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Abstract

The unit commitment problem is to find the production scheduling of a set of electric power generating
units, and the generation levels for each unit, over a short term, typically from 24 hours to one week. The
objective is to find the optimal schedule which meets the energy demand forecast at a minimum cost,
and satisfy technological constraints such as the minimum up and down times for the units. First, we
assume the demands are known and made a bench mark for the mixed-integer programming formulations
for this model. Second, we consider the case with uncertain demands and review stochastic versions of
the problem, which allow the schedule to adjust to the observed demands. Then, we tested two different
Lagrangian relaxations techniques for solving the stochastic programming problem. Finally, we tested a
heuristic method we developed, based on the linear relaxation for some binary variables, which exploits
the structure of the stochastic problem.

1 Definition of the Unit Commitment Problem

The Unit commitment problem can be stated as finding the optimal scheduling of production of electric power
generating units over a short term, typically from 24 hours to one week, in order to minimize the operations
costs. This optimal solution must satisfy the operating constraints and must satisfy the demand forecast.
Then, following the definition, and the models proposed in [1, 4], the base deterministic mathematical model
can be stated as,

Minimize:
I∑
i=1

T∑
t=1

zi,tFit +
I∑
i=1

T∑
t=1

gi,tCit +
I∑
i=1

T∑
t=1

yi,tSit (1)

Subject to:
I∑
i

gi,t ≥ dt, t = 1, . . . , T, (2)

gi,t ≤ Qizi,t, t = 1, . . . , T, i = 1, . . . , I (3)
gi,t ≥ qizi,t, t = 1, . . . , T, i = 1, . . . , I (4)
yi,t ≥ zi,t − zi,t−1, t = 2, . . . , T, i = 1, . . . , I (5)
zi,t − zi,t−1 ≤ zi,τ , τ = t, . . . ,min{t+ Li − 1, T}, t = 2, . . . , T, i = 1, . . . , I (6)
zi,t−1 − zi,t ≤ 1− zi,τ , τ = t, . . . ,min{t+ li − 1, T}, t = 2, . . . , T, i = 1, . . . , I (7)
zi,t, yi,t ∈ {0, 1} (8)
gi,t ≥ 0, (9)

where we have the following definitions:

• gi,t is a continuous variable that represents the MV of energy produced by generator i in period t,
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• yi,t is a binary variable that is 1 if generator i is started at the beginning of period t, 0 otherwise,

• zi,t is a binary variable that is 1 if generator i is on during period t, 0 otherwise,

• Fi,t is the fixed cost in $/period of operating generator i in period t,

• Ci,t is the cost of generation for generator i in period t in $/MV/period,

• Si,t is the cost of start up for generator i in period t in $,

• Qi is the upper bound in MV for energy generated with generator i in every period,

• qi is the lower bound in MV for energy generated with generator i in every period,

• Li is the minimum up time for generator i when it is started up,

• li is the minimum down time for generator i when it is shutted down,

• dt the energy demand in period t,

• 1, . . . , I is the set of generators,

• and 1, . . . , T is the set of time periods.

Then, given a set {i = 1, . . . , I} of generators which can be of different types, and a set of time periods
{t = 1, . . . , T}, the objective function (1) minimize the total operative costs. That is, the sum of the fixed
operating cost Fi,t, the generating costs Ci,t, and the start up costs Si,t, for all the generators in all time
slots. In constraint (2) we have that the energy produced by all generators must meet or exceed the demand
dt in each period. Now, in constraints (3) and (4) we have that the generators must operate within their
minimum an maximum generations bounds. Equation (5) is controlling when the generators are started up.
Finally, in equations (6) and (7) we have that the generators must accomplish the minimum up and down
times.

In this work we analyzed the stochastic unit commitment problem, where uncertainty on the demand
forecast is considered as a new element in the base model presented in (1)-(9). Then, the goal in this project
is to analyze the performance of the current methods for solving the stochastic unit commitment problem
as well as explore a new method to find feasible solutions close to the optimal in short times. We explore
an heuristic algorithm based in linear relaxations of some of the binary variables of the base model, which
exploits the structure of the stochastic problem. This heuristic showed a competitive performance both in
time and in the quality of the solutions in the experiments.

The structure of this paper is as follows. In Section 2 we present a short review on some improved formu-
lations for the deterministic unit commitment problem. In Section 3 we review two stochastic formulations.
In Section 4 we review some solutions methods for the stochastic formulations. Then, in Section ?? we
explain the heuristic “LPRolling” proposed in this paper. Finally, in Section ?? conclusions are drawn.

2 Formulations review

Several efforts have been done trying to improve the formulation of the unit commitment problem for having
a more efficient way finding the schedule. Rajan and Takriti developed a tighter formulation for the problem
in [6] working over the minimum up and down constraints. In this work they presented a set of inequalities
that define the convex hull for the set defined by the minimum up and down constraints (6), (7), in the
unit commitment problem formulation. Additionally, Carrion and Arroyo presented in [3] an alternative
formulation where they reduce the number of binary variables as well as the number of constraints. Then,
using these two formulations and the formulation (1)-(9) for solving some instances of the unit commitment
problem we could find that the formulation proposed by Rajan and Takriti was generally more efficient. For
example, for some instances of 32 units and 72 periods and using CPLEX 11.0 to solve the problem we had
the results shown in Table 1.

Therefore, for the stochastic version of the unit commitment problem we used the formulation proposed
in [6].
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Instance Formulation LP time Total time Number of B&B nodes
General 15.31 436 150

1 Carrion & Arroyo 0.22 36 100
Rajan & Takriti 0.13 1 0
General 14.66 314 10

2 Carrion & Arroyo 0.15 46 177
Rajan & Takriti 0.12 1 0
General 11.71 2240 510

3 Carrion & Arroyo 0.18 242 700
Rajan & Takriti 0.11 62 400
General 1.98 3290 590

4 Carrion & Arroyo 0.06 165 300
Rajan & Takriti 0.04 46 300

The 32 units, 72 periods instances were solved with CPLEX 11.0 with a gap of 0.05%

Table 1: Formulations comparison

3 Stochastic Models

In 1968 Muckstadt and Wilson in [5] presented the first model that incorporate the randomness in the energy
demands. Takriti et al. formally presented the first stochastic model in [7]. This was a multistage model
formulated as follows,

Minimize:
∑
s∈S

Ps

(
I∑
i=1

T∑
t=1

zsi,tFit +
I∑
i=1

T∑
t=1

gsi,tCit +
I∑
i=1

T∑
t=1

ysi,tSit

)
(10)

Subject to:
I∑
i

gsi,t ≥ Ds
t , t = 1, . . . , T, s ∈ S (11)

gsi,t ≤ Qizsi,t, t = 1, . . . , T, i = 1, . . . , I, s ∈ S (12)

gsi,t ≥ qizsi,t, t = 1, . . . , T, i = 1, . . . , I, s ∈ S (13)

ysi,t ≥ zsi,t − zsi,t−1, t = 2, . . . , T, i = 1, . . . , I (14)

zsi,t − zsi,t−1 ≤ zsi,τ , τ = t, . . . ,min{t+ Li − 1, T}, t = 2, . . . , T, i = 1, . . . , I, s ∈ S (15)

zsi,t−1 − zsi,t ≤ 1− zsi,τ , τ = t, . . . ,min{t+ li − 1, T}, t = 2, . . . , T, i = 1, . . . , I, s ∈ S (16)

zsi,t, y
s
i,t ∈ {0, 1} t = 1, . . . , T, i = 1, . . . , I, s ∈ S (17)

gsi,t ≥ 0, t = 1, . . . , T, i = 1, . . . , I, s ∈ S (18)

where constraints (11) - (18) must be satisfied for all possible scenarios s ∈ S, and the superscript s identifies
to which scenario belongs each variable.

Additionally, for consistency in the solution a set of constraints called Bundle constraints (nonaticipa-
tivity) are added to the formulation. That is, if two scenarios s and s′ are indistinguishable up to time t,
as illustrated in Figure 1, then the decisions for both scenarios by time t might be the same. Therefore, a
Bundle Ωk is a set of scenarios that up to time t have the same demands for every period in 1, . . . , t. Now,
the Bundle of s at time t is denoted by B(s, t). Hence, if scenario s belongs to bundle Ωk at time t we say
that B(s, t) = Ωk. As a result, if two scenarios s1, s2 are members of the same bundle at time t, then we
have

B(s1, t) = B(s2, t) = Ωk ⇒ B(s1, τ) = B(s2, τ), τ = 1, . . . , t− 1.

Hence, the following constraints are added to the problem,

B(s1, t) = B(s2, t) = Ωk ⇒ zs1i,t = zs2i,t = cik, i = 1, . . . , I,

where cik is the common decision for all units i up to time t for all the scenarios that are in the bundle Ωk.
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Figure 1: Scenarios tree

In 1998, Carøe and Schultz [2] proposed a two stage stochastic program for the unit commitment problem
in a Hydro-thermal Power System. In this model, they divided the decision in long-term policies that have
to be taken before the observation of load values and short-term corrections. Particularly, Start-up decisions
for coal fired units will be considered in the first-stage, and start-up decisions for gas units and output levels
for all units will be considered in the second stage. Then, given a set of I coal units and a set of K gas units,
the formulation of the two stage program is,

Minimize:
I∑
i=1

T∑
t=1

zitFit +
I∑
i=1

T∑
t=1

yitSit+

∑
s∈S

Ps

[
I∑
i=1

T∑
t=1

gsitCit +
K∑
k=1

T∑
t=1

gsktCkt +
K∑
k=1

T∑
t=1

zsktFkt +
K∑
k=1

T∑
t=1

ysktSkt

]

Subject to:
I∑
i=1

gsit ≥ dst , t = 1, . . . , T, s ∈ S

qizit ≤ gsit ≤ Qizit t = 1, . . . , T, i = 1, . . . , I, s ∈ S
qkz

s
kt ≤ gskt ≤ Qkzskt t = 1, . . . , T, k = 1, . . . ,K, s ∈ S

yit ≥ zit − zi(t−1), t = 2, . . . , T, i = 1, . . . , I
yskt ≥ zskt − zsk(t−1), t = 2, . . . , T, k = 1, . . . ,K, s ∈ S
zit − zi(t−1) ≤ ziτ , τ = t, . . . ,min{t+ Li − 1, T}, t = 2, . . . , T, i = 1, . . . , I
zskt − zsk(t−1) ≤ z

s
kτ , τ = t, . . . ,min{t+ Lk − 1, T}, t = 2, . . . , T, i = 1, . . . ,K, s ∈ S

zi(t−1) − zit ≤ 1− ziτ , τ = t, . . . ,min{t+ li − 1, T}, t = 2, . . . , T, i = 1, . . . , I
zsk(t−1) − z

s
kt ≤ 1− zskτ , τ = t, . . . ,min{t+ lk − 1, T}, t = 2, . . . , T, k = 1, . . . ,K, s ∈ S

zit, yit ∈ {0, 1}, t = 1, . . . , T, i = 1, . . . , I
zsit, y

s
it ∈ {0, 1}, t = 1, . . . , T, k = 1, . . . ,K, s ∈ S

gsit ≥ 0, t = 1, . . . , T, i = 1, . . . , I, s ∈ S
gskt ≥ 0, t = 1, . . . , T, k = 1, . . . ,K, s ∈ S

We use these two models for solving some instances of the unit commitment problem, and we found that
for the given instances the differences in the solution were not significant. In fact, the observed differences
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were less than 0.5% in all the cases, which are very small given that the maximum gap for CPLEX was set
to 0.5%. The results of these experiments can be observed in Table 2. In this table the column Difference
is the diference between the two objective functions, and the percentage is taken respect to the two stage
formulation.

Two Stages Multiple Stages
Scenarios Time Value Time Value Diference Percentage
1 6 1012949.88 6 1012949.88 0.00 0.00%
2 29 1031363.81 22 1030979.27 384.54 0.04%
3 38 1048659.60 27 1049123.33 463.73 0.04%
4 105 1038948.92 79 1040260.75 1311.83 0.13%
5 222 1042580.88 106 1042042.96 537.92 0.05%
6 321 1033536.29 170 1034359.06 822.77 0.08%
7 539 1032744.43 206 1033535.94 791.50 0.08%
8 689 1033529.30 1905 1034730.03 1200.73 0.12%
9 5804 1036795.47 561 1038309.29 1513.82 0.15%
10 4654 1041994.63 2037 1042599.71 605.08 0.06%

Table 2: Stochastic models comparison

4 Solution methods

For solving the stochastic unit commitment problem we tested three different methods. First, we use a
Lagrangian relaxation where each bundle constraint has a multiplier λsit associated with it. Then, a penalty
term λsit(z

s
it − zs

′

it ) is added to the objective function, where s and s′ are in the same bundle. When the
bundles constraints are relaxed, the problem is separable in S different problems, which can be solved as
independent deterministic unit commitment problems for each scenario. Therefore, one can use any strategy
for solving the deterministic unit commitment problem for each scenario. In this experiment we used CPLEX
11.0 for solving each of the S problems. An interesting observation from this experiment is that each time
that the bundles constraints are relaxed and the problem is solved the initial bound is already very tight.
Then, after the Lagrangian relaxation converge the improvement in the bounds are not significant respect
to the initial value. In Figure 2 the Lagrangian relaxation result for an instance of 32 units, 72 periods
and 17 scenarios is presented. Additionally, in Table 3 results for some experiments are shown, where the
last column shows the percentage improvement in the lower bound, after 100 iterations of the Lagrangian
relaxation, for each instance.

scenarios Bundle Relaxation Best Bound improvement
3 1047717.246 1047776.087 0.006%
4 1038184.112 1038211.470 0.003%
5 1041188.958 1041208.304 0.002%
6 1033397.135 1033422.672 0.002%
13 1036723.826 1036740.488 0.002%
16 1033032.104 1033055.840 0.002%
19 1032592.350 1032609.374 0.002%
22 1038030.051 1038048.192 0.002%
25 1042642.125 1042663.585 0.002%
28 1050592.102 1050602.840 0.001%

Table 3: Improvement in the lower bounds with the Lagrangian Relaxation

Second, we tried the heuristic method defined by Takriti and Birge in [8]. This is a similar technique to
the Lagrangian, but the bundle constraints are written in the alternative form zsit = cB(s,t), where cB(s,t) is
the value that need to be assigned to the ith decision variables, zsit, of all scenarios in the bundle B(s, t) at
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Figure 2: Lagrangian relaxation example

time t. The value of cB(s,t) is unknown, then in each iteration its value is updated as

cB(s,t) =
∑
s Psz

s
it∑

s Ps
,

and the convergence is achieved when the value of cB(s,t) approach to 1 or 0. In the implementation we use
the suggested computation

S∑
s=1

Ps

I∑
i=1

T∑
t=1

|zsit − cB(s,t)|

for defining the termination criteria. Then, once this quantity reach a predefined threshold the algorithm
stops. An interesting observation is that this algorithm presented some cycling problems in some of the
instance tested, see for example Figure 3. In that case is better to use the Lagrangian relaxation, as
suggested by Takriti and Birge. Finally, once the algorithm reach the threshold, if the current solution is
not feasible, one can continue the optimization process using branch an bound, or recover a feasible solution
using some heuristic method, examples of such heuristics are given in [8]. In Figure 4 the progressive hedging
results for an instance of 32 units, 72 periods and 6 scenarios is presented. In this instance the algorithm
found the optimal solution after 81 iterations.

5 The LPRolling heuristic

In this section we will briefly explain the LPRolling heuristic. First, we observed that the linear relaxation
for the problem was solved by CPLEX 11.0 relatively fast in all the cases we tried. For some of the instances,
even with the 28 scenarios we had, CPLEX solved the linear relaxation in less than 1 second. Then, taken
advantage of this characteristic we defined the LPRolling heuristic for finding a feasible solution for the
stochastic problem. We solved the problem progressively, using the bundles structure of the scenarios tree.
Then, given the list of bundles in the scenarios tree, we defined the first bundle as that one which its starting
time was the time 1. For the first bundle we keep the binary constraints for the up/down variables in
that bundle an relax the binary constraints everywhere else in the model. Once that problem is solved,
the value of the up/down variables in the first bundle are fixed for all the scenarios, and the procedure
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is repeated for the next bundles. That is, the binary constraints are keep it for the up/down variables in
the current bundle. Then, the values of the up/down variables are fixed in all the scenarios for the time
periods before the starting time of the current bundle. Finally, the binary constraints are relax for the
bundles beyond the current bundle, and the new problem is solved. This process is repeated until all the
bundle have been visited. This simple procedure has shown good results for the instances that have been
solved during our experiments. Then, in Table 4 we have the results for an instance with 32 units and 72
periods. In this table we compare the results given by CPLEX 11.0 with a gap of 0.1% and the results of
the LPRolling algorithm. These results show a significant improvement in the solutions times as well as an
improvement in the objective functions values, as can be seen in the last column of the table, where we have
the improvement percentage. Additionally, we ran two different variations of the instance. First, in results
of Table 5 we introduce a random perturbation for the demand scenarios in order to increase the variability
among the scenarios. Second, in results of Table 6 we modified the linear cost Ci across the units to decrease
the big differences between the coal units and the gas units. In these tables the last column shows the
optimality gap computed using the bound found from the bundles relaxation. Particularly, what we found
in the last instance is that the modified cost increase significantly the solutions times, making harder for
CPLEX to find the optimal solution. Additionally, the solutions found using the stochastic formulation for a
gap of 0.1% are better than the solutions found by using the LPRolling heuristic, which explains the negative
values in the column difference. However, looking at the computed gaps, the LPRolling results looks still
competitive.

Scenarios LPRolling Time Gap 0.1% Time Difference
3 1128645.430 17 1128647.090 41 0.000%
10 1080440.390 96 1081042.998 932 0.056%
17 1053400.010 235 1053688.109 682 0.027%
24 1061642.340 338 1061842.060 1113 0.019%

Table 4: LPRolling results

scenarios Gap 0.1% Time LPRolling Time Difference Bundle Relax Gap
3 1128647.090 41 1128645.430 17 0.000% 1128585.575 0.005%
10 1081042.998 932 1080440.390 96 0.056% 1080392.637 0.004%
17 1053688.109 682 1053400.010 235 0.027% 1053229.820 0.016%

Table 5: Results with perturbed demand

scenarios Gap 0.1% Time LPRolling Time Difference Bundle Relax Gap
3 696916.168 14807 697212.220 373 -0.042% 696846.670 0.052%
10 693550.887 3659 (0.33*%) 694349.870 716 -0.115% 693437.743 0.132%
17 689904.618 3641 (0.39*%) 690269.460 1778 -0.053% 689441.121 0.120%
* This is the best gap found after a limit time of one hour.

Table 6: Results with modified costs

6 Conclusions

In this section we present some conclusion about the review of the stochastic unit commitment problem
and some solution methods for solving it, and the LPRolling heuristic. First, this review showed that
the use of a tight formulation, as that presented by Rajan and Takriti in [6], can improved significantly
the solutions times. Second, the experiments executed here did not show a significant differences on the
solutions found using the stochastic two stage, and the stochastic multi stage formulations. Then, a two
stage formulation for the problem could be enough for solving it. Third, using the Lagrangian relaxation
we found that the relaxation of the bundles constraint gives a tight lower bound for the problem. Then,
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the improvements in the lower bound found with the Lagrangian relaxation were not significant. Fourth,
the progressive hedging heuristic showed cycling problems during the experimentation. Fifth, the LPRolling
heuristic showed improvements in solution times with competitive optimality gaps. However, we observe
that the perturbations introduced on the demand scenarios and cost coefficients can significantly affect the
solution times. Finally, and in important characteristic of all these methods is that they can be implemented
in parallel, which can help to improve the solutions times for all of them.
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