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We consider the following scheduling with batching problem that has many applications, e.g.,
in multimedia-on-demand and manufacturing of integrated circuits. The input to the problem
consists of n jobs and k parallel machines. Each job is associated with a set of time intervals
in which it can be scheduled (given either explicitly or non-explicitly), a weight, and a family.
Each family is associated with a processing time. Jobs that belong to the same family can be
batched and executed together on the same machine. The processing time of each batch is the
processing time of the family of jobs it contains. The goal is to find a non-preemptive schedule
with batching that maximizes the weight of the scheduled jobs. We give constant factor (4 or 4+ε)
approximation algorithms for two variants of the problem, depending on the precise representation
of the input. When the batch size is unbounded and each job is associated with a time window
in which it can be processed, these approximation ratios reduce to 2 and 2 + ε, respectively. We
also give approximation algorithms for two special cases when all release times are the same.

Categories and Subject Descriptors: G.2.3 [Discrete Mathematics]: Applications; F.2.2 [Analy-

sis of Algorithms and Problem Complexity]: Nonnumerical Algorithms and Problems—
Sequencing and scheduling

General Terms: Theory, Algorithms

Additional Key Words and Phrases: Scheduling, batching, local ratio technique

1. INTRODUCTION

In scheduling problems, exclusiveness is usually one of the basic constraints; that is,
two jobs cannot be scheduled on the same machine at the same time. In this paper
we explore models that need not obey this constraint and even benefit from batch-
ing several jobs of the same type together. Such models have many applications
as detailed below. One example is scheduling clients in a multimedia-on-demand
(MOD) system. Each client requests a specific video program at several possible
times. When several clients are willing to view the same program at the same time,
their requests can be batched and satisfied by a single transmission.

The above scenario can be formulated as follows. The input to the problem
consists of n jobs (clients) and k parallel machines (channels). For each job (client),
a weight (revenue) and a processing time is given. Also, each job is associated with
either a release time and a due date that define a window of time in which it can
be processed, or with an (explicit) set of possible time intervals in which it can
be processed, or with a combination of both. The jobs are partitioned into F
families (all the clients requesting the same program) for some F ≥ 1, and all jobs
belonging to a particular family have the same processing time. Jobs that belong
to the same family can be batched and executed together in the same time that it
takes to execute a single job from that family. The number of jobs (from the same
family) that can be batched together can be either bounded or unbounded. The
goal is to find a feasible non-preemptive schedule with batching that maximizes the
weight (revenue) of the scheduled jobs. Such scheduling problems are frequently
referred to as real-time scheduling problems with batching of incompatible families
(f -batch for short), and the objective of maximizing the value of completed jobs is
frequently referred to as throughput. In the standard α|β|γ notation for scheduling
problems, the problem we consider here is either P |f −batch, b, rj|

∑

wj(1−Uj), or
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P |f − batch, rj |
∑

wj(1 − Uj), depending on whether the batch size is bounded by
a parameter b or unbounded. Both versions of our problem are strongly NP-hard.
Indeed, if every family consists of a single job, then our problem is equivalent to
maximizing throughput in real-time scheduling when no batching is allowed (see
e.g., [Bar-Noy et al. 2001]).

We note that when all jobs have the same length and the same release times with
bounded batch size, our problem reduces to a special case of the class-constrained
multiple knapsack [Shachnai and Tamir 2001] (see below). When the batch size is
unbounded, we get an instance of maximum weighted matching in bipartite graphs
(which is solvable in polynomial time).

1.1 Applications

Our problem has numerous applications in activity selection and in resource shar-
ing among jobs with conflicting requirements. We describe applications related to
multimedia-on-demand (MOD) services and production planning.

In a MOD system (see, e.g., [Dan et al. 1996], and recent performance studies in
[Boggia et al. 2005; Lee et al. 2005]), clients send requests to view video programs
to a centralized video server. The system has a fixed number of channels, through
which the programs are transmitted to the clients. Using a multicast facility, the
server can batch several clients (who wish to view the same program) to use the
same communication channel. The server needs to decide which of the requests will
be serviced, and in which order, such that revenue is maximized. It is assumed that
clients must have some degree of “patience”, in order to allow requests to be batched
together. In this application, if the network has unlimited multicast capabilities, the
batch size will be unbounded. However, with Internet multicasting, it is reasonable
to assume bounded multicasting to assure reliability.

The production of very large-scale integrated circuits (VLSI) involves complex
processes. Since orders for the products come with strict delivery times, it is im-
portant to optimize the execution of these processes. One of the processes in the
wafer fabrication stage is diffusion. This process is long and is often the bottleneck
in wafer fabrication. The diffusion is done in a reactor that has the capacity to
process several jobs simultaneously. However, due to differences in the chemical
nature of the products, jobs of different families cannot be batched together in the
diffusion reactor. Suppose that a set of products from different families is given,
each with an arrival time, a due date, and a revenue. The goal is to schedule the
reactor to maximize the total revenue of jobs that meet their deadlines. In this
application, the batch size is bounded by the size of the diffusion reactor.

Another VLSI related application is scheduling the thermal treatment for Multi-
Layer Ceramic (MLC) packaging. The last stage of MLC manufacturing is a thermal
treatment that is done in an oven. Due to the length of this process (around 24
hours) and the limited size of the oven, this process is the manufacturing bottleneck.
Here, several jobs can be batched together for the process as long as their thermal
treatment is the same, and the goal is to maximize the (weighted) throughput of
jobs completed before their deadlines.

We conclude with the following illustrative “real life” optimization problem. Con-
sider a tour operator that offers tours of different lengths. The operator employs
a fixed number of guides that can lead the tours. Each tour can accommodate a
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limited number of participants. Assume that the operator allows “overbooking”
and a reservation for a tour may be declined at any time (usually with some kind of
compensation). Given reservations for various tours, each with a different projected
revenue, the operator has to decide, given the limited number of tour guides, which
of the reservations to honor, so as to maximize its revenue.

1.2 Contribution

Our main results are constant factor (4 or 4+ε) approximation algorithms1 for two
variants of the problem, depending on the input instance (discrete vs. continuous
time). We show that this approximation ratio reduces to 2 or 2 + ε if the batch
size is unbounded and each job is associated with a time window in which it can
be processed. To the best of our knowledge, this paper gives for the first time
approximation algorithms with guaranteed performance bounds for these problems.
A preliminary version of our results appeared in [Bar-Noy et al. 2002].

Our approximation algorithms are based on a nontrivial application of the local
ratio technique and are not hard to implement. Our technique can be extended to
a more general problem (that generalizes also the parallel batch problem described
below), where jobs in the same family have different processing times and the
processing time of a batch is determined by the longest job in the batch. It can
also be generalized to the case where the possible time intervals of the same job
have different lengths and weights.

We consider two special cases of the problem for which we give an improved
approximation ratio. In both cases each job is associated with a time window in
which it has to be processed. Specifically, we give a 2-approximation algorithm in
case all jobs have the same release time and equal processing time, and a (2 + ε)-
approximation algorithm in case all jobs have the same release time and equal
weight. Note that by inverting the time line, the same algorithms apply also to
the corresponding instances when all jobs have the same due date. A detailed
description of these algorithms as well as algorithms for other special cases is given
in [Katz 2001].

1.3 Related Work

Maximizing the throughput in real-time scheduling without batching was studied
extensively in [Spieksma 1999; Bar-Noy et al. 2001; Berman and DasGupta 2000;
Bar-Noy et al. 2001; Chuzhoy et al. 2006]. All of these papers focused on the case
where jobs specify more than one time interval in which they can be performed (in
either a discrete or a continuous fashion). This model captures many applications,
e.g., scheduling a space mission, bandwidth allocation, and communication in a
linear network. The approximation factor obtained is 2 (and 2+ε for the continuous
case). The paper [Chuzhoy et al. 2006] gives an improved bound of (e/(e − 1) + ε)
for the equal weight version of the problem, where e is the base of the natural
logarithms, and ε ∈ (0, 1) is some small constant.

Gandhi et al. studied in [Gandhi et al. 2006] the special case of the continuous
f -batch problem in which all jobs have the same (unit) processing times, the batch

1We define the approximation ratio as the ratio of the optimum solution to the solution given by
the algorithm. By this definition the approximation factor of any algorithm is always at least 1.
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size is unbounded, and each job is associated with a time window in which it can be
processed. They presented an LP-based algorithm which improves the ratio of 2+ ε
for arbitrary processing times (given in Section 4) to 4/3. Bansal et al. [Bansal
et al. 2006] improved this bound to 6/5. Gailis and Khuller [Gailis and Khuller
2003] showed that this special case of the f -batch problem is NP-Hard, even if all
jobs have equal weights.

In the parallel batch processing (p-batch) model, each machine can batch several
jobs to run in parallel. In this model, all the jobs are assumed to belong to the
same family, and thus any group of jobs can be batched together. However, jobs
may have different lengths. A batch is completed when the longest job in the batch
is completed. Brucker et al. [Brucker et al. 1998] showed that in this model the
problem 1|p − batch|

∑

wj(1 − Uj) is strongly NP-hard. Baptiste [Baptiste 2000]
showed that, when all jobs have the same length, the bounded batch case is solvable
in O(n8) steps, even when the jobs are released at different times.

A special case of the p-batch problem involves instances where jobs belong to m
types (or families) and all jobs from the same type have the same length. Note that
unlike the f -batch problem, in this case, jobs from different types can be batched
together, and the length of the batch is the length of the longest job type in the
batch. This model is often referred to as batching with families, in contrast to
our model, of batching with incompatible job families. When the objective is to
minimize flow time, the problem is polynomially solvable for a constant number of
types (see [Hochbaum and Landy 1997]).

Batching with incompatible job families was studied previously in the Opera-
tions Research literature, however the objective functions were different than ours.
Specifically, the measures considered in these works were the weighted sum of com-
pletion times or the makespan (see e.g. [Uzsoy 1995; Dobson and Nambimadom
2001; Azizoglu and Webster 2001]). The paper [Mehta and Uzsoy 1998] presented
exact and heuristic algorithms for the problem of family batching with the objec-
tive of minimizing total tardiness. Pereza et al. [Fowler and Carlyle 2005] examined
the case where the objective is to minimize total weighted tardiness. This problem
is NP-hard even when all jobs have the same release dates; their paper presents
various heuristic approaches for tackling this problem.

Uzsoy [Uzsoy 1995] studied the feasibility version of our problem, in which we
need to determine whether all jobs can be scheduled and meet their due dates. The
paper shows that with identical release times the feasibility problem is solvable in
O(n log n) steps, using a variant of the earliest due date (EDD) algorithm.

When all families have the same execution times and release dates, our problem
can be reduced to the class-constrained multiple knapsack. Indeed, we can associate
each time slot with a knapsack of capacity b, in which we can pack unit size items
(jobs) from a single class (family). An item can be packed when the corresponding
job is available. A greedy algorithm proposed in [Chekuri and Khanna 2006] can
be adapted to yield a 2-approximation ratio for this problem (a similar algorithm
is given in Section 5).

1.4 Organization of the Paper

The rest of the paper is organized as follows. Section 2 introduces the local ratio
technique and some notation. Section 3 describes the general local ratio algorithm,
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and Section 4 considers the unbounded case. Section 5 gives improved performance
ratios for special cases when all release dates are the same. Finally, Section 6
describes some open problems.

2. PRELIMINARIES

2.1 The Local Ratio Technique

Our algorithms are based on the local ratio technique, developed by Bar-Yehuda
and Even [Bar-Yehuda and Even 1985], and later extended by Bafna, Berman and
Fujito [Bafna et al. 1999]. We describe below the maximization variant of the local
ratio technique required for our algorithm (see, e.g., in [Bar-Noy et al. 2001]).

Let w ∈ IRn be a weight vector, and let F be a set of feasibility constraints on
vectors x ∈ IRn. A vector x ∈ IRn is a feasible solution to a given problem (F ,w) if
it satisfies all of the constraints in F . The value of a feasible solution x is the inner
product w ·x. A feasible solution is optimal for a maximization problem if its value
is larger than or equal to the value of all feasible solutions. A feasible solution x is
a ρ-approximate solution, or simply a ρ-approximation, if w · x ≥ 1

ρ
·w · x∗, where

x∗ is an optimal solution. An algorithm is said to have a performance guarantee of
ρ, if it always computes ρ-approximate solutions.

Theorem 2.1 (Local Ratio) Let F be a set of constraints and let w, w1, and w2

be weight vectors such that w = w1 + w2. Then, if x is a ρ-approximate solution
with respect to (F ,w1) and with respect to (F ,w2), then x is a ρ-approximate
solution with respect to (F ,w).

Proof. Let x∗, x∗
1
, x∗

2
be optimal solutions for (F ,w), (F ,w1), and (F ,w2)

respectively. Then w · x = w1 · x + w2 · x ≥ 1
ρ
· w1 · x∗

1
+ 1

ρ
· w2 · x∗

2
≥ 1

ρ
· (w1 ·

x∗ + w2 · x∗) = 1
ρ
· w · x∗

The Local Ratio Theorem is usually applied in the following way. Given a prob-
lem defined in the above formulation, we find a decomposition of w into w1 + w2

with the property that every maximal solution is a ρ-approximate solution with re-
spect to (F ,w1). We solve the problem recursively with respect to (F ,w2). Then,
we extend the ρ-approximate solution with respect to (F ,w2) found in the recur-
sion to a maximal solution. The resulting solution is a ρ-approximate solution with
respect to (F ,w1) and with respect to (F ,w2), thus it is a ρ-approximate solution
with respect to (F ,w). In most applications of the local ratio technique, the most
involved part is finding the decomposition of the weight function.

The Local Ratio Theorem applies to all problems in the above formulation. Note
that F can include arbitrary feasibility constraints and not just linear, or linear
integer, constraints. Nevertheless, all successful applications of the local ratio tech-
nique to date involve problems in which the constraints are either linear or linear
integer, and this is also the case for the problems treated herein.

2.2 Definitions and Notation

Suppose that n jobs {J1, . . . , Jn} need to be scheduled on a set of k machines.
There are F different job families; all the jobs in a family f ∈ {1, . . . , F} have
the same processing time, pf . Each job Jj belongs to a family fj has weight wj ,
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and processing time pj = pf(j). A problem instance may be either discrete or
continuous. In a discrete instance, for each job we have an explicit list of the time
intervals in which it can be scheduled. In a continuous instance, each job comes
with a release date, rj , and a due date, dj , defining a time window in which the job
can be processed (and which is typically larger than the processing time). We note
that our algorithm applies also to the more general case where each job is associated
with a number of possible time windows. However, to keep the presentation simple
we consider the case of a single time window per job.

We distinguish between bounded and unbounded batching. In the case of un-
bounded batching, any number of jobs can be batched together on each of the
machines, as long as they belong to the same family. In the case of bounded batch-
ing, each of the machines can process the jobs in batches of at most b jobs, with
the restriction that all jobs in a batch belong to the same family. Our results apply
also for the case in which each family f has a different bound bf . To simplify the
presentation we assume a single bound b.

A job instance is a job and a feasible time interval in which it can be executed.
A batch instance is a set of at most b job instances; all belong to the same family
and have the same execution time interval.

For any given time t, and for each family f , let Jf,t be the set of jobs from family
f that can start at time t. Note that the possible batch instances of family f that
can start at t are all subsets of Jf,t of size at most b. For a batch instance B, let
f(B) be the family of the jobs in B, t(B) be the starting time of the batch B and
p(B) be the processing time of the jobs in batch B (p(B) = pf(B)). Denote by
I(B) the time interval of this batch instance, i.e., I(B) = [t(B), t(B)+p(B)); J(B)
is the set of jobs in B, and w(B) is the sum of the weights of the jobs in B, i.e.,
w(B) =

∑

j∈J(B) wj .

We say that two batch instances B and B′ are simultaneous if I(B) = I(B′).
Two batch instances B and B′ conflict in time if I(B) and I(B′) intersect. Two
batch instances B and B′ conflict in jobs if J(B) and J(B′) intersect. Two batch
instances conflict if they conflict in either time or jobs. A batch instance B′ is
contained in batch instance B if J(B′) ⊆ J(B). A batch instance B is an extension
of a batch instance B′, denoted B′ � B, if B and B′ are simultaneous and B
contains B′. Conversely, a batch instance B is a reduction of a batch instance B′,
if B′ is an extension of B. Note that a batch instance B is both an extension and
a reduction of itself.

A feasible schedule consists of a set of batch instances B such that (i) all the
batch instances in B do not conflict in jobs, and (ii) the batch instances in B can
be partitioned into k subsets of non-conflicting batch instances, where k is the
number of available machines. The objective is to find a feasible schedule that
maximizes the overall weight of scheduled batches. We call this problem real-time
scheduling with batching.

3. APPROXIMATION ALGORITHM FOR BOUNDED BATCHING

3.1 The Algorithm

We present the approximation algorithm for a discrete instance and a single ma-
chine. Later, we show how to extend it to other cases.
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We start with a generic scheme based on the local ratio technique. In the scheme
we consider a slightly more general problem, where instead of having a weight
per job, there is a weight per batch instance. The goal is to schedule a set of
non conflicting batch instances with maximum weight. Clearly, this problem is a
generalization of the original problem, in which the weight of a batch instance B
is the sum of the weights of the jobs in J(B). Note that the number of batch
instances may be super polynomial. To keep the size of the input polynomial, we
assume that the weights of the batch instances are given implicitly, as described
later in the polynomial time implementation (see Section 3.2).

In the scheme we consider batch instances with negative weights. Although
the initial weights can be assumed to be positive, weights may become negative
during the recursive calls. Also, we note that during the recursive calls, some batch
instances are deleted. We refer to batch instances that were not deleted as available.

3.1.1 B-Maximal Schedules. Following the local ratio technique, our scheme
generates recursively a schedule which is ρ-approximations with respect to w2, for
some ρ ≥ 1; then, this ρ-approximate solution is extended to a maximal solution.
We call the resulting schedule B-maximal meaning that, given a batch instance B
(as specified by the algorithm), we add to the schedule the maximal possible subset
of unscheduled jobs in B, while keeping the schedule feasible. Formally,

Definition 3.1 A schedule S is B-maximal if it contains a (possibly empty) batch
B′ � B such that B′ cannot be replaced in S by any other batch B′′, where
B′ ≺ B′′ � B, without violating feasibility.

Observe that if a B-maximal schedule S does not contain all the jobs in J(B), then
it must contain a batch instance that conflicts with B in time and yet it is not a
reduction of B.

3.1.2 Decomposition into w1 and w2. A key component in our scheme is the
decomposition of the weight w into w1 and w2. We now elaborate on this step.
Recall that, initially, for each batch instance B, w(B) =

∑

j∈J(B) wj . During the
recursive calls, the weight of each batch instance is changed and will be given by

w(B) =
∑

j∈J(B)

uj,B − ∆B . (1)

Initially, uj,B = wj and ∆B = 0, for all batch instances B. Thus, the initial weight
of a batch instance B is the sum of the original weights of the jobs in J(B).

Consider now a recursive call defined by ∆B and uj,B, for all batch instances
B and jobs j ∈ J(B). These quantities determine the weight w(B) of each batch
instance B. We show the decomposition of the weight w(B) into w1(B) + w2(B).
It suffices to define w2(B) which is given by (1), using the updated values of uj,B

and ∆B. The value of w1(B) is therefore the amount of weight added or subtracted
from w(B) to define w2(B).

The following quantities are defined based on the values of uj,B before the update.
For a batch instance B,

—let u(B) be
∑

j∈J(B) uj,B, and
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—let m(B) be max {u(B′)} over all the batch instances B′ that are extensions of
B.

Later, we show how to maintain these quantities implicitly in polynomial time.
At any stage, given a batch instance B̃ selected by the scheme, The quantities ∆B

and uj,B are updated only for batch instances that conflict with B̃. We distinguish
between three types of such conflicting batch instances:

(1) For each batch instance B that conflicts with B̃ only in jobs (i.e., a batch
instance B for which I(B̃) and I(B) do not intersect, but J(B̃) and J(B) in-
tersect), ∆B remains unchanged. For each j ∈ J(B)∩J(B̃), uj,B is decremented

by its “relative share” of w(B̃); that is,

uj,B = uj,B −
uj,B̃

u(B̃)
· w(B̃) . (2)

As a result, in this case,

w1(B) =

∑

j∈J(B)∩J(B̃) uj,B̃

u(B̃)
· w(B̃) . (3)

(2) For each batch instance B that is a reduction of B̃, set

∆B =
∑

j∈J(B)

uj,B (4)

and keep uj,B unchanged. Note that this implies that w2(B) = 0 and w1(B) =
w(B).

(3) For each batch instance B that is not a reduction of B̃ and which conflicts with
B̃ in time, increment ∆B by

max

{

1

2
,

u(B)

m(B)

}

· w(B̃) . (5)

In words, consider the ratio of u(B) to m(B): if it is at most half, increment
∆B by 1

2w(B̃), otherwise increment it by w(B̃) multiplied by this ratio. The
quantities uj,B are unchanged. Note that the value of w1(B) is exactly this
increment in ∆B.

The following are the steps of the algorithm.
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The general Scheme:

(1) Delete all batch instances with non-positive weight.
(2) If no batch instance remains, return the empty schedule. Otherwise, proceed

to the next step.
(3) Let B be the set of batch instances with the minimum end-time. Select a batch

instance B̃ ∈ B of maximum weight such that B̃ is maximal with respect to
extension (i.e., there are no other simultaneous batch instances B′ such that
J(B̃) ⊂ J(B′)); break ties arbitrarily.

(4) Decompose w by w = w1 + w2 with respect to B̃, as described above.
(5) Solve the problem recursively using w2 as the weight function. Let S′ be the

schedule returned.
(6) If no batches in S′ conflict with B̃ in time, then turn S′ into a B̃-maximal

schedule S by adding the batch instance that is a reduction of B̃ and which
consists of all the jobs in J(B̃) that were not scheduled in S′.

3.1.3 Analysis. In analyzing the algorithm we show that the way we choose B̃
and the decomposition of w satisfies the following two conditions.

The w1 condition:. Every B̃-maximal schedule is a 4-approximation with respect
to w1.

The w2 condition:. For every available batch instance B that is a reduction of
batch instance B̃, w2(B) = 0.

Proposition 3.2 Suppose that the method for choosing B̃ and decomposing the
weight function satisfies both the w1 and the w2 conditions. Then, the schedule S
returned by the algorithm is a 4-approximation.

Proof. Clearly, the first step in which instances of non-positive weight are
deleted does not change the optimal value. Thus, it is sufficient to show that
S is a 4-approximation with respect to the remaining instances. The proof is by
induction on the number of recursive calls. At the basis of the recursion, the sched-
ule returned is optimal (and hence a 4-approximation), since no instances remain.
For the induction step, assume that S′ is a 4-approximation solution with respect
to w2. Note that S is either the same as S′ or is given by adding an available batch
instance that is a reduction of B̃ to S′. It follows from the w2 condition that S is a
4-approximation with respect to w2. Since S is B̃-maximal, it follows from the w1

condition that it is also a 4-approximation with respect to w1. Thus, by the Local
Ratio Theorem, it is a 4-approximation with respect to w.

Next, we need to show that our choice of B̃ and the decomposition of w into w1

and w2 satisfies the w1 and w2 conditions. By the definition of w2(B), for any
batch instance that is a reduction of B̃ we have that the w2 condition is satisfied.
It remains to show that the w1 condition is satisfied, namely, every B̃-maximal
schedule is a 4-approximation with respect to w1. For this we show that the optimal
weight is at most 2w1(B̃), and that the weight of every B̃-maximal solution is at
least 1

2w1(B̃).

Lemma 3.3 The optimal solution with respect to w1 is at most 2w1(B̃).
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Proof. Consider an optimal solution that consists of a set of batch instances B.
We handle separately two cases.

(i) If the optimal solution contains B̃, then it cannot contain any other batch
instance that conflicts with B̃. In addition, by the definition of w1, the weight
of all the batch instances in B that do not conflict with B̃ is zero. It follows
that

∑

B∈B\{B̃} w1(B) = 0, and the weight of the optimal solution is w1(B̃).

(ii) Suppose that the optimal solution does not contain B̃. In this case it may
contain batch instances that conflict with B̃ only in jobs, and at most one
batch instance, B̂, that conflicts with B̃ in time. By (3), for any batch instance

B that conflict with B̃ only in jobs w1(B) =
P

j∈J(B)∩J(B̃) uj,B̃

u(B̃)
· w(B̃). Since

the sets J(B) for all batch instances B ∈ B that conflict with B̃ only in jobs
are mutually disjoint, the union of these sets may include at most one copy of
each job j ∈ B̃. Let H ⊆ J(B̃) be the subset of the jobs in J(B̃) included in
the union of these sets. The sum of the weights of all these batch instances is
bounded by

∑

j∈H uj,B̃

u(B̃)
· w(B̃) ≤ w(B̃) = w1(B̃) .

Now, consider the batch instance B̂ that conflicts with B̃ in time.
(a) If B̂ is not a reduction of B̃ then w1(B̂) equals to the increment in ∆

B̂

which is bounded (using (5)) by w1(B̃).
(b) Suppose that B̂ is a reduction of B̃. Since I(B̂) = I(B̃), both B̂ and B̃

start to conflict in time with the batch instances chosen in the recursive
calls at the same point of time. Also, following the first such call, both
conflict in time with all the batch instances chosen in subsequent recursive
calls, until the recursive call in which B̃ is chosen. Note that this implies
that u

j,B̂
= uj,B̃, for all j ∈ J(B̂) ⊂ J(B̃). This is because u

j,B̂
and uj,B̃

are updated in the same way in all recursive calls before B̂ and B̃ start
to conflict in time with the batch instances chosen in the recursive calls,
and are kept unchanged from that point on. It follows that u(B̂) ≤ u(B̃).
By our choice of B̃, m(B̂) = u(B̃) and m(B̃) = u(B̃). Hence, from (5),

∆
B̂
≥ u(B̂)

u(B̃)
∆B̃. It follows that

u(B̂)−∆
B̂
≤ u(B̂)−

u(B̂)

u(B̃)
∆B̃ =

u(B̂)

u(B̃)
(u(B̃)−∆B̃) ≤ u(B̃)−∆B̃ = w1(B̃) .

Lemma 3.4 The weight of every B̃-maximal solution is at least 1
2w1(B̃).

Proof. To prove this claim we distinguish between three cases.
Case 1: If B̃ belongs to the solution, the claim is clearly true.
Case 2: The solution contains a batch instance B that is not a reduction of B̃
and conflicts with B̃ in time. By our construction, w1(B) is equal at least to the
increment in ∆B , which is at least 1

2w1(B̃).
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Case 3: Suppose that the solution does not contain any batch instance that is not
a reduction of B̃ and conflicts with B̃ in time. The solution may schedule some
of the jobs in J(B̃) in batch instances that do not conflict with B̃ in time. Let
H ⊆ J(B̃) be the set of these jobs.
Case 3.1:

∑

j∈H uj,B̃ ≥ 1
2u(B̃). Note that, by (2), the sum of the w1-weights taken

over all batch instances that contain a job from H is
∑

j∈H uj,B̃

u(B̃)
w1(B̃) ≥

1

2
w1(B̃) .

Case 3.2:
∑

j∈H uj,B̃ < 1
2u(B̃). Consider the batch instance B which is a reduction

of B̃ and consists of the jobs in J(B̃) \ H . To make the solution B̃-maximal, the
batch instance B has to be added to the solution. As in the proof of Lemma 3.3
uj,B = uj,B̃, for all j ∈ J(B) ⊂ J(B̃). It follows that u(B) > 1

2u(B̃) = 1
2m(B), and

thus, from (5), ∆B = u(B)
m(B)∆B̃. We get that

w1(B) = u(B) − ∆B = u(B) −
u(B)

m(B)
∆B̃

=
u(B)

u(B̃)

(

u(B̃) − ∆B̃

)

since m(B) = u(B̃)

=
u(B)

u(B̃)
w1(B̃)

>
1

2
w1(B̃) .

Finally, the batch B is guaranteed to be available since 1
2w1(B̃) > 0.

3.2 Polynomial-time implementation

We now show that the algorithm can be implemented in polynomial time. To this
end, we need to show that the number of recursive calls is polynomial and that the
bookkeeping can be done in polynomial time. During the execution of the algorithm
we say that the algorithm processed time t, if the minimum end-time of the batch
instances currently considered by the algorithm is later than t. Each recursive call
of the algorithm is associated with a call time which is the end-time of the batch
instance B̃ in that call.

We first show how to maintain uj,B and ∆B. Consider a batch instance B, the
following observations hold by definition.

(1) ∆B = 0 as long as the algorithm has not processed time t(B) (the start point
of B).

(2) ∆B is the same for all simultaneous batch instances B from the same family
for which u(B) = m(B).

(3) For any j ∈ J(B), uj,B is identical for all batch instances B such that t(B) is
later than the current call time t̃.

(4) For any j ∈ J(B), uj,B remains unchanged after the recursive call with the
latest call time that is earlier than t(B).
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For a job j ∈ J , to maintain uj,B we maintain a single set of values for all batch
instances B such that t(B) is later than the current call time t̃. We maintain uj,B

for all batch instances B such that t(B) ≤ t̃ ≤ t(B) + p(B) implicitly. This can be
done since uj,B can be computed using uj,B′ where t(B′) > t̃, which is maintained:
uj,B is uj,B′ plus the total reductions of uj,B′ in all the recursive calls with call
times between t(B) and t̃. Since the number of these calls is polynomial, this can
be computed in polynomial time.

To maintain (implicitly) ∆B for all batch instances B such that t(B) ≤ t̃ ≤

t(B) + p(B), we note that, from (5), ∆B is max
{

1
2 , u(B)

m(B)

}

times the sum of w(B̃)

in all recursive calls with call times in the interval [t(B), t̃). Again, since the number
of these calls is polynomial, this can be computed in polynomial time. We remark
that m(B) can be computed by checking if |J(B)| < b, and in case this is true,
m(B) is given by adding to u(B) the weight of (at most) b − |J(B)| jobs not in
J(B) with maximum values of uj,B, among the jobs in f(B) that can start at t(B).

Consider one of the recursive calls. Recall that B̃ is the batch instance having the
maximum weight among all batch instances having minimum end-point (denoted
by t̃). The time t̃ is easy to compute since the input is discrete. To find B̃, we
consider all the jobs that can be completed at time t̃. We have one candidate for B̃
from each family. Consider a job family f . We first find the maximum m(B) for all
batch instances from family f . This is the sum of (up to) b jobs from family f that
can end at t̃ with the maximum values of uj,B (which is the same for all batches B
from f with this end-time). The candidate is a batch instance B with u(B) equals
this maximum.

Finally, we remark that since in each recursive call we delete at least one batch
instance that is maximal with respect to extension (and all its reductions), the
number of recursive calls is polynomial.

3.3 Continuous Inputs

We now explain how to handle continuous input, i.e., the case where batches can
start at any point on the time line. Our exposition follows [Bar-Noy et al. 2001]. The
idea is to operate on whole windows at a time, rather than modify the parameters
of individual batch instances. At each iteration we delete all windows whose batch
instances have non-positive profit, and find a batch instance B̃ with earliest end-
time among the remaining batch instances. The invariant that we maintain is that
the parameters of all job instances belonging to the same window are the same.
This requires splitting windows; it is easy to see that the points at which the time
windows may be split are all of the form: start-time of some window plus a finite
sum of lengths of batch instances (not necessarily of the same family). Since any
such point can be no greater than the maximum end-time of an instance, there are
only finitely many such points. Thus, this implementation always halts in finite,
if super-polynomial, time. In order to attain polynomial running time we trade
accuracy for speed. For any fixed ε, 0 < ε < 1, we modify the algorithm as follows.
Whenever B̃ is chosen such that w(B̃) has dropped below ε ·

∑

j∈J(B̃) wj we simply

delete the window containing B̃ and do not alter any other parameters. It can be
shown that the running time of the algorithm with this change is O(1/ε) times the
running time of the discrete input algorithm. The approximation factor obtained
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degrades by an additive factor of ε, to 4 + ε. The reader is referred to [Bar-Noy
et al. 2001] for more details.

3.4 Multiple Machines

The way to handle multiple machines also follows [Bar-Noy et al. 2001]. The re-
cursive calls are the same as for the single machine case, the only change is in
the value of w1(B) for every batch instance B that is not a reduction of B̃ and
which conflicts with B̃ in time. The increment of ∆B for these batch instances is
1
k

max{ 1
2 , U(B)

M(B)}w(B̃); that is, 1
k

of the increment in the single machine case, where

k is the number of machines. Similar to the technique described in [Bar-Noy et al.
2001], and similar to the proofs of Lemmas 3.3 and 3.4, it can be shown that after
this modification the optimal weight is at most 2w1(B̃), and that the weight of
every B̃-maximal solution is at least 1

2w1(B̃).

3.5 Hardness of Approximation

Since the batching problem is more general than the corresponding scheduling prob-
lem, where the size of a batch is exactly 1, all the hardness results for scheduling
apply. In particular, for the case where discrete intervals are provided, the multiple
machines case is identical to the single machine problem [Spieksma 1999]. Thus,
using the Max SNP hardness shown for multiple machines and batch size one in
[Bar-Noy et al. 2001], the Max SNP hardness of maximizing throughput of batch
scheduling follows immediately.

4. UNBOUNDED BATCHING

We describe here how to obtain improved approximation factors for unbounded
batching. For continuous inputs, the improved factor is 2 + ε. For discrete inputs,
the improved factor is 2, however, we need to make the following assumption. For
every job Jj and t1 < t3, suppose that [t1, t2] and [t3, t4] are feasible time intervals
for Jj (t4 − t3 = t2− t1 = pj), then if for some t1 < t′ < t3, [t′, t′′] is feasible for any
job in the family fj, it is also feasible for Jj . We present the algorithm for the case
of a single machine and discrete input. The extensions to continuous input, multiple
machines, and all implementation issues are similar to the general algorithm. The
algorithm follows the framework of the generic scheme. The only difference is in
the way the weight function w1 is computed and in the transformation of S′ to S.

We consider the jobs in J(B̃) in descending order of the end-time of their latest
time interval: j1, j2, . . .. Let z be the maximum index such that

∑z
i=1 uji,B̃

≤ w(B̃).
Since ∆B can be greater than zero, it follows that z is not necessarily the size of
J(B̃). Let

δ = w(B̃) −
z

∑

i=1

uji,B̃
.

Note that δ 6= 0 only if
∑z

i=1 uji,B̃
< w(B̃). We change the definition of B̃-maximal

solution to be a solution that schedules j1, . . . , jz+1. To define the decomposition
we define w2 by showing how uj,B and ∆B are updated. As in the general scheme,

these quantities will be updated only for batch instances that conflict with B̃.

(1) Suppose that batch instance B conflicts with B̃ only in jobs. For each job
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j ∈ {j1, . . . , jz} ∩ J(B), set uj,B to zero. If jz+1 ∈ J(B) then decrement
ujz+1,B by δ. The value of ∆B remains unchanged.

(2) For each batch instance B that is not a reduction of B̃ that conflicts with B̃ in
time increment ∆B by w(B̃).

(3) For each batch instance B that is a reduction of B̃, set w1(B) = w(B).

Note that in the recursive call the weight of jobs {j1, . . . , jz} is zero and thus
we may assume that they are not present. If S′ schedules a batch instance that
conflicts with B̃ in time, then it is B̃-maximal. Otherwise, to turn the schedule
S′ into a B̃-maximal solution, we do the following. If S′ does not schedule any
jobs in J(B̃), we add B̃ to S′ to form S. Otherwise, S′ scheduled some jobs in
J(B̃). Suppose that S′ contains a batch B such that J(B) ∩ J(B̃) 6= ∅. Since b
is unbounded and by our assumption [t(B), t(B) + p(B)] is a feasible time intreval
for all jobs {j1, . . . , jz}, we may extend B to include these jobs as well. For the
same reason we may extend B to include jz+1 as well, in case it was not scheduled
already. This may only increase the value of the solution relative to w2 and make
it B̃-maximal.

It is easy to see that, in the problem with respect to w1, the optimal weight is at
most 2w1(B̃).2 We prove that the weight of every B̃-maximal solution is at least
w1(B̃). The 2-approximation follows.

Lemma 4.1 The weight of every B̃-maximal solution is at least w1(B̃).

Proof. The claim is clearly true in case batch instance B̃ is in the solution.
Suppose that this is not the case. Note that the B̃-maximal solution would never
schedule a batch instance that is a strict reduction of B̃. We distinguish between
two cases. (i) There is a batch B̂ that conflicts in time with B̃, then from (2) above,
w1(B̂) = w(B̃), and the claim holds. (ii) All jobs {j1, . . . , jz+1} are scheduled in
batch instances that do not conflict B̃ in time. Let B be the set of batch instances
in which these jobs are scheduled. By our construction

∑

B∈B w1(B) = w1(B̃).

5. IDENTICAL RELEASE TIMES

In this section we consider the case when all jobs have the same release time. We
improve the approximation ratio to 2 and (2+ε), respectively, when all job families
have the same processing times, and when all jobs have the same weight (with
arbitrary processing times). Both algorithms apply the local ratio technique.

5.1 Identical Processing Times

Note that since all release times are the same, there exists a optimal schedule with
no idle times. Set the release time to 0. It follows that all scheduled batches start
at times which are multiples of their processing time p.

We modify the local ratio algorithm described in Section 3 as follows. First, we
consider only batch instances B such that t(B) is a multiple of p. This implies
that if two batches B and B′ conflict in time it must be that I(B) = I(B′). Batch
instance B̃ is selected as in the general scheme. To define the decomposition we

2The proof is similar to the proof of Lemma 3.3.



16 · Bar-Noy et al.

specify how uj,B and ∆B are updated. The only difference from the the general
scheme is in the way these quantities are updated for each batch instance B that
is not a reduction of B̃ that conflicts with B̃ in time. For each such batch instance
B set ∆B to be w(B̃).

Since batch instance B̃ has the maximum weight among all batch instances B
with I(B) = I(B̃), in the recursive call the weight of all batch instances B that
conflict with B̃ in time is at most zero and thus we may assume that they are not
present. To turn the schedule S′ into a B̃-maximal solution, we do the following.
If S′ does not schedule any jobs in J(B̃), we add B̃ to S′ to form S. Otherwise, we
add the reduction of B̃ consisting only of the jobs not scheduled by S′.

Using an argument similar to the one used for the general case it can be shown
that, in the problem with respect to w1, the optimal weight is at most 2w1(B̃).
The modified way we set ∆B implies that the weight of every B̃-maximal solution
is at least w1(B̃). The 2-approximation follows.

It is easy to construct and example where this algorithm indeed achieves a 2
approximation ratio. Just consider two job families each consisting of a single job.
Let p = 1 and d1 = 1 and d2 = 2. Suppose that both jobs have the same weight. The
algorithm may schedule only job J2 at time 0 while the optimal solution schedules
both jobs.

The implementation of the algorithm is similar to the discrete case and since we
may assume without loss of generality that the due dates take one of the n values
{p, 2p, . . . , np}, this implementation is strongly polynomial.

5.2 Identical Weights

We consider the case when all jobs have equal weights (with arbitrary processing
time for each job family). We use several properties of optimal schedules for jobs
with identical release times. (See [Uzsoy 1995].)

Proposition 5.1 There exists an optimal solution for 1|f − batch|
∑

wj(1 − Uj),
such that

(1 ) All jobs of the same family are scheduled in the order of their due dates.

(2 ) All batches, except possibly for the last batch from each family, are full. If a
batch B is not full, then it consists of the |J(B)| jobs with the latest due dates
in family f(B).

(3 ) For each batch B, J(B) consists of a consecutive block of jobs from the sequence
of jobs in f(B) ordered by their due dates.

We modify the local ratio algorithm described in Section 3 as follows. First, we
consider only batch instances that satisfy the conditions of Proposition 5.1. The
batch instance B̃ is chosen to be a batch instance with the minimum end-time
among all batch instances. Among such batch instances batch instance B̃ is chosen
to be a batch instance that contains the job with the earliest due date. (Note that
only one such instance exists.) For each batch instance B that conflicts with B̃ in
either time or jobs, define w1(B) = w(B̃). Set w1(B) = 0 for the rest of the batch
instances.

Clearly, every schedule contains at most one batch instance that conflicts with
B̃ in time. Since we consider only batch instances that satisfy the conditions of
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Proposition 5.1, it is not difficult to see that every schedule contains at most one
batch instance that conflicts with B̃ in jobs. It follows that, in the problem with
respect to w1, the optimal weight is at most 2w1(B̃).

If S′ schedules a batch instance that conflicts with B̃, then it is B̃-maximal.
Otherwise, we add B̃ to schedule S′ to turn it into a B̃-maximal solution. Clearly,
the weight of every B̃-maximal solution with respect to w1 is w1(B̃).

The 2-approximation follows. However, the polynomial implementation of the
algorithm degrades the approximation ratio to (2 + ε).

6. OPEN PROBLEMS

We have presented 2 and (2 + ε)-ratio approximation algorithms for several classes
of instances of our problem, including the case of unbounded batch size. These
bounds coincide with the best known bounds for the real-time scheduling problem.
The question whether our bounds (of 4 and (4 + ε)) for general instances can be
matched with the bounds for real-time scheduling remains open.

We have not been able to find exact polynomial time algorithms, or to establish
hardness results for some classes of instances that are polynomially solvable in the
corresponding real-time scheduling problem, including, for example, the problem
1|f − batch|

∑

(1 − Uj).
The existence of PTAS for subclasses of instances, and in particular, for the

special case where b = 1 (the real-time scheduling problem), is still unresolved.
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