing;
briefly the implementation; and the rationale behind our de-
sign choices.

2.1 Lexical Processor

The lexical processor provides the following three ser-
vices (collectively referred to as Lexical Services):

Tokenization: Broadly speaking, breaking text into
words and/or punctuation marks and end-of-sentence detec-
tion;

Lemmatization: Determining the base form of a word;

Morpho-syntactic analysis: Associating lemma forms
with contextually appropriate part-of-speech (POS) infor-
mation.

For applications in open-ended domains (like ours), it is
essential that lexical services are provided by a component
which is not limited to a single application/domain. We
thus use lexical analysis technology which embodies lexi-
cal knowledge not only of unconstrained English but also
for a hundred other languages (including German, French,
Spanish, Italian, Russian and Chinese). This greatly facil-
itates adaptation of the system to different domains. This
however, exposes us to POS ambiguities of language at the
lexical level. We use an implementation of the Robust Risk
Minimization [29] for POS disambiguation. RRM is a high-
performance linear classification technique, which has been
shown useful for a number of text analysis tasks including,
in particular, part-of-speech tagging [2]– which is essential
for correct shallow parsing.

Consider an example snippet, “The customer enters
the withdrawal amount. If the balance is more than
the amount, the ATM returns cash in $s to the cus-
tomer and changes his account balance”. The lex-
ical processor will tokenize, lemmatize and disam-
biguate POSs, after which the a stream of tokens will
be created as follows:{DT:the NN:customer VBZ:enter
DT:the NN:withdrawal NN:amount PUNC:. CS:if DT:the
NN:balance VBZ:is JJR:more CS:than DT:the NN:amount
PUNC:, DT:the NNP:ATM VBZ:return NN:cash IN:in :$s
TO:to DT:the NN:customer CC:and VBZ:change PRP$:his
NN:account NN:balance}. Where the POS acronyms
mean the following: CC-Coordinating Conjunction, CS-
Subordinating Conjunction, DT-determiner, IN- preposi-
tion, JJR-comparative adjective, NN-noun, NNP-proper
noun, PRP$-possessive pronoun, VBZ-verb 3rd person sing.
present.

2.2 Shallow Parser
We use a general purpose shallow parsing component

that acts as a syntactic analysis system for the identification
of phrasal, configurational, and grammatical information in
free text documents.

The shallow parser component (described further in
[4, 5]) is fully realized as a cascade of a dozen finite-
state transducers (FSTs), which works on tokens output
from the lexical processor. Broadly speaking, an FST
identifies phrases, clauses and grammatical functions of
phrases by recognizing patterns of POS of tokens and
already identified phrases and clauses in the text. At the
lowest level of the cascade are simple noun and verb
group grammars which mark noun phrases (NP) and verb
groups (VG) based on patterns defined on Tokens and
their POSs. Thus the example text will be marked up
with simple phrase boundaries as: “[NP:The customer]
[VG:enters] [NP:the withdrawal amount] PUNC:.
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CS:if [NP:the balance] [VG:is] JJR:more CS:than
[NP:the amount] PUNC:, [NP:System] [VG:returns]
[NP:cash] IN:in :$s TO:to [NP:the customer] CC:and
[VG:changes] [NP:his account balance].

The FSTs in the later stage of the cascade seeks to build
complex phrases, identify clause boundaries (TC) based
on patterns of already identified tokens and phrases. For
instance, a simple pattern that says a preposition followed
by a noun phrase is a prepositional phrase (PP). Thus, the
phrase “to the customer” in the example will be identified
as a prepositional phrase. In fact, post identification
of clauses and complex phrases, the example stream
of tokens will be marked up as: “[NP:The customer]
[VG:enters] [NP:the withdrawal amount] PUNC:.
[TC:if [NP:the balance] [VG:is] JJR:more]
[TC:than [NP:the amount]] PUNC:, [NP:System]
[VG:returns] [NP:cash] :$$ [PP:to [NP:the customer]]
CC:and [VG:changes] [NP:his account balance].

The final set of FSTs construct predicate-argument clus-
ters, and mark grammatical functions such as subjects and
objects . For the example text, the cascade will mark
the phrase “The customer” of the first sentence, and the
phrases: “the balance” and “system” of the second sen-
tence in subject roles. Further, the phrases: the withdrawal
amount, cash and his account will be marked as objects.

The choice of a shallow parser over deep parser is driven
by our need to handle noise in the input text. Notice the
treatment of the extra grammatical phrase “in $s” in the ex-
ample text. While the shallow parser ignores the phrase,
it does not falter in identifying the remaining syntactic el-
ements. Our analysis of the training corpus show frequent
existence of such noise in the input text – mainly in the form
of acronyms, parenthesized comments and programming
constructs (e.g., account.balance, CONTINUE, etc.

As discussed in [5], the cascade of FSTs is adapted
to be pluggable in a UIMA pipeline. The shallow parser
is generic–in a sense, that it is based on rules for un-
constrained English. Thus, as long as, a UIMA enabled
lexical processor marks up the lexical information the shal-
low parser can handle any input text. Using a shallow parser
provides us the additional benefit of configurability. Com-
pared to deep parsers, shallow parsers encapsulate a more
compact rule base and are easier to develop and maintain.
There exists a number of shallow parsers that are available
off the shelf, including those for German, Spanish, French
and other Latin based languages. Therefore, extending the
capabilities of the current linguistic engines to such lan-
guages becomes much easier than what it would have been
if deep parsers were used.

Also, the choice of an FST based shallow parser imple-
mentation over others is driven by our needs for fast pro-
cessing. Finite-state methods have been recognized for their
efficiency [13, 25] and have been shown to be useful for
tasks like lexical lookup, morphological analysis, part-of-

speech determination, and phrase identification. However,
there has been considerably less focus on developing such
methods for complex phrase and clause build-up, or for the
identification of grammatical function. We build upon prior
work in pushing shallow analysis further into the realm of
semantic and discourse processing.

2.3 Dictionary Concepts Annotator
This is the component that introduces semantic informa-

tion into the analysis. The Dictionary Concepts Annota-
tor uses an extensible and externalizeable knowledge base1-
domain dictionary.

The domain dictionary is a compilation of commonly oc-
curring verbs and their association to a set of pre-defined se-
mantic classes. A semantic class is a kind of action found in
a UCD, viz.,INPUT, OUTPUT, READ, WRITE, GIVE, GET,
CREATE, QUERY, UPDATE, DELETE, DELEGATE, START,
STOP AND UNCLASSIFIED. A verb entry can be associated
to multiple semantic classes with differing degrees of con-
fidence. Consider the verb group “changes” in our example
UCD text. While in this particular context, the verb implies
an UPDATE action, in a separate instance it could imply an
OUTPUT action – consider e.g., “System changes the dis-
play on the screen.”. Therefore, in the domain dictionary,
the verb “change” will be linked to both UPDATE and OUT-
PUT. Further, if we know that it the verb “change” appears
more frequently in the context of an UPDATE action than in
the other context, we record this information in the domain
dictionary by assigning higher confidence to the association
of “change” to the semantic class UPDATE than to the asso-
ciation of the verb at to the semantic class OUTPUT. The
domain dictionary is populated with an initial set of entries
and their respective confidences by scanning the training
corpus and relative frequency of contexts of the verbs.

Using the domain dictionary, the dictionary concepts an-
notator assigns a classification confidences to the verbs.
Thus, for our example text the verb “changes” will
be assigned following semantic classes: UPDATE- 78%,
OUTPUT-15% and INPUT-6%. Also, “enter” will be as-
signed the semantic classes of {WRITE 81%, INPUT 12%,
OUTPUT 7%} and “return” will be assigned {OUTPUT
79%, GIVE 21%}.Actual classification of the action is
inferred by the component Process Builder later in the
pipeline.

Note that by choosing an extensible and externalizable
domain dictionary we support configurability of the lin-
guistic engine to different languages and domains. Since
the subsequent analysis (see sections 2.5 and 2.6) is based
on semantic classes, modifying the domain dictionary by
adding individual entries does not require modifying any
other component. Notice also that unlike in [11], the syn-
tactic analysis (by the shallow parser) in our implementa-

1Currently an XML blob; if needed, it could be represented as a Rela-
tional DB or an OWL ontology.
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tion is independent of semantic analysis (and vice versa).
Thus, the effect of a missing entry in the domain dictionary
is restricted only to an unclassified action.
2.4 Anaphora Resolver

The Anaphora Resolver component provides a unique
advantage to our linguistic engine by identifying usage of
pronouns and replacing them with the representative noun
phrase. This enables our linguistic engine to process pro-
nouns, in contrast to many others including the ones de-
scribed in [11, 22] are unable to do so.

The Anaphora Resolver component uses a specialized
version of the algorithm described in [18]. The algorithm
described in [18] is specially adapted to shallow parser out-
put, to minimize dependencies of typical anaphora resolu-
tion algorithms on configurational (syntactic) information
derived from a deep parser. The original algorithm is spe-
cialized by additional rules whereby a pronoun in the posi-
tion of an actor is replaceable only by noun phrases that also
appear in an actor role. The average accuracy of the original
algorithm as reported in [18] is around 75%. With the spe-
cialization, the accuracy is increased to 95.2% for use cases
that are adherent to best practices (see section 4.3). Using
the anaphora resolver, the LE relates the pronoun “his” in
the example snippet to the entity “customer”.
2.5 Context Annotator

A context of a use case is the world around the use case.
It is the set of entities and relations between them which get
affected by execution of the use case. The context annotator
component identifies instances of actors, system, business
items and other use cases in an use case text.

The context annotator groups a noun entity with its vari-
ant and treats them as a single candidate. For instance,
a candidate “CD” will represent noun entities: CD, CDs,
compact disc and compact discs. The context annotator
evaluates each candidate for its likelihood to be an ACTOR,
a SYSTEM, a USE CASE, a BUSINESS ITEM or a PARAM-
ETER.

The context annotator collects the candidates by locat-
ing the head noun entity among phrases that play the gram-
matical roles of subject or object in UCD sentences. For
each identified candidate, the context annotator identifies
its classification using a scoring mechanism. To each iden-
tified candidate, a score is assigned based on classification
of the main verb and the role of the candidate in the sentence
of consideration. The final verdict is reached by summing
the scores for each candidate across all the sentences and
picking the verdict for which the entity has the maximum
score. Consider again the example snippet, “The customer
enters the withdrawal amount. If the balance is more than
the amount, the ATM returns cash in $s to the customer
and changes his account balance”. In the first sentence,
the noun entity “customer” appears in an initiator role of
an INPUT action and additionally in the second sentence

it appears as receiver of “cash”. Summing the scores for
these information the context annotator will know that “cus-
tomer” is an ACTOR. Further, since in the second sentence,
the entity “ATM” is “returning” (implying an OUTPUT or
GIVE action) something (“cash” in this case) to an ACTOR,
the context annotator reasons that ATM is a SYSTEM.

The scoring knowledge is externalized in form of a set
of weighted rules and can be updated to reflect learning of
new instances. Also, the scores are determined based on se-
mantic classes (see section 2.3) of the actions and not on the
verbs of the actions. Thus the context classification mecha-
nism is not affected by addition of new verbs to the domain
dictionary.

2.6 Process Builder
The process builder builds a model of the process de-

scribed in a use case by identifying the sequence of use
case actions. This extracted model forms the basis for sub-
sequent analysis/automation activities. Figure 2 depicts the
meta-model for the process. The metamodel was derived on
the basis of the training corpora and summarizes our under-
standing of the information contained in typical UCDs. At
the most abstract level, a use case contains a series of sen-
tences that express one or more actions initiated by some
actor/agent – e.g., a system or its user. Each action may
have a set of parameters that are defined – assigned a value
or used.

Use Case Description 1..* Sentence

Action

1..*

Initiating Actor

Receiving Actor

Defined Parameter

Used Parameter

*

*

*

0..1

Exceptions

1..*

Condition

1..*

1

Figure 2: Use Case Description Metamodel
The process builder builds the process based on an-

other externalize-able knowledge base called use case pat-
tern knowledge base (UCKB). Like other knowledge bases,
UCKB is compiled using the training corpora and can be
updated on the fly. The patterns themselves are written us-
ing JFST2 [4].

As a first step the process builder isolates the fragments
of text that define expressions/ conditions. This is done by
looking for patterns of condition in the text according to
UCKB. In the domain of use cases expressions can appear
as guards for conditional statements or as expressions that

2A detailed discussion on JFST is outside the scope of this paper, but
essentially JFST patterns are like regular expression patterns over tokens,
phrases and already identified patterns.
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define query of objects. For instance, in our example: “The
customer enters the withdrawal amount. If the balance is
more than the amount, the ATM returns cash in $s to the
customer and changes his account balance”., the sentence
fragment :“If the balance is more than amount” is recog-
nized as a condition and is not processed by the process
builder (and instead is processed by the component expres-
sion builder).

In the subsequent step, the process builder scans for
known patterns of use case actions and associates param-
eters and actors to actions. Thus for the example, it
creates three action parameter groups: customer → en-
ter(withdrawal amount); ATM → return(cash) → cus-
tomer; and ATM →change(account balance). The → in-
dicate flow of action and x → P (y) → z implies x is the
initiator of action P with argument y where z is the recipi-
ent of the effect of action P .

In its next step, the process builder infers the type of
action. In the context of use cases, the relevant types are
INPUT, OUTPUT, CREATE, READ, UPDATE, DELETE and
INCLUDE. The LE knows from the context annotator that
“ATM” is a SYSTEM and “Customer” is an ACTOR. Further,
from the dictionary concepts annotator it knows classifica-
tion of the verbs as: “enter”-{WRITE 81%, INPUT 12%,
OUTPUT 7%}; “return”- {OUTPUT 79%, GIVE 21%} and
“change” - {UPDATE 78%, OUTPUT 15% INPUT 6%}.
The process builder infers the type of action based on the
classification of verbs and the classification of the initiators
and receivers. In the context of use cases, an ACTOR initiat-
ing either of WRITE, INPUT or OUTPUT actions is mapped
to an action of type INPUT. Thus the action with the verb
“enter” is unanimously voted to be an INPUT action. Simi-
larly, the action “return” gets mapped to an OUTPUT action.
Interestingly, in the case of the verb “change” the process
builder infers a SYSTEM doing an UPDATE or a SYSTEM
doing an INPUT or a SYSTEM doing an OUTPUT. In the
context of use cases, while the first choice would mean an
UPDATE the later two choices would imply an OUTPUT.
The conflict is resolved by choosing UPDATE which has
a higher confidence– UPDATE-78% vs OUTPUT (15+6=)
21%. Finally, used and defined parameters are identified
based on the classification of use case action and the rela-
tion of the parameter to the action. The main arguments of
INPUT, CREATE, UPDATE are classified as defined param-
eters while those of the OUTPUT, READ, DELETE actions
are classified as used parameters.

Notice that an externalized and extensible UCKB lets
one configure the process builder component for languages
other than English. Also, except for the classification of ac-
tions and parameters, the algorithm is independent of the
information in the domain dictionary. This enables us to
handle noise more effectively– by allowing partial extrac-
tion of the model elements. Again, this is in contrast with

the semantic-tag-based parsing described in [11].

2.7 Expression Builder
The expression builder parses the expression fragments to

form conditional/boolean expressions and associates them
to the relevant actions. As discussed in the section 2.6, the
component process builder identifies sentence fragments
that define expressions.

Similar to the process builder, the first step for the ex-
pression builder is to associate actions and parameters
to form a predicate-argument structure (i.e., of the form
f(X)). Thus, the sentence fragment in the example snip-
pet :“balance is more than the amount” is parsed into
is more(balance, amount). The following translation is
straightforward. The component uses an externalizable
knowledge base of comparison operators, existential op-
erators and logical operators to infer that “is more” im-
plies the operator “>”. The association of the condition
to actions is done simply by identifying the actions within
the sentence containing the fragment defining the condi-
tion. The example snippet will be updated by the expression
builder by associating the condition balance > amount to
both the actions in the second sentence. The final output
model from the LE is shown in Figure 3.

The expression builder in its current form can only treat
Boolean Expressions. It is currently limited in treating
boolean operators other than the simple “AND” and “OR”
operators. It treats most of the common comparison op-
erators and can also identify some of the existential con-
straints.

3 The Online Analysis Environment
As a proof-of-concept we have developed a prototype im-

plementation of an online analysis environment (OAE) for
use cases. The purpose of the OAE is to provide an envi-
ronment to the authors of use cases for creating consistent,
unambiguous and error free use cases in NL. Among other
features, the OAE provides a spell-checker backed text edi-
tor for authoring UCDs in plain English. The OAE feeds the
input UCDs to the linguistic engine and the output model is
used for correctness analysis. In particular, the OAE runs
a set of validation checks on the model that can be broadly
classified into the following:

Stylistic checks for English sentences e.g., voice, com-
plexity of sentences (number of actions/actors), use of
anaphora.

Completeness checks of use cases e.g., missing actors
and actions, missing parameters.

Structural checks for the model e.g., consistent use of
aliases, dangling use-case references.

Flow checks for data and the control flow e.g., analysis
for consistencies such as attempts to read variable values
before they are defined.

Ownership checks that validate accessibility of data
from the point of view of actors.
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Path checks that validate accessibility of data from the
point of view of use case scenarios and their sequences.

OAE provides feedback to the users based on these
checks. A feedback includes a diagnostic of the problem
and its severity. Severity is specified using the three cate-
gories of “info”,“warning” and “error”. Additionally, mark-
ers are created that inform the users of the location in the
UCD that cause the failing tests. Figure 3 displays a screen-
shot of the OAE.

(a) A screenshot of OAE with the example snippet processed.

(b) The final output of the Linguistic Engine in BPMN notation.

Figure 3: The Online Analysis Environment
To assist the authors of a UCD in understanding the in-

ferred conceptual model, the OAE provides visualizations
of the flow using the Business Process Modeling Notation
(BPMN) [14] – an example is shown in Figure 3. From a
process perspective, the UCD authors would use an iterative
process consisting of UCD editing, performing validation
checks, and visualizing BPMN until a satisfactory UCD is
developed3.

4 Experiment
An experiment was conducted to evaluate the linguistic

engine and to answer the following research questions:
Q-Accuracy: What is accuracy of the current configura-

tion of the linguistic engine? In order to assess Q-Accuracy,
we used the standard metrics of precision (Prec) and recall
(Rec) computed as:

Prec =
|Ac

⋂
Ag|

|Ag|
and

Rec =
|Ac

⋂
Ag|

|Ac|
3Due to space considerations, we do not provide detailed discussion of

the OAE.

where Ac represent the set of use case actions in a correct
model and Ag represent the set of those in the correspond-
ing automatically generated model. Note that by measuring
the LE’s performance on use case actions, we are able to
evaluate LE’s ability to identify actors, parameters and their
relation to the actions.

Q-Translation: What is effectiveness of translation of
the current configuration of the linguistic engine? To an-
swer Q-Translation we evaluated the fraction of informa-
tion not lost in translation. The estimate for the translation
effectiveness was computed as follows:

T =
|Ac

⋂
Au

⋂
Ag|

|Ac|
where Au represent the set of actions that are under-
specified (that miss information on either parameters or ac-
tors) in the automatically generated model.

Q-Filtering: How effectively does the current configura-
tion of the linguistic engine filter noise? The filtering effec-
tiveness was computed as:

F =
n

N

where N is the number of net instances of noise in text and
n is the number of such instances that were ignored by the
analysis engine.

Q-Pronoun: How effectively does the current configura-
tion of the linguistic engine resolve pronominal anaphora?
The anaphora resolution effectiveness was computed as:

P =
m

M

where M is the net number of pronoun usages in text and
m is the number of correct resolution of such pronouns.
4.1 Experiment Process

We solicited UCDs from business analysts and other
practitioners in the industry. We also collected use cases
from refereed publications [3, 6, 8, 9, 21]. Eventually, we
amassed 31 industrial applications and 10 academic appli-
cations. The use cases described applications in industrial
sectors of Aviation, E-commerce, ERP, Finance, Gaming,
Health Care and IT. A sample of 80 UCDs was created by
randomly selecting 57 UCDs from industrial applications
and combining it with 23 academic UCDS. We ensured that
the test population has at least 1 representative from each
application in the population.

To prepare the UCDs for the experiment we manually ex-
tracted the relevant text from the original files. While doing
so we preserved format of the text in the form of enumerated
lists and indentations, if any. For the tables in the original
UCDs, we extracted entries from the relevant cells and re-
created the text. We corrected for 6 minor grammatical and
14 spelling errors.
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# Sentences % Labeled # Itemized lists Max Nesting Depth # Indentations If Tabulated
Ind Acad Ind Acad Ind Acad Ind Acad Ind Acad Ind Acad

High 77 16 100% 8.8% 5 2 2 2 3 1 - -
Avg 12.84 7.57 9% 6.1% 1.09 0.17 - - - - - -
One - - 22.8% 17.4% 54.4% 13.0% 56.1% 13.0% 15.8% 4.3% 33.3% 0.0%

Table 1: The structural information of the test population

The UCDs were analyzed using the LE. To compute Ag

and Au all actions in the generated model were evaluated
they are correctly specified, mis- identified or under- spec-
ified. Additionally, to compute Ac we analyzed the gen-
erated model for unidentified actions. The measurements
were repeated for cross-validation.

4.2 Subject Use Case Descriptions
UCDs in our test population varied significantly in their

structure. In order to characterize and report the structure of
the text in the test population, we examined each UCD for
the following attributes (see Table 1): Total number of sen-
tences; Fraction of sentences that are labeled with names
indicating their purpose or location in the text, e.g. “In-
sert Action”, “Step 5”, etc; Number of itemized or bul-
leted lists;Deepest level of nesting in hierarchical itemized
lists, ( 0-none, 1-sentence level, 2-sub-sentence level, etc.);
Number of instances where indentations were used to de-
pict scope of a sequence of actions as opposed to explicit
sentences/keywords (e.g.,“begin”, “end”); Whether or not
the UCD is described in tables.

In Table 1 we summarize our findings for academic
(Acad) and industrial (Ind) UCDs. Notice that the academic
use cases are relatively less noisy (less number of itemized
lists, less fraction labeled, no tabulation etc.). There was
prevalent use of templates in UCDs collected from the prac-
titioners. This is the primary reason that many of the in-
dustrial UCDs had tabulated descriptions while none of the
academic UCDs had them.

Also, to characterize the test population with regards
to its content we identified the sentences that were not
“Interaction Sentences” – i.e., the sentences that did not
describe an action by an agent (see Table 2). To fa-
cilitate reporting we classify the “non-Interaction Sen-
tences” into the following types: Programming con-
structs, that resemble a code directive or a command
e.g., GOTO, Do-while, Repeat-until; Non func-
tional Sentences, sentences that define some nonfunctional
attribute e.g., System shall be fast enough to
...; Execution Sentences that describe result of execut-
ing a use case sentence, e.g., The query returns 40
listings; Definitive sentences, that define attributes of
an entity e.g., The online customer must have
an account id; and Sentences in colloquial English,
e.g., If yes print ‘‘yes’’ else quit. The
academic use cases consistently contained fewer non-
interaction sentences. This confirmed the intuition that aca-

demic use cases conformed to the recommended best prac-
tices. Notice also that highest observed percentage of Col-
loquial Sentences and Definitive Sentences (66.7%), owing
to one very detailed UCD. On an average, however, the aca-
demic use cases are still more adherent to the best practices.
Therefore, in the following section we compare the perfor-
mance of the analysis engine on academic use cases to that
of the industrial use cases. This is with the intention to con-
trast the performance of the analysis engine on use cases
that adhere to best practices with the performance on those
that don’t.

4.3 Evaluation

Due to lack of any pre-existing studies, we are unable
to do a comparative evaluation. Instead, we would try
and quantify in absolute terms the performance of LE. Ta-
ble 3 summarizes the results of our measurements. Apart
from the measurements of precision (Prec), recall (Rec),
translation effectiveness (T ), filtering effectiveness (F ) and
anaphora resolution effectiveness (P ), we also report on the
number of occurences of noisy text (N ). To compare per-
formance of the LE on use cases more adherent to recom-
mended best practices to those that are less adherent, we
present our results in separate buckets of industrial (Ind) and
academic (Acad) use cases. To characterize the spread of
our measurements we present the averages, the standard de-
viations, the minimum observed values, the maximum ob-
served values, percent of use cases that had the maximum
values and percent of the use cases on which LE performed
less than average− 1× SD.

Q-Accuracy: Precision is a measure of exactness or fi-
delity of information retrieval, whereas recall is a measure
of completeness. Thus in our context, a 100% precision
means that all identified actions in a generated model are
correct. A 100% recall, on the other hand, implies that all
actions described in the use case text have been identified
in the generated model. The LE gave an average of 89.4%
precision and 92.5% recall. This means that on an average,
the LE misidentified 10.6% of actions and missed out only
7.5% of the actions described in the input text. Note that the
precision and recall numbers on academic use cases are bet-
ter than the industrial use cases – this confirms the intuition
that the LE has higher accuracy for better quality use cases.
In fact, only 36.8% industrial use cases returned 100% pre-
cision and just 57.9% of them had 100% recall –compare
against only 100-82.6 = 17.4% academic use cases (4 out
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% Program Constr. % Non-functional Sent. % Execution Sent. % Definitive Sent. % Colloquial Sent.
Ind Acad Ind Acad Ind Acad Ind Acad Ind Acad

High 28.6% 10.0% 50.0% 30.0% 50.0% 30.8% 25.0% 66.7% 42.9% 66.7%
Avg 2.6% 0.4% 3.7% 1.3% 7.1% 2.0% 4.3% 3.8% 6.0% 3.8%
One 14.0% 4.3% 19.3% 4.3% 36.8% 8.7% 31.6% 8.7% 38.6% 8.7%

Legend: High=Highest Percentage in any UCD of our test population; Avg=Average for all UCDs in our test population;
One= % of UCDs having at least 1 sentence with the examined property

Table 2: The test population content

of 23) not having 100% precision or recall. However, when
we look at the number of use cases for which the LE per-
formed less than average − 1 × SD, we find that only for
15.8% use cases the LE had a precision less than (86.1-14.8
=) 71.3% and, likewise, only 15.8% of them had a recall
less than 78.1% recall. Considering that we allowed mini-
mal alterations to text during data preparation, these results
are highly encouraging.

Q-Translation: While precision and recall just evaluates
the ability to retrieve concepts from the text, the translation
effectiveness reports additionally on the quality of retrieval.
A 100% effectiveness implies that all correctly identified
actions in the generated model have the same information
content as in the text form. The LE has a combined trans-
lation effectiveness (T ) of 84.2%. It has a better T for aca-
demic use cases than for industrial use cases.

Q-Filtering: The filtering effectiveness (F ) is very high
(90.9% overall, 89.7% industrial and 100% academic) for
the current LE. The average instances of noise N in indus-
trial use cases is 5.8. This is very high, considering that the
average number of sentences in them is 12.84 ( see Table
2). This justified our choice of shallow parser over a deep
parser.

Q-Pronoun: A total of 41.3% use cases had one or more
instances of pronoun usage (not shown in Table 3). This
justifies the need to plug in a anaphora resolver in the LE
pipeline. Overall, the anaphora resolver had an effective-
ness (P ) of 77.9%. As expected, for better quality use cases
it performed better. The average accuracy of the original
algorithm as reported in [18] is around 75%. With the spe-
cialization, the accuracy is increased to 95.2% for academic
use cases but only at a cost of reduced accuracy for indus-
trial use cases.

4.4 Analysis of Errors
We drilled down into low-score use case descriptions to

identify the possible causes of failure. We counted 171 fail-
ures in the analysis of our test population. The primary rea-
son for the failures were classified into the following list.
139 of the 171 failures could be attributed to the following
recurring reasons:

Co-mingled non-Interaction Sentences were the largest
contributors to the failures, accounting for 40.7% of fail-
ures. While we safely handled 53.2% of the total non- In-
teraction sentences, the classes of sentences that we failed

to handle were “labels”, passive-voiced definitive and im-
perative sentences and the passive- voiced business rules.

Spatial patterns like scoping through indentations and
itemizations into lists contributed to 20.7% of failures. The
spatial patterns obfuscated the sentence boundaries. This
contributed to unidentified actions or parameters and mis-
identification of the actors.

Incorrect English, due to misspelt words, programming
language elements, colloquialisms and other orthographic
characteristics, confused the lexical processor in 20.4% of
the situations. This subsequently affected configurational
analysis in the shallow parser and eventually affected the
model builder.

Information spread in multiple sentences is a
source of confusion primarily for the model builder.
It contributed to 17.8% of the failures. Consider the
following snippet. The system presents the
user with a confirmation page. The
confirmation page presents to the user
a Record Number. While a human reader may be able
to relate these sentences to a unique action of output of “the
confirmation page” from “the system” to “the user”, the
model builder is fairly naive in such correlation. It would
instead yield two separate output actions, one from “the
system” and the other from “the confirmation page”.

Recursive structures in English sentences are a source
of confusion for the shallow parser in 0.4% of situations.
This is, in fact an inherent limitation for the parser (arising
out of our choice of FS cascades). For instance consider the
following sentence:
System displays the amount updated

using the information entered by the
user using the preferred currency
format.

The parser failed in recursively relating the colored
clauses. The model-builder component corrects for some
of those errors, but not when there is a long distance rela-
tion between clauses. Consider the example cited above,
the model builder fails to recognize that the ‘blue’ clauses
relate to the “display” of page and instead it relates the last
two clauses to “the information”.

Some of the limitations that we find above can be ad-
dressed in future. For instance, we can plug-in analytic
engines in the LE that filters out irrelevant sentences like
labels more effectively. The spatial patterns can be pro-
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11.1%

20.8%

88.9%

50.0%

57.1%

0.0%

100.0%

100.0%

14.3%

40.0%

95.2%

71.4%

77.9%

P

100.0%N/A8.7%17.4%17.4%Acad

18.2%N/A10.5%15.8%15.8%Ind%<(Avg-SD)

100.0%N/A60.9%82.6%82.6%Acad

65.9%N/A26.3%57.9%36.8%Ind% of max

100.0%050.0%71.4%80.0%Acad

25.0%05.9%50.0%47.8%IndMin

100.0%22100.0%100.0%100.0%Acad

100.0%56100.0%100.0%100.0%IndMax

0.0%4.6112.3%10.0%6.1%Acad

19.0%9.8820.5%13.2%14.8%IndSD

100.0%1.4892.2%95.5%97.4%Acad

89.7%5.5880.9%91.3%86.1%IndAverage

90.9%4.4084.2%92.5%89.4%Combined Avg

FNTRecPrec

Table 3: The summary of measurements

cessed by enabling the UDE to accept template based in-
puts. This should also ease the handling of multi-sentence
descriptions, as the scope of description will then be evident
from the templates.

4.5 Threats to Validity
All empirical studies suffer from threats to their internal

and external validity. For this work, we are primarily con-
cerned with threats to internal validity, especially experi-
menter bias, since some of the counting of modeling ele-
ments are subjective to experimenter’s understanding of the
system. An independent evaluation of our results, possibly
during customer studies, will be conducted to cross-validate
our findings.

Although a lot of care was taken to create a representative
population, there still remains uncertainty about applicabil-
ity of our results in general. This is due to the very nature
of natural language text, and can be alleviated through re-
peated case studies and experimentations.

5 Related Work
In this section, we focus on two works [11, 22] most

closely related to ours. Fliedl et al. argue for a
more abstract (and less domain-dependent) ‘interlingua’—
conceptual predesign schema [11]. This is not unlike our
use of a meta-model, in seeking to remain as domain-
agnostic as possible. Fliedl et al. [11] rely on the linguistic
notion of thematic grids, and the ability to tag verbs with
their affinities for semantic labels like (Fillmorean) AGENT,
THEME, and GOAL; subsequent processing would associate
nominal arguments in the vicinity of the verb with appro-
priate slots in the verb frame; later processing still would
map ACTORs and THEMEs to eg. actors and service param-
eters. What is, in effect, a supertagger provides lexical ser-
vices not just for traditional morphosyntactic analysis, but
also projection of relational lexemes (typically verbs) into
a space of relatively fine-grained semantic classes. This is
the basic information for associating predicates with their

arguments; the ability to do that outside of any specific do-
main semantics makes it possible to claim relatively broad
applicability of the system analytic component.

Still, a system like this remains dependent on the size and
scope of its (semantic) lexicon. Even if this has been instan-
tiated for 16,000 (German) entries, encountering an out-of-
vocabulary verb would expose the system’s fragility—due
to its reliance upon a semantic verb class tag. This is in
marked contrast to our approach, where semantic relation-
ships are derived directly from configurational and gram-
matical information in a shallow parse, which can always
be assumed to be available, as it is itself constructed on the
basis of high-precision POS tagging, which can be relied to
yield a tag stream even in out-of-vocabulary situations (this
is, in fact, one of the particular strengths of an RRM-based
tagger).

Additionally, it is not clear what exactly are the mech-
anisms for collecting and manipulating the set of nominal
entities in the vicinity of a tagged verb, in the process of as-
sembling the verb frame; frame-based ‘parsers’ can be sen-
sitive to subtle syntactic characteristics, and without a per-
formance evaluation, it is hard to assess the robustness and
scalability of Fliedl et al.’s tagged output post-processing.
Finally, we note that dependence upon a semantic lexicon
typically translates into problems in retargeting a system
to novel applications and/or languages—in contrast to a
staged pipeline like ours, where POS taggers for different
languages can be assumed (or relatively easily trained), and
FS-based shallow parsers can be developed with relatively
small effort.

Similar observations hold for Rolland & Achour’s ap-
proach [22]. They adopt a different framework for domain-
free semantic representation, namely that of (a variant of)
case grammar, where a nominal entity can fill multiple case
slots. Whatever their argument for case-based representa-
tion (namely the close relationship between a case-based
semantics of language and a generic use case model), such
representation requires, in a similar fashion to the frame-
based one, access to an instantiated semantic lexicon with
entries for thousands of semantic patterns.4 Questions arise
again (especially in the absence of performance analysis of
their “prototype tool”) about the robustness and scalability
of a case grammar parser, adaptability across domains, and
transportability a cross languages.

6 Conclusions and Future Work
We presented 1) a novel application of UIMA pipeline ar-

chitecture and a set of heuristics for extracting and relating

4Such patterns are not only lexically anchored, and in order to repre-
sent the semantics of a clause in a use case specification a semantic pattern
needs to be additionally labeled with its position in an ontology of seman-
tic patterns, which mediates between the linguistic semantics and the use
case semantics. This would make it very hard to argue for deriving such a
lexicon by some (semi-)automatic means.
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key concepts in textual use case descriptions and 2) results
of a first large scale analysis of industrial textual use cases.
Our approach is able to extract information from diverse
set of sentences that are prevalent in industrial use cases,
improves the robustness of analyses results, and leads to a
domain neutral means of analyzing requirements for vari-
ous application domains. We also described the specific set
of heuristics we have implemented in a prototype. We have
used this prototype to analyze 80 use cases that were de-
fined in industrial and academic environment and compared
the two use case populations and evaluated effectiveness of
our approach. The results indicate that our approach is very
promising.

For future work, we would like to apply validation checks
in our current prototype to the industrial use cases and com-
pare the defect results with those reported in [26]. We
would also like to explore the testability of the industrial
use cases from the perspective of automated test generation
techniques such as those in [17]. Another direction for us
to pursue involves extending our current analytics pipeline
to extract relevant information from non-Interaction type of
sentences in UCDs and relate it to the model extracted from
Interaction sentences.
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