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Abstract

In high-technology industries, where technological obsolescence is high, price protection has

become a standard element of contracts between manufacturers and distributors. Price pro-

tection was designed to counteract the high technological obsolescence and provide distributors

with incentives to stock sufficient inventory. However, empirical evidence suggests that price

protection often leads to over-stocking at the distributors. Motivated by a need to decrease

inventory held at the distributors of a large computer manufacturer, we model and analyze

price-protection contracts as implemented in practice: full protection for a limited time, L. For-

mulating such price-protection contracts requires tracking the historical orders of distributors

over the period of time that goods are price protected. The critical element of our analysis is

a myopic reformulation that makes it easier to analyze the problem and interpret the results,

while preserving the dependency of the price protection cost on L. We characterize the be-

havior of the optimal inventory targets under a distributor managed inventory (DMI) policy

as a function of the economic parameters and the length of the price protection period. We

also identify conditions that lead to over-stocking under the current system (DMI). Alternative

policies that decrease incentive misalignment are then considered, including a vendor managed

inventory policy (VMI) and risk sharing. We show that the incentives for “channel stuffing”

that usually accompany VMI are decreased or eliminated in a price-protection environment.

In a numerical study, we observe that VMI provides superior performance compared to DMI

in conditions that routinely characterize the high-technology industry, i.e., high technological

obsolescence, higher impact of product shortages on the manufacturer than the distributor, low

inventory carrying costs (other than obsolescence costs), and low to moderate profit margins.

VMI also performs well when profit margins increase over time, which often characterizes new

product introductions. While risk sharing may be difficult to implement, combining VMI with

risk sharing leads to significant improvements.



1 Introduction

Price protection is a common business practice, especially in the high-technology industries. It

is intended to counteract double marginalization, which is particularly significant in environments

with high technological obsolescence. Distributors who purchase goods from Original Equipment

Manufacturers (OEMs) perceive price protection as a fair and necessary mechanism through which

manufacturers decrease the effects of brutal price erosion on the operations of distributors.

To illustrate how a price-protection contract works, consider a simple example. A distributor,

with no initial inventory, places an order for 200 units at $800 per unit. The order is received

instantaneously and after a demand for 70 units is satisfied, the distributor is left with 130 units

at the end of the period. Soon after (at the beginning of the next period) the wholesale price

drops to $700 per unit. The price protection credit given by the manufacturer to the distributor

is the product of the unsold inventory and the price decrease, 130*($800-$700) = $13,000. Price

protection expenses have become quite significant for OEMs and there is a lot of focus in the

industry on reducing these expenses. Unlike previous literature that considers simplified forms of

price-protection contracts, this paper analyzes the dominating form of price-protection contracts

as they are exercised in the industry, and identifies ways to reduce the total supply chain cost.

During the last 15 years, the standards of price-protection contracts went through a number

of changes and eventually stabilized at the end of 1990s (Zarley, 1994a, 1994b, 1997a, 1997b;

Pereira 1999; Moltzen and Campbell, 2000). The early practice of price protection (mid 1980s-mid

1990s) was an unlimited price protection policy where distributors were reimbursed for whole-

sale price reductions on all unsold inventory. Later, this was followed by attempts to shorten

the price-protection period combined with additional incentives for retailers. In 1994, Apple and

Hewlett-Packard (HP) attempted to change the terms by limiting the length of time for which

price protection would be offered. However, they quickly reversed their decisions due to strong

opposition from their resellers (Zarley, 1994a, 1994b). Later, in 1997, IBM decreased the price

protection period to 30 days for their second tier resellers (Zarley, 1997a) and combined this new

rule with an incentive of a wholesale price discount of 2.5% for those resellers who accept 15 days

of price protection (Zarley, 1997b). A similar modification (with deeper discounts) was attempted

at HP for a small subset of products (Pereira, 1998). Later, both policies were rescinded. In June

1999, HP changed the price protection terms from unlimited time to 60 days (Pereira, 1999) and,

in April 2000, IBM started offering 45 days of price protection without any extra discount (Moltzen

and Campbell, 2000). These actions at the end of the 1990s marked the eventual stabilization of

the price protection terms.

In the computer industry, which is the primary motivation for this paper, price protection

has become a standard element of supply contracts where distributors are eligible for full price

protection for a limited time (say L weeks). That is, the manufacturer credits the distributor for
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any price reductions on unsold goods purchased up to L weeks before the price change. It is easy to

see that having a contract with L = ∞ (i.e., full price protection for unlimited time) is the same as

a buy-back contract. However, when L is finite, the contract differs significantly from buy-back.1

Clearly, by offering price protection, a significant portion of risk originally faced by the distrib-

utor due to decreasing costs and prices is now absorbed by the manufacturer. While the contract

is designed to provide the distributor with an incentive to stock more inventory, in practice it often

does so in an excessive manner. Many manufacturers, especially in the high-technology industry,

feel that offering a price-protection contract under a traditional Distributor Managed Inventory

(DMI) policy leads to excessive stocking levels at distributors and unfairly exposes manufacturers

to significant price protection expenses. Consider the same example as earlier, but assume that the

drop of $100 in the unit wholesale price paid by the distributor is driven by an equivalent drop of

$100 in the manufacturing cost (from $600 to $500) incurred by the manufacturer. Due to price

protection credits, the effective wholesale price is only $700 (and the profit margin is only $100) on

the 130 units unsold at the end of the period, but the manufacturer could have saved $100 per unit

in manufacturing costs had some of the 130 units been manufactured later. Excessive inventories

in the presence of high technological obsolescence are clearly very costly and it is well-documented

that many business failures in the computer industry are due to obsolete inventory (Simchi-Levi

et al., 2000; Sengupta, 2004). In this paper, we show that price protection may indeed induce

excessive ordering by distributors. We then consider mechanisms that decrease the total supply

chain cost based on changing the ordering rights to a Vendor Managed Inventory (VMI) policy and

also by considering risk sharing. We finally present a numerical study that is designed to mimic

the nature of the economic forces in the high-technology industry under price-protection contracts.

Contributions of the Paper

The model described in this paper is motivated by a large computer manufacturer who is considering

the launch of a VMI system in order to improve its distribution channel operations and reduce price

protection expenses. We start with a centralized model in order to provide a benchmark. Then,

we follow with decentralized versions of the model, with and without price protection. The main

contributions of the paper are as follows:

• We present a realistic model of price protection contracts, full price protection for limited

time, that is commonly used in the high-technology industry. Capturing the dynamic nature

of price protection in a decentralized system requires tracking the vector of historical orders

due to the dependency of the price-protection cost on the length of price protection, L. This

leads to an explosion of the state space of the dynamic programming formulation. This is
1This is because the price protected quantity in any period would be a function of the ordering decisions in the

previous periods rather than a function of only the inventory on-hand (see Section 4.1).
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possibly one of the reasons why previous literature never analyzed the true price protection

problem but instead considered simplified buy-back type models.2 The critical element of our

analysis is a reformulation that incorporates the dependency of the price protection cost on

L into the one-period cost. Myopic analysis of the reformulated problem allows us to develop

transparent analyses and intuitive interpretations.

• For the decentralized model, we characterize the optimal inventory policy under DMI. We

then develop conditions under which DMI leads to over-stocking at distributors, causing

significant price protection expenses for the manufacturer and negative externalities for the

whole supply chain.

• Under DMI, we show that an appropriately chosen length of price protection indeed coor-

dinates the channel in many cases. In practice, however, any adjustments (at least, any

decreases) to the length of the price protection period are not easily implementable, because

the expectations related to the length of the price protection period are imposed by the mar-

ket and supply contracts are difficult to change. Furthermore, the length of price protection

that coordinates the channel would differ by product and by distributor which is unacceptable

from a practical point of view.

• To correct the externalities of price protection, the first alternative that we consider is the use

of a VMI policy. While the popularity of VMI in practice has significantly increased over the

last two decades, companies realize that use of VMI requires fine-tuned implementations that

impose additional constraints on supply chain operations such as maximum inventory levels,

see Fry et al. (2001). We show that a price-protection environment is much more suitable

for VMI contracts, because the need for additional constraints such as maximum inventory

levels is decreased or eliminated. Also, we highlight that the Sarbanes-Oxley Act enacted in

2002 makes VMI easier to implement in many environments.

• The second alternative we analyze is risk sharing. While we recognize that risk sharing

arrangements are difficult to implement in practice, we evaluate their potential benefits. We

show that risk sharing can lead to supply chain coordination in some scenarios.

• Given a market-imposed length of price-protection period, we evaluate the performance of

the decentralized models under demand and cost/price uncertainty. Our numerical analysis

of VMI shows that such contracts tend to perform better than DMI in settings that charac-

terize the high-technology industry - high price erosion (technological obsolescence), small to

moderate profit margins, higher impact of product shortages on the manufacturer, and low

inventory carrying costs (other than obsolescence costs). Opposite economic conditions tend

to favor DMI. We also find that risk sharing can lead to significant improvements to both

VMI and DMI.
2Another reason is simply that in the beginning of 1990s price protection was offered for an unlimited time.
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The rest of the paper is organized as follows. In Section 2 we review the relevant literature. In

Section 3 we define and analyze the centralized model and the DMI model without price protection.

The decentralized models under price protection are introduced and analyzed in Section 4, where

we reformulate the dynamic program with price-protection credits, as well as describe correcting

mechanisms. Section 5 describes the design of the numerical study and lessons learned. We conclude

in Section 6.

2 Relevant Literature

The model we consider can be labeled as a non-stationary decentralized inventory model with price

protection. The relevant literature includes non-stationary inventory research, decentralized supply

chain models, VMI contracts, revenue sharing, and price protection analysis.

Among the very first non-stationary models studied in OM literature are Karlin (1960), Iglehart

and Karlin (1962), and Veinott (1963). Veinott (1966) summarizes early developments in inventory

theory. Many inventory papers consider additional constraints such as multiple service classes

(Veinott, 1965), limited capacity (Kapuscinski and Tayur, 1998; Aviv and Federgruen 1997), or

some form of Bayesian updating (Azury, 1985; Lovejoy, 1993). In most of these papers, only

demand is non-stationary while some allow for other non-stationary elements. A unified framework

is described in Zipkin (2000). All of the above papers look at centralized cost structures and,

consequently, none of them consider a cost function appropriate for price protection.

The supply chain literature has been growing rapidly (Tayur, Ganeshan and Magazine, 1998;

Graves and de Kok, 2003). However, due to the difficulty of analysis, most decentralized models

in this literature focus on single-period models or, at most, two-period models to capture the

time dynamics. Some exceptions include Parker and Kapuscinski (2004), Rudi, Kapur and Pyke

(2001), and Fry, Liu and Raturi (2005). To the best of our knowledge, there are no papers dealing

with decentralized models in a non-stationary cost environment. Multi-period interactions with

non-stationary costs are, however, at the heart of the price-protection problems.

Since we compare the traditional DMI models where a distributor determines the order quan-

tities with VMI models where a vendor (manufacturer) determines these, we describe the VMI

literature in more detail. Despite many business references to VMI, few research papers deal

specifically with VMI, both in the area of empirical research as well as analytical models for VMI.

Most of these papers contain some form of comparison to DMI even though these comparisons may

not be their focus.3

The benefits of VMI depend on its definition and the corresponding model. Bernstein and Fed-

ergruen (1999) consider a model of VMI when demand has a constant rate, the vendor decides the
3DMI is sometimes referred to as Retailer Managed inventory, or RMI, where a retailer or distributor manages its

own inventory while ordering from vendor.
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quantity to replenish, while the retailer makes pricing decisions. The model reflects a consignment

(shelf renting) arrangement, where the supplier pays for all holding costs, including inventory at

the retailer. Cohen Kulp (2002) interprets VMI as simply information sharing, while most models

give vendor ordering rights. Clark and Hammond (1997) and Cachon and Fisher (1997) compare

the benefits of information sharing versus information sharing combined with VMI. Both of them

indicate that most of the benefits of VMI could be attributed to and realized by information sharing

without implementing the VMI process. Many models establish reasons why VMI might provide

some benefits. These include Cheung and Lee (2002), Cetinkaya and Lee (2000), Aviv and Feder-

gruen (1998), Kraiselburd et al. (2004), Mishra and Raghunathan (2004), Kim (2008), and Bertazzi

et al. (2005). Nagarajan and Rajagopalan (2008) study a multi-period (or continuous time) model

with fixed ordering and evaluate the effect of holding cost subsidies – these may be viewed as a

special case of revenue sharing and thus related to our risk-sharing policy. They consider only

Pareto-improving contracts and show that these subsidies can improve the performance of VMI

contracts (the consideration of Pareto-improving contracts eliminates the possibility of stuffing the

channel that most VMI implementations face - see Section 4.2 for a discussion on channel stuffing).

A paper related to our study is Fry et al. (2001), which describes a VMI model with minimum

and maximum bounds and shows that it is Pareto improving if the coefficients of the contract are

set according to reasonable economic rules. They describe the need for imposing an upper bound

on inventory, an issue that is important in our paper as well. All of the papers above consider a

non-coordinated system and typically show that VMI allows, in some specific business situations,

to eliminate a portion of the gap with the first-best (centralized) solution. This is similar in spirit

to what we describe, but the problem is different. None of these papers consider any element of

price protection, which is the focus of our paper. (While the authors focus on the effect of the

manufacturer’s effort, one might interpret the objective function in Kraiselburd et al. (2004) as

related to infinite price protection.)

In our extensions we also consider risk sharing. Both risk and revenue sharing have been

considered in multiple papers in economics and operations management, see Cachon (2003) for a

recent review. In the context of VMI contracts, revenue sharing has been considered by Gerchak

and Wang (2004), who study assembly operations (single-period model), Wang et al. (2004), who

consider the effect of price elasticity in a consignment model, as well as Nagarajan and Rajagoplan

(2008), described above. None of these papers, however, model the effect of price protection.

Price-protection contracts have been very recently studied in the OM literature by drawing

similarities to buy-back contracts. Lee et al. (2000) examine the use of partial price protection

(only a fraction of price drop is refunded) as a lever to coordinate the channel between a supplier

and a retailer for a single-period problem and a two-period problem. While partial price protection

was found to enable channel coordination in the single-period problem, it was insufficient for the

two-period problem. For two periods, Taylor (2001) finds that adding a price protection element
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to situations where the retailer can return products mid-life and end-of-life can help coordinate the

channel and this may benefit both the supplier and the retailer. In addition to returns and price

protection, Lu et al. (2007) analyze a rebate policy where the supplier gives partial credits to the

retailers on quantities sold after a price drop. They provide methods to determine what policies

lead to Pareto improvements and also characterize the effectiveness of returns, rebates, and price

protection policies under single-buying and two-buying opportunity models.

The difference between these papers and our method is that we capture the time dynamics of

price protection programs as they are practiced in the industry - full price protection of unsold

inventory for a limited number of periods (say, six weeks), which does not reduce itself to buy-back.

Because of the difficulty in capturing the multi-period interactions, the few papers that analyze

price protection contracts use single period buy-back models. This paper is the only one, to the

best of our knowledge that includes the dependency of price protection costs on the length of price

protection.

3 Base Models

We first describe the problem and the notation. Then we follow with the analysis of the centralized

model and the decentralized model without price protection. In the next section, we describe and

analyze models with price-protection contracts.

Consider a distributor (D) who buys products from a manufacturer (M) at a wholesale price and

sells it to the end-customer at a retail price over T periods. At the end of each period (t− 1), the

production cost, ct, and wholesale price, wt, for period t become known and the distributor places

a replenishment order of size at which is produced by the manufacturer. In period t, the order for

at is delivered to the distributor, demand, Dt, is revealed, and all costs are evaluated. Then the

cycle repeats (production cost and wholesale price for period t + 1 are revealed and the next order

is placed). The production cost, wholesale price, and retail price decrease over time. The decrease

is stochastic and becomes known at the end of the previous period. The order quantity at and the

corresponding production (both made in period t − 1 for delivery in period t) are made with full

knowledge of period t costs and prices, and the distribution of costs and prices in future periods.

The distributor is charged the actual wholesale price at the time when the order is delivered.

All production occurs in response to a distributor’s order and, therefore, the manufacturer holds

no inventory. The distributor, on the other hand, faces uncertain demand and attempts to satisfy

demand from on-hand inventory. Any excess inventory is carried over to future periods. In the

case of a shortage, the requested products are produced and expedited to the distributor. When

goods are expedited, the distributor incurs the wholesale price for purchasing the product and some

additional cost penalties - a cost for expediting orders, a cost pertaining to the loss of customer

goodwill, and possibly, costs due to price concessions offered to the customers to compensate for the
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time delay in delivering the product. The manufacturer is also penalized for distributor shortages

and incurs a cost due to loss of customer goodwill in addition to the regular cost of producing the

product and possibly the cost of accelerated (expedited) production. This is a close representation

of actual practice, where the manufacturer is able to produce additional products and expedite

them at an additional cost if the required components are available and the distributor is able to

complete the sale.

Both the manufacturer and the distributor are risk neutral and discount their cash flows at the

same rate. The state of the system is observable and all information is fully transparent to the

manufacturer and distributor.

We make the following assumption:

Assumption 1 All variables are exogenous, except ordering quantities.

The following notation is used:

Exogenous V ariables

• T - time horizon, indexed t = 1, ..., T

• Dt - demand in period t, with cdf Φt(.) and pdf φt(.)

• D[t, k] - convolution of demands Dt, ..., Dk, k ≥ t, with cdf Φ[t,k](.). Φ[t,t](.) = Φt(.)

• L - length of price-protection period

• ct - production cost in period t

• wt - wholesale price in period t

• pt - retail price in period t

• gz
t - shortage penalty to z = M,D, including all costs and shortage penalties such as expediting

cost, loss of goodwill cost and any additional production costs, gt = gM
t + gD

t

• ht - inventory carrying cost for holding inventory at distributor’s site in period t

• β - discount factor

Endogenous V ariables

• xt - starting inventory

• at - quantity ordered in period t

• et - quantity expedited in period t

• yt - inventory on hand, after order arrives, yt = xt + at, but before expediting

• āt - cumulative quantity shipped until (and including) period t, āt = āt−1 + at + et

3.1 Centralized Model

The centralized problem is easy to formulate and solve. We briefly outline it, as it will serve as

a benchmark for the decentralized solutions. Due to the presence of expediting, the amount of

goods sold in any given period is equal to the demand in that period. Thus, it is sufficient to use a
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cost-based formulation and omit the gross profit (pt − ct) ∗Dt. The cost minimization formulation

for the centralized system is given by:4

V SC
t (xt) = min

yt≥xt

[W (yt) + βEDtV
SC
t+1((yt −Dt)+)]

where WSC(yt) = E{gt(Dt − yt)+ + (ct − βct+1 + ht)(yt −Dt)+}

and V SC
0 (xT+1) = 0. All of the above expectations are with respect to future demands and costs.

Clearly, this is a generalization of non-stationary inventory problem described in Karlin (1961).

The added elements are the expediting costs and uncertain costs dynamics for the future periods.

Due to Assumption 1 we have

Theorem 1 (a) The optimal policy is a non-stationary base-stock policy. (b) Assuming that in-

ventory can be salvaged in the next period at cost ct+1, the myopic base-stock level is

yC∗
t = Φ−1

t { gt

gt + (ct − βEct+1) + ht
} (1)

Proof is in the appendix.

Sufficient Condition For the myopic policy to be optimal, it is sufficient that demand is stationary

and the production costs, ct for t = 1, ..., T , are convex decreasing when all other parameters are

constant.

For the myopic policy to be optimal, the myopic inventory level yC∗
t should be reachable in every

period t. Note that ct−1−ct ≥ ct−ct+1 and ct is non-increasing implies that ct−1−βct ≥ ct−βct+1

for any β ∈ [0, 1], which further implies non-decreasing myopic ratios. From Veinott (1965), myopic

levels are, therefore, optimal.

Having described the centralized model, we now analyze a decentralized model (DMI) where

the distributor makes the ordering decisions in the absence of price protection.

3.2 Decentralized Model: DMI without Price Protection

In a DMI system, the distributor is an active player who makes all ordering decisions, and the

manufacturer is delivering the quantities ordered by the distributor. Because no decisions are

made by the manufacturer, the problem can be expressed as a minimization of the distributor’s

cost. Since there is no price protection in this preliminary setting, the structure of the distributor’s

cost mirrors that of the supply chain, except that the wholesale price w plays the role of the
4The term ctxt is omitted in the initial period and, in all other periods, reassigned to the previous period. By

explicitly expressing ctxt as ctE(yt−1 − dt−1)
+, the correction, which is usually a part of the myopic formulation, is

directly embedded in the function W (.).
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production cost c and the cost of shortage is gD
t . We modify the one-period cost function similar

to the centralized case and assign credit for the remaining inventory to the current period.

V D
t (xt) = min

yt≥xt

[WD(yt) + βEDtV
D
t+1((yt −Dt)+)]

where WD(yt) = E{gD
t (Dt − yt)+ + (wt − βwt+1 + ht)(yt −Dt)+}

and V D
0 (xT+1) = 0.

Theorem 2 Without price protection:

(a) The optimal policy is a non-stationary base-stock policy.

(b) Assuming that inventory can be salvaged in the next period at the purchase cost, wt+1, the

myopic policy has the optimal up-to level

yD∗
t = Φ−1{ gD

t

gD
t + (wt − βEwt+1) + ht

}.

(c) If the decrease in the expected wholesale price is at least equal the decrease in the expected

cost, wt − βEwt+1 ≥ ct − βEct+1, the distributor’s myopic quantity is (weakly) smaller than the

supply-chain myopic quantity, yD∗
t ≤ yC∗

t .

Proof: Parts (a) and (b) follow exactly as for the centralized problem, see Theorem 1. For part (c)

note that the critical ratio for the supply chain is guaranteed to be strictly larger than the critical

ratio for the distributor, if (wt − βEwt+1)− (ct − βEct+1) is non-negative, since gM
t ≥ 0.

Theorem 2 illustrates the well-known effect of double marginalization in a decentralized envi-

ronment. While set in a dynamic framework with decreasing prices, it reflects the main distortion

of overage and underage costs, which leads to insufficient incentives for the distributor to order

supply-chain optimal quantities and is the primary source of coordination friction.

The condition in part (c) of Theorem 2 intuitively holds in the long term as it is unlikely that, in

the long term, absolute margins are increasing when prices are decreasing. To illustrate the point,

consider no discounting (β = 1) and assume cost c1 = $800 and wholesale price w1 = $1000 for a

profit margin of 25%. When costs drop to c2 = $600, with a constant margin the wholesale price

would become $800 while with a more intuitive constant mark-up it would become $750. One can

expect that wholesale prices above $800 would be very unlikely, which corresponds to condition (c)

in the theorem above.5

4 Decentralized Models Under Price Protection

In this section, we explore two types of decentralized models under price protection: first, a tra-

ditional DMI model where the distributor makes the stocking decisions; second a VMI model in
5The sufficient condition may not hold, while the myopic policy may still be optimal. E.g., this may be the case

during production ramp-up which we describe in our numerical study.
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which the manufacturer performs these functions. We also analyze the impact of using a risk

sharing agreement under both decentralized models.

4.1 DMI Under Price Protection

Part (c) of Theorem 2 above shows that the myopic up-to levels from the distributor’s perspective

are likely to be smaller than the myopic up-to levels for the centralized system. Price protection,

in general, helps to eliminate or reduce the risk of price erosion for the distributor. Today, the

dominating form of price protection practiced in the industry is full price protection for a limited

time (Pereira, 1999; Moltzen and Campbell, 2000). It is governed by L, the length of the price-

protection period. In any time period, when the wholesale price is decreased, the distributor is

credited for the smaller of the inventory on hand and the amount purchased in the last L periods,

multiplied by the decrease in the wholesale price.

Formally, the price protection credit is (wt−1 − wt) ∗ min{xt, āt−1 − āt−L−1} and, thus, the

distributor’s expected cost under a price-protection contract with price-protection length L is:

V̄ D,PP
t (xt, āt−1, . . . , āt−L−1) = min

yt≥xt

[W̄D,PP
t (yt, āt−1, āt−L−1)

+βEDt V̄
D,PP
t+1 ((yt −Dt)+, āt, . . . , āt−L)],

where W̄D,PP
t (yt, āt−1, āt−L−1) = WD

t (yt)− (wt−1 − wt) ∗min{xt, āt−1 − āt−L−1}}

and V̄ D,PP
0 (xT+1, . . .) = 0.

From the above formulation it is clear that including price protection requires the history of

orders placed in the last L periods, increasing the state space of the dynamic program. The following

two properties are pivotal for the rest of the analysis. They enable us to reformulate the problem,

by including expected price-protection cost in future within the current-period cost and to express

the cost as a function of the target inventory level, yt, without losing the dependence on the length

of the price-protection period. Then, we discuss a more subtle relationship with the typically used

myopic formulations.

Critical Property 1 The price protected quantity, min{xt, āt−1 − āt−L−1}, due to a price action

in period t, can be re-written as

L∑

k=1

min{(yt−k −D[t− k, t− 1])+, at−k}

Proof: The property above is easy to justify in intuitive terms. Any unit purchased in period

t−k, for k = 1, . . . , L, is a part of at−k and, is price protected, if it is not sold by period t. Because

the underlying idea of price protection is first-in first-out, this specific unit will be sold only when
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the cumulative demand since the unit was purchased exceeds the inventory level, yt−k, to which

inventory was raised in period t− k. Clearly it is sufficient to show that

min {(yt−k −D[t− k, t− 1])+, āt−k − āt−L−1} = (2)

min{(yt−k −D[t− k, t− 1])+, at−k}+ min{(yt−k−1 −D[t− k − 1, t− 1])+, āt−k−1 − āt−L−1}

and apply it iteratively. From the definition of āt−k, the left-hand side of (2) can be expressed as

min{((yt−k−D[t−k, t−1]))+, at−k+et−k}+min{(yt−k−D[t−k, t−1]−at−k−et−k)+, āt−k−1−āt−L−1}.

If yt−k > Dt−k, we have et−k = 0 and the first term matches the first term of the right-hand side

of (2). For the second term, since et−k = 0 and yt−k − at−k = xt−k = (yt−k−1 −Dt−k−1)+, we have

(yt−k −D[t− k, t− 1]− at−k − et−k)+ = ((yt−k−1 −Dt−k−1)+ −D[t− k, t− 1])+

= (yt−k−1 −D[t− k − 1, t− 1])+

which completes this case.

If yt−k ≤ Dt−k, we have ((yt−k − D[t − k, t − 1])+ = 0. Also, (yt−k−1 − Dt−k−1) ≤ xt−k ≤ yt−k.

Thus, yt−k−1−D[t−k−1, t−1] ≤ yt−k−D[t−k, t−1], implying that all terms in (2) are 0, which

completes the proof.

Using Property 1, we can write the price protection cost due to a price action in period t as

(wt−1 − wt)
∑L

k=1 min{(yt−k −D[t− k, t− 1])+, at−k}. By grouping all components with purchase

quantity at in period t and incorporating the appropriate discounts, the future price protection

credit for an order placed in period t, G(xt, yt), can be expressed as:

G(xt, yt) =
L∑

k=1

βk(wt+k−1 − wt+k)min{(yt −D[t, t + k − 1])+, yt − xt}

since at = yt − xt.

Critical Property 2 The dynamic programming formulation for DMI under price protection is

equivalent to:
V D,PP

t (xt) = min
yt≥xt

[WD,PP (yt) + βEDtV
D
t+1((yt −Dt)+)].

where WD,PP (yt) = E{gD
t (Dt − yt)+ + (wt(1− β) + ht)(yt −Dt)+

+βL+1(Ewt+L −Ewt+L+1)(yt −D[t, t + L])+}

Proof: Based on Property 1, grouping the terms with the same purchase quantity at and incor-

porating appropriate discounting, we get

V D,PP
t (xt) = min

yt≥xt

[WD(yt)−G(xt, yt) + βEDtV
D
t+1((yt −Dt)+)]

11



In order to transform the price-protection credit, G(xt, yt), note that:

E(min{(y −D)+, y − x}) =
∫ x

0
(y − x)dF (D) +

∫ y

x
(y −D)dF (D)

=
∫ y

0
(y −D)dF (D)−

∫ x

0
(x−D)dF (D)

= E(y −D)+ −E(x−D)+ (3)

Thus, using xt = (yt−1 − dt−1)+, we have

E min{(yt−D[t, t + k− 1])+, (yt− xt)} = [E(yt−D[t, t + k− 1])+−E(yt−1−D[t− 1, t + k− 1])+]

Denoting uk
t = βk(Ewt+k−1 −Ewt+k), we have E[G(xt, yt)] = E[Ḡ0

t (yt)− Ḡ1
t (yt−1)] where

Ḡ0
t (yt) =

L∑

k=1

uk
t E(yt −D[t, t + k − 1])+ and Ḡ1

t (yt−1) =
L∑

k=1

uk
t E(yt−1 −D[t− 1, t + k − 1])+

for all t. Notice that the difference between Ḡ0
t (yt) and Ḡ1

t (yt−1) is the inclusion of Dt−1 in the

demand convolution in Ḡ1
t (yt−1). In the dynamic program formulation, terms containing yt−1 may

be assigned to the preceding period t− 1 (after multiplying them by the discount factor β). Thus,

in period t, we have

E[−Ḡ0
t (yt) + βḠ1

t+1(yt)] = −
L∑

k=1

uk
t E(yt −D[t, t + k − 1])+ + β

L∑

k=1

uk
t+1E(yt −D[t, t + k])+

= −u1
t E(yt − dt)+ + uL+1

t E(yt −D[t, t + L])+

resulting in the one-period cost function:

WD,PP (yt) = WD(yt)− Ḡ0
t (yt) + βḠ1

t+1(yt)

= E{gD
t (Dt − yt)+ + (wt − βwt+1 + ht)(yt −Dt)+

−β(wt − wt+1)(yt −Dt)+ + βL+1(Ewt+L − Ewt+L+1)(yt −D[t, t + L])+}
= E{gD

t (Dt − yt)+ + (wt(1− β) + ht)(yt −Dt)+

+βL+1(Ewt+L − Ewt+L+1)(yt −D[t, t + L])+}

and dynamic program formulation:

V D,PP
t (xt) = min

yt≥xt

[WD,PP (yt) + βEDtV
D
t+1((yt − dt)+)]

We will refer to the quantity WD,PP as the myopic function. Property 2 highlights that our myopic

formulation is different from the traditional myopic function. In a typical myopic formulation,

full credit is given to the remaining inventory (which becomes the starting inventory in the next

period). In a case when purchasing costs are nonstationary or the cost is discounted, it is standard to

normalize costs to 0, by adding the change of expected cost to the holding cost. These corrections

award the decision maker with an appropriate credit for the inventory at the beginning of the
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next period, since this inventory does not have to be purchased. With price protection, there are

additional consequences of a purchase, reflected in our derived one-period cost, which contains

two components for cost adjustments. The first one, wt(1 − β), reflects the loss in value of excess

inventory at the end of period t from cash discounting since the price protection credit is paid only

in cash in the period of a price reduction. The second term is a charge of βL+1(Ewt+L−Ewt+L+1),

taken in period t + L + 1 on the inventory remaining after period t + L. This term is similar to the

salvage cost of excess inventory in traditional formulations, but has a time delay of L periods due

to the presence of price protection.

The properties above allow us to express the distributor’s policy in terms of the target inventory

levels, yt. In the next theorem we describe the optimal policy. Recall that, without price protection,

we expect distributors to under-stock. A sufficient length of the price-protection period, L, brings

the up-to level above the supply-chain optimal level, as shown in point (c) below.

Theorem 3 (a) The optimal policy is base-stock level.

(b) If wt−wt+1 ≥ wt+1−wt+2, for all t, the myopic base-stock level, yD,PP∗
t (L) is a non-decreasing

function of price-protection period L.

(c) If

wt(1− β) + ht

(ct − βEct+1) + ht
<

gD
t

gt
(4)

then there exists a price protection length, L, such that yC∗
t ≤ yD,PP∗

t (L).

Proof: (a) The one-period profit function, WD,PP (yt), is clearly convex. By induction, assuming

Vt+1 is convex, since expectation and minimization preserve convexity, we have EVt+1((y −D)+)

is convex (recall that expediting is equivalent to the backlogging case with appropriately redefined

costs and, therefore, preserves convexity). From Property 2, the objective function is expressed in

terms of the target inventory yt and is independent of the starting inventory xt, thus the optimal

policy is base-stock.

(b) The derivative of the distributor’s one-period profit function is given by

WD,PP ′(yt) = −gD
t + (gD

t + wt(1− β) + ht) ∗ Φt(yt)

+βL+1(Ewt+L − Ewt+L+1) ∗ Φ[t,t+L](yt)

If wt−wt+1 ≥ wt+1−wt+2 for all t, notice that the absolute value of the component of the deriva-

tive of the profit function WD,PP (yt) that depends on L is non-increasing with L. Consequently,

the minimizing point does not decrease with L.

(c) To show that there exists an L such that yC∗
t ≤ yD,PP∗

t (L) it is sufficient to show that there

exists an L such that the derivative of the profit function WD,PP ′(yt) is non-positive at yC∗
t .

WD,PP ′(yC∗
t ) = −gD

t + (gD
t + wt(1− β) + ht) ∗ Φt(yC∗

t )

+βL+1(Ewt+L − Ewt+L+1) ∗ Φ[t,t+L](y
C∗
t )

13



Using (1), we have,

WD,PP ′(yC∗
t ) = −gD

t + αgt + βL+1(Ewt+L − Ewt+L+1) ∗ Φ[t,t+L](y
C∗
t ),

where α =
gD
t + wt(1− β) + ht

gt + (ct − βEct+1) + ht

For WD,PP ′(yC∗
t ) ≤ 0 to hold, we need to find an L such that

βL+1(Ewt+L −Ewt+L+1) ∗ ΦL
t (yC∗

t ) ≤ gD
t − αgt (5)

For β ∈ [0, 1], the left-hand side of (5) converges to 0, so the existence of such an L is equivalent

to the right-hand side of (5) being positive

gD
t + wt(1− β) + ht

gt + (ct − βEct+1) + ht
<

gD
t

gt
, or

wt(1− β) + ht

(ct − βEct+1) + ht
<

gD
t

gt

which is the assumed condition.

While Theorem 3(b) guarantees that the up-to levels are monotonic in L, the monotonicity does

not always hold. The example below illustrates a scenario with non-monotonic up-to levels.

Example

Figure 1 shows the optimal order up-to levels in period 1, as a function of the length of price

protection. The value of the optimal base-stock initially decreases, then increases, and then remains

constant. Given the price reduction from $30 to $20 in period 4, when price protection is for three

Figure 1: Effect of length of price protection on the optimal stocking levels. Demand is stationary

and discrete U[0,49]. w1 = w2 = w3 = 30 and w4 = w5 = . . . = 20. gD
t = 3 and ht = 0.5 for all t.

periods or longer (L ≥ 3), the distributor is not concerned about the higher price in periods 1, 2,

and 3 and orders up to the appropriate myopic level for w4 = 20 of 41 units. With two periods
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of price protection, the distributor will significantly overpay for any inventory not sold in the first

three periods, resulting in a lower up-to level of 36 units.

The scenario with one period of price protection, L = 1, results in interesting dynamics. We

observe a higher up-to level in period 1 for L = 1 than for L = 2. When L = 1, the optimal up-to

level for period 2, yL=1
2 , is 27 units, which is much smaller than optimal up-to level for period 1,

yL=1
1 = 38 due to a higher risk of price reduction in period 4. When L = 2, the optimal up-to level

for period 2, yL=2
2 is 41 units, which is higher than the optimal up-to level for period 1, yL=2

1 = 36 as

price protection covers any price reductions on orders placed in period 2. In both cases, every unit

of inventory left-over from period 1 faces the same risk from the price drop in period 4. However,

if the inventory left over from period 1 is greater than 27 when L = 1, it would help reduce the

underage cost in period 2 as the actual up-to level would be higher than the optimal one. However,

such an externality does not exist when L = 2 since yL=2
1 < yL=2

2 . This explains why yL=2
1 is less

than yL=1
1 .

Thus, when the anticipated price decrease takes place just outside of the price protection period,

it is beneficial for the distributor to under-order. This is commonly observed in practice where

distributors with advance information on (or strong expectations about) price reductions delay

placing orders until the price decreases are covered by price protection. This results in a “dip”

in the order size L periods before the price reduction becomes effective, followed by a noticeable

increase.

If we consider the price protection period L as a continuous variable, then part (c) of Theorem

3 states that for DMI: if condition (4) is satisfied, we can find an L that coordinates the chain.

While theoretically possible, in practice, it is difficult to adjust the length of the price protection

period for the reasons described earlier.

In the following section, therefore, we concentrate on some of the mechanisms practiced or

considered as an addition or a refinement to price-protection contracts.

4.2 VMI Under Price Protection

While the previous section considered the traditional case where the distributor determines the

order quantities, here we consider a manufacturer who controls the up-to levels at the distributor

and acts to minimize its individual cost. In this case, the distributor becomes a passive player who

serves demand from the stock (if available) and passes the demand information to the manufacturer.

As before, no inventory is held at the manufacturer’s site. The manufacturer earns a profit margin

(wt−ct) on all ordered products and incurs a penalty for orders that cannot be served from on-hand

inventory.
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Channel Stuffing and the Sarbanes-Oxley Act

It is easy to see that, in the absence of price protection, the manufacturer has multiple reasons

to sell huge (infinite) volume of products to the distributor: the manufacturer’s revenue increases

with the quantity placed with the distributor, the products are sold at a higher price in the current

period than in a future period, and the revenue realized in the current period is not discounted.

Consequently, the total amount that the manufacturer wants to sell to the distributor in the current

period may be equal to infinity, or at least is excessive. We label such behavior as channel stuffing.

The problems related to full control of inventory by the vendor are well recognized in practice.

Multiple sources report that channel stuffing took place in the past where firms attempted to book

sales in an earlier accounting period in order to meet previously announced financial targets (e.g.,

Osterland 2006; Khattab 2007). There are few papers that formally model managerial incentives

to stuff the channel (see Lai et al., 2008, and references therein). This can be interpreted as more

aggressive discounting of future cash flows (smaller β) and VMI makes such behavior easier as the

manufacturer is in control of inventory. However, given the range of benefits that VMI provides,

the distributor and the manufacturer typically agree on some form of a physical or a financial

constraint such as an upper bound on the inventory level to control such undesirable behavior,

see Fry et al. (2001). We show that, in the case when the manufacturer gives a price protection

credit to the distributor, the incentive to stuff the channel decreases and stuffing is not necessarily

optimal. Nevertheless, in some cases, it remains a possibility.

In practice, the recent Sarbanes-Oxley (SOX) regulations impose financial penalties on firms

that drive excessive inventory into their distribution channel (Greenwood 2004). Due to these

penalties, firms are paying extra attention to managing inventory by following well-defined rules

that limit inventory levels (or inventory increases) at their distributors (Jones 2003). Pharmaceu-

tical Commerce (2006) describes “inventory management agreements . . . which sought to limit the

amount of inventory kept at the wholesaler.” While there seems to be no common standard, most

control mechanisms that were introduced prevent sudden increases of channel inventories. Thus, in

addition to the economic reason described in Fry et al. (2001), SOX provides an additional reason

to impose the upper bound on inventory levels.

Analysis and Insights

Using a similar modeling of the price protection component as in Critical Property 2, we have:

V M,PP
t (xt) = −(ct − wt)xt −

L∑

k=1

βkE(wt+k − wt+k−1)(xt −D[t, t + k − 1])+

+ min
yt≥xt

[WM,PP (yt) + βEDtV
M,PP
t+1 ((yt − dt)+)]

where the one-period profit function is given by:

WM,PP
t (yt) = gM

t (Dt − yt)+ + (ct − wt)(yt −Dt)+
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+
L∑

k=1

βkE(wt+k − wt+k−1)(yt −D[t, t + k − 1])+ (6)

(We omitted the constant (ct − wt)Dt and used yt + (Dt − yt)+ = Dt + (yt −Dt)+.)

Definition 1 The manufacturer has an incentive to stuff the channel, if there exists a period t,

such that limyt→∞ V M,PP
t (xt, yt) = −∞.

It is easy to obtain necessary and sufficient conditions for stuffing the channel.

Property 3 The manufacturer will stuff the channel if and only if there exists t such that ct <

E(1− β) ∗ (wt + βwt+1 + . . . + βL−1wt+L−1) + βLwt+L.

Proof: Clearly, from (6), ct < (1− β) ∗ (wt + βwt+1 + . . . + βL−1wt+L−1) + βLEwt+L is equivalent

to WM,PP
t (yt) → −∞, which is the necessary and sufficient condition for some period t̄ ≥ t in order

for V M,PP
t̄ → −∞.

While Property 3 establishes necessary and sufficient conditions to stuff the channel, the period

in which stuffing takes place, could be the one with the largest unit benefit,6 i.e., largest negative

discounted value: ct − (1 − β) ∗ (wt + βwt+1 + . . . + βL−1wt+L−1) − βLEwt+L. Note, however,

that ct − (1− β) ∗ (wt + βwt+1 + . . . + βL−1wt+L−1)− βLEwt+L < β[ct+1 − (1− β) ∗ (wt+1 + . . . +

βL−1wt+L)−βLEwt+L+1] is equivalent to ct−βct+1−(1−β)wt−βL+1(wt+L−βwt+L+1) < 0, which

points to “best” periods for stuffing the channel (the highest t for which inequality still holds).

Note from Property 3 that under many reasonable combinations of parameters (not extremely

small discount factor and not extremely high margins), price protection eliminates any incentives

to stuff the channel. This is intuitive, as the benefit (to the manufacturer) of realizing revenue

earlier due to higher wholesale prices is significantly reduced or eliminated by having to reimburse

any reductions in the wholesale price during the next L periods, while the benefit of producing at

a lower cost is given up.

However, the manufacturer may still have an incentive to “stuff” the channel under VMI in

some situations. Following practices described in Fry et al. (2001), we impose an upper bound on

the inventory at the distributor in such situations. The new clear trend in the industry after SOX

was passed is to curb excessive inventories, which makes this assumption fit reality very well.

Using a similar rearrangement of the price protection component as in Property 2, we have:

V M,PP
t (xt) = min

yt≥xt

[WM,PP (yt) + βEDtV
M,PP
t+1 ((yt − dt)+)].

where the one-period profit function is given by:

WM,PP
t (yt) = gM

t (Dt − yt)+ + [(ct − βct+1)− wt(1− β)](yt −Dt)+

−βL+1(Ewt+L −Ewt+L+1)(yt −D[t, t + L])+

6If, for example, only a large but finite storage was available.
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Differentiating the one-period cost function wrt yt, we have

W
′M,PP
t (yt) = −gM

t + [gM
t + (ct − βEct+1)− wt(1− β)] ∗ Φt(yt) (7)

−βL+1(Ewt+L − Ewt+L+1) ∗ Φ[t,t+L](yt)

Define positive constants

δ = βL+1(Ewt+L −Ewt+L+1) and

γ =
[gM

t + (ct − βEct+1)− wt(1− β)]
βL+1(Ewt+L −Ewt+L+1)

.

Property 4 If the pdf of demand Dt,φt(z), is IFR for all t, then W
′M,PP
t (yt) is unimodal.

Proof:
W

′M,PP
t (yt) = −gM

t + δ[γΦt(yt)− Φ[t,t+L](yt)]

Unimodality of W
′M,PP
t (yt) is equivalent to unimodality of

γΦt(yt)− ΦL
t (yt) =

∫ yt

0
φt(z)[γ − Φ[t+1,t+L](yt − z)]dz

Notice that Φ[t+1,t+L](yt − z) is a non-increasing function of z. Thus, [γ − Φ[t+1,t+L](yt − z)] is

unimodal. This gives us that [γΦt(yt) − Φ[t,t+L](yt)] is unimodal in z since φt(z) is IFR (Rosling,

2002).

Since the first derivative of the one-period cost function is unimodal (Property 4), the function

has at most two zero points, giving it a shape as shown in Figure 2(a) when stuffing is a possibility

in our model. As mentioned earlier, we impose an upper bound on the inventory level that would

control this behavior. In our numerical evaluations, we do not penalize for stocking inventory above

the upper bound, but instead remove the benefit of extra shipments by the manufacturer, see the

upper bound yUB
t in Figure 2(b). The bound can be created in many ways (see Fry et al. 2001).

We chose to use the zero points of W
′M,PP
t (yt) which can be easily evaluated.

We now compare the optimal up-to levels under VMI with price protection to the centralized

model. This theorem builds on Theorem 3.

Theorem 4 For VMI, under the assumptions of Theorem 3, part (c), and assuming that the

demand distribution is IFR, there exists a price-protection length, L, such that yC∗
t ≥ yM,PP∗

t (L).

Proof: We first observe that WSC
t (yt) = WD,PP

t (yt)+WM,PP
t (yt) and thus WSC′

t (yt) = W
′D,PP
t (yt)+

W
′M,PP
t (yt). If (4) is satisfied, we have from part (c) of Theorem 3 that there exists an L such

that yD,PP∗
t > yC∗

t . For such an L, we have W
′D,PP
t (yC∗

t ) < 0 and thus, W
′M,PP
t (yC∗

t ) > 0. Given

that W
′M,PP
t (yt) is unimodal (Property 4) and the modified cost based on Figure 2(b), we have

yC∗
t > yM,PP∗

t .
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(a) Example of manufacturer’s cost with

incentive to stuff the channel.

(b) Bound on manufacturer’s cost to pre-

vent stuffing (in numerical study, we are in-

different for levels above the bound, yUB).

Figure 2: Manufacturer’s cost function under VMI

The results above show that price protection can be an effective inventory control in either

the DMI (Theorem 3) or VMI setting (Theorem 4) if implemented with an appropriate length of

the price protection period L. While this is a pleasing theoretical result, there is a high level of

resistance towards any adjustment of price-protection terms in the industry. As manufacturers

tend to match each other’s price-protection terms and conditions, changing the length of the price

protection period may be impossible from a practical point of view.

We next consider a risk-sharing mechanism that involves the manufacturer paying a portion of

expediting cost to the distributor.

4.3 Risk Sharing

Risk sharing (or alternatively revenue sharing) agreements are difficult to implement in most real

situations. Given, however, their theoretical appeal, we analyze an example that uses the spirit of

risk sharing applied to the specific business case of price protection.

In the presence of price protection, over-stocking at a distributor under DMI may be observed,

and it corresponds to under-stocking under VMI, yM,PP∗
t < yC∗

t < yD,PP∗
t , as indicated by Theo-

rems 3 and 4. A natural correction might be to change the economic tradeoffs faced by the decision

maker by using a risk sharing mechanism. One of the candidates is an adjustment in backlog penal-

ties.7 Specifically, we consider the manufacturer providing the distributor with a subsidy on the

expediting cost (recall that the expediting cost is paid by the distributor when shortages occur).

This shifts more shortage risk to the manufacturer and moves the order up-to levels for both DMI
7Adjustments in wholesale prices would be effective, but they can dramatically influence the revenue streams and

are more difficult to implement.
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and VMI in the desired direction: increasing the up-to levels under VMI, while decreasing the up-to

levels under DMI. The effect of this risk sharing mechanism can be evaluated for the myopic levels.

Let gD
t = ḡD

t + bt, where bt is the expediting cost per unit paid by the distributor on shortages. Let

Ωt = (1− α)(gt)− gM
t − βL+1(Ewt+L − Ewt+L+1) ∗ Φ[t,t+L](y

C∗
t )

and ωt =
Ωt

bt ∗ (1− Φt(yC∗
t ))

We have Ωt > 0, as we assumed yM,PP∗
t < yC∗

t . ωt is the desirable portion of the expediting cost

that the manufacturer should pay.

Theorem 5 Assume that for L-period price protection, yM,PP∗
t < yC∗

t < yD,PP∗
t . If ωt ≤ 1, then

coordination can be achieved under DMI and VMI through a risk sharing mechanism where the

manufacturer pays ωtbt of the expediting cost per unit.

Proof: The updated cost functions for the manufacturer under VMI and distributor under DMI

are

WM,PP,Sub(yt) = WM,PP (yt) + ωtbt(Dt − yt)+

WD,PP,Sub(yt) = WD,PP (yt)− ωtbt(Dt − yt)+

It is easy to verify that WM,PP,Sub′
t (yC∗

t ) = WD,PP,Sub′
t (yC∗

t ) = 0, which implies that the channel

is coordinated.

In practice, the myopic levels need not be optimal. Also, the decision about the level of risk

sharing (splitting of expediting costs) will not be made by a central decision maker,8 but will

either be negotiated or decided by one of the parties. We consider the extreme case when one of

the parties makes the decision. Since, in general, some division of decision rights is practiced, we

assume that the decision on the amount of risk sharing is made by the party not in control of the

ordering decision (this provides that party with some control over their cost). Specifically, under

DMI, where the distributor makes the stocking decision, we assume that the manufacturer decides

on the amount of risk sharing (subsidy on expediting cost). Note that, even though the cost is

paid by the manufacturer, under DMI the manufacturer may have an incentive to pay a portion

of the expediting costs so that inventory is reduced and price protection expenses go down (see

Section 4.1). In the case of VMI, the distributor would be given the right to decide the subsidies

on expediting costs. The subsidy will provide the distributor with extra cash, but also will raise

the stocking levels at the distributor and increase its holding costs. It is not clear by how much (if

at all), such distributed decision rights may help to improve the ordering decisions.

In the next section, we numerically evaluate the effect of switching from DMI to VMI and also

evaluate the effect of adding the above risk sharing mechanism.
8In a central decision maker setting, risk sharing leads to theoretically pleasing results, but is not practical.
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5 Computational Experiments

Our computational study is based on settings of a large computer manufacturing company. The

company’s supply chain is currently operating under DMI with six weeks of price protection, L = 6,

for the distributor. There is a three-week lead time for order replenishment which includes the time

from order placement to delivery. The production costs and sale prices decline between 0.5%-1.5%

a week on average, reflecting the presence of high technological obsolescence in the business. It

is widely known and reluctantly acknowledged that the distributors are over-stocking products

due to the presence of price protection, resulting in significant price protection expenses for the

manufacturer and reduced net profits. The manufacturer, in response, decided to explore the

possibility of moving to a VMI system, where stocking levels at the distributor are decided by

the manufacturer, possibly with negotiated up front lower and upper bounds on the distributor’s

inventory. The ownership of product is transferred to the distributor upon order delivery.

In order to clearly differentiate between the effects of each individual lever, we evaluate the two

policies, DMI and VMI. The conceptual set up is similar to that in the real setting. The numerical

values of some parameters have been changed to preserve confidentiality, but the nature and the

scale of critical economic tradeoffs is fully preserved. In our numerical experiments, one period

corresponds to 3 weeks, which is the replenishment lead time for the orders. Thus, we use a price

protection length of 2 periods to reflect the 6 week price protection period. We assume that there is

a single product for which the demand follows a Triangular distribution, similar to the assumption

made by Birge (1995), Chen (2007), Dasci and Laporte (2005), Papastavrou et al. (1996), and

many more.9 We assume that cost and price drops are stochastic and model them as a Markov

chain in which each state consists of a production cost and a wholesale price, as described below.

We assume that the manufacturer’s shortage penalty, gM
t , includes the cost due to loss of customer

goodwill and that there are no other shortage penalties, i.e, gM
t = ḡM

t . Since our parameters are

designed to reflect realistic values, we set up a base case as the most realistic scenario and then

vary one parameter at a time.

Table 1 lists the parameters we use for the base case. We assume that the demand per period has

a mean of 500 units and a coefficient of variation of 25%. Initial production cost is $80, wholesale

price is $100, and they evolve according to a Markov chain indexed by a single parameter. The

system may stay in the same state with a probability of 0.3, move to the next one (one step forward)

with a probability of 0.4, or move 2 steps forward with a probability of 0.3. Both the production

cost and the wholesale price decrease by 3%, when moving from state to state, preserving constant

margins in the base scenario (we relax this assumption later). Inventory carrying cost per unit per

period is $.5, which is equivalent to the average observed interest rate of 12% per year on ct. Since
9Also, Wikipedia, 30 October 2008, says that triangular distribution “is often used in business decision making,

particularly in simulation.”
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Parameter Base Value

Dt Triangular with mean = 500 units and c.v. = 0.25 for all t%

c0 $80

w0 $100

Cost/price drops between states 3% per period for c and w for all t

Cost/price transition probabilities pt,t = 0.3, pt,t+1 = 0.4, pt,t+2 = 0.3

ht $0.5 for all t

bt $10 for all t

gM
t $33.5 for all t

ḡD
t $16.5 for all t

Table 1: Experimental Design for Base Scenario

the loss of goodwill costs are often difficult to estimate, we used the critical ratio to set the sum

of loss of goodwill and expediting costs to result in a 95% service level for the centralized model.

The expediting cost is set to 10% of the wholesale price in period 1 to reflect realistic numbers.

The distributor often stocks products from multiple manufacturers and, thus, the cost due to loss

of goodwill from product shortages for the distributor does not to exceed that of the manufacturer.

The loss of goodwill costs are chosen such that the ratio ( ḡM
ḡD

) is equal to 2. We experiment with

three different policies:

Centralized System: as described in Section 3.1. Price protection and subsidies do not play any

part here.

DMI: as described in Section 4.1.

VMI: as described in Section 4.2.

To evaluate these policies, we run a 10-period stochastic dynamic program. The total cost is the

sum of costs for the manufacturer and the distributor. To find the “best” subsidy, we discretize

the percentage of subsidy in increments of 5%. We use the centralized system as the basis for

evaluating the other policies in terms of the expected total cost and show the percentage by which

the expected total costs of the different policies are above the expected total cost for the centralized

system. Note that any cost savings are additions to the net profit, e.g., using a gross profit margin

of 25%, these results imply that the relative effect on profit is approximately four times bigger.

The specifics of various scenarios we experimented with are discussed in the following sub-sections.
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5.1 Effect of Rate of Price Decrease

To explain the effect of different rates of price erosion, Figure 3 shows the percent cost increase of

DMI and VMI over the centralized system as a function of the average price drop per period. We

vary the price drops between 1% and 5%, between successive states, which translates to expected

price drops of 0.3%-1.7% per week, given that each period in the model corresponds to 3 weeks.

Such a range covers the realistic rates of price changes. Production costs and wholesale prices are

assumed to drop at the same rate, maintaining the 25% gross profit margin for the manufacturer.

All other parameters are set to their base values.

Figure 3: Performance of VMI and DMI under different rates of price drops.

Under DMI, we expect the order up-to levels to decrease with steeper price drops as the financial

risk due to early procurement/production increases, but price protection should increase these

levels. Indeed over-stocking takes place under DMI and, observe in Figure 3, that the gap with

the centralized system increases. The VMI ordering, on the other hand, is more sensitive to the

price changes. Since most of the cost incurred by the manufacturer is due to unnecessarily high

production costs that could be avoided, as expected, VMI results in under-stocking. The total

expected costs increase with steeper price reductions, but due to the consistency of forces between

VMI and the supply chain, VMI performs significantly better than DMI (with a lower expected

total cost) and the difference increases with a higher rate of price drops.

We also evaluated scenarios with delayed price reductions: the production cost decreases in one

period while wholesale price remains constant, and the wholesale price decreases in the next period

while the production cost remains constant. Virtually the same behavior was observed.

5.2 Effect of Penalties on Inventory Shortage and Excess

We now examine the effect of various changes in the structure of penalties.

Unit cost of expediting: In order to isolate the effect of expediting cost, we kept the sum of the

expediting cost and the loss of goodwill costs constant, and maintained the same ratio between

the manufacturer’s and distributor’s loss of goodwill costs as the base case. Thus, we measure the
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relative contribution of expediting cost to the total penalty.

Figure 4: Performance of VMI and DMI under different unit expediting costs

Increasing the expediting costs, while keeping the total shortage cost per unit constant, results

in an increase in the tendency to under-stock under VMI and over-stock under DMI and, generally,

a poor performance compared to the centralized system, see Figure 4. VMI outperforms DMI when

the cost of expediting is less than 25% of the product cost (expediting costs are usually around 10%

of product cost in practice). However, when the expediting costs are high, VMI performs worse

than DMI, understandably as the manufacturer is then bearing only a very small portion of the

total shortage cost.

Figure 5: Performance of VMI and DMI under

different ratios of goodwill costs.
Figure 6: Performance of VMI and DMI under

different holding costs at the distributor.

Ratio of goodwill: Figure 5 evaluates the effect of the ratio of goodwill of ḡM
ḡD

(a ratio of 2 being

the base case). When the ratio is high, the effect of shortages shifts from the distributor to the

manufacturer and, not surprisingly, VMI performs better in terms of the expected total cost than

DMI.

Distributor’s holding cost: For very low holding costs, the distributor is penalized neither by inven-
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tory costs nor by decreasing prices (due to price protection) and, thus, VMI can significantly help.

With higher holding cost, the inefficiencies decrease (Figure 6) and then start diverging away.

Overall, VMI proved to be the more robust compared to DMI across the broad range of pa-

rameters we have tested. Specifically, VMI clearly outperforms DMI when the price erosion is

high, the shortages penalize the manufacturer more heavily, and when the inventory carrying costs

(other than obsolescence) are low - conditions typical in the high technology industry. On the other

hand, stable prices, very high expediting costs, low shortage penalty for the manufacturer, or high

inventory holding costs reduce the benefits of VMI and can even lead to VMI under-performing

DMI.

5.3 Effect of Reducing the Length of Price Protection

In this section, we explore the effects of reducing the length of price protection. In the actual

problem that motivated this study, the length of the price protection period is 6 weeks, or L = 2.

This section evaluates the performance of the policies in a hypothetical case, if it was possible to

decrease the length of price protection period to L = 1 .

Figure 7: Performance of VMI and DMI under different rates of price drops when L = 1.

Figure 7 shows the performance of the policies under different rates of price drops. The VMI

system still outperforms DMI, although the policies perform closer to the centralized system com-

pared to L = 2 (Figure 3). This is consistent with our theoretical results that indicate that by

adjusting the length of price protection (if it were possible in practice), one could achieve, or at

least move towards, supply chain coordination.

Similarly for a range of profit margins (the margins are identical in all periods within an experi-

ment) we found that VMI continues to outperform DMI, although the difference between VMI and

DMI is reduced for higher margin. With increase in profit margin both VMI and DMI get closer

to the centralized system, but the effect is fairly slow.

Figures 8(a) and (b) evaluate a drop in cost c that is different from the drop in wholesale

cost w. In Figure 8(a) we fix the drop in ct between successive states to 3% and we vary the
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(a) The drop in wt between successive states is

set to 3%. We vary the drop in ct between

successive states.

(b) The drop in ct between successive states is

set to 3%. We vary the drop in wt between

successive states.

Figure 8: Performance of VMI and DMI when production cost and wholesale price decrease at

different rates. Length of price protection period L = 1

drop in wt between successive states. In Figure 8(b), we fix the drop in wt between successive

states to 3% and vary the drop in ct. Thus, the margins change across the periods within a given

experiment. Margins usually increase during the product launch phase, when the wholesale prices

drop at a slower pace compared to production costs and decrease during the withdrawal phase of

a product, when the wholesale prices drop faster compared to the production costs. Figures 8(a)

and (b) indicate that the superiority of VMI over DMI increases when the margins are increasing

over time. Using a VMI policy during product introductions has other advantages such as risk

pooling (outside the scope of our model) that allow manufacturers to more effectively deal with

high demand uncertainty.

5.4 Effect of Risk Sharing

In this section, we explore the benefits of risk sharing. We allow for risk sharing through subsidies

on the expediting costs, as explained in Section 4.3. Let us denote:

DMI with Subsidy: the manufacturer chooses the subsidy (given to the distributor) on expedit-

ing costs, to minimize his total cost.

VMI with Subsidy: the distributor chooses the subsidy on expediting costs (received from the

manufacturer) to minimize his total cost.

By offering the distributor a subsidy on expediting costs, the penalty on shortages is increasing

for the manufacturer and decreasing for the distributor. This counteracts the over-stocking under
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(a) Performance of VMI and DMI under

different rates of price drops in the presence of

risk sharing

(b) Performance of VMI and DMI under

different unit expediting costs in the presence

of risk sharing

Figure 9: Effect of using risk sharing on the performance of VMI and DMI

DMI and under-stocking under VMI. Figure 9(a) shows that VMI with subsidy performs very close

to the centralized system across all rates of price drops. While DMI is also improved when subsidies

are offered, the costs are higher compared to VMI with subsidy.

Since, in our setting, the size of the subsidy is limited by cost of expediting, we look at the

performance of the systems as a function of the expediting costs in Figure 9(b). While VMI with

subsidy dominates DMI with subsidy, both policies perform relatively close to centralized system.

As stated in the previous section, the expediting cost is a natural upper bound on the amount of

risk sharing. When increased, it allows for more appropriate risk sharing choices.10 VMI itself is

not effective for very high costs of expediting (distributor incurs these costs and supplier does not

attempt to sufficiently limit them.)

6 Conclusions

In this paper, we study a two-echelon non-stationary decentralized inventory model with price

protection. Price protection is designed to protect distributors against price erosion, which is

observed especially in industries with high technological obsolescence.

To the best of our knowledge, this paper is the only one that models price protection in a natural

multi-period setting, reflecting the actual time limit for price protection, which is a critical element

of currently used price-protection contracts. The pivotal element of the analysis is a reformulation

of the problem that allows us to express the multi-period price-protection credit in an expected-
10While it is theoretically possible to implement subsidies higher than the expediting costs, the manufacturer paying

more than the cost of expediting might lead to gaming behavior by the distributor.
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cost form and incorporate it into a modified myopic problem. The myopic reformulations allow us

to describe the ordering patterns of the decentralized policies as a function of the length of the

price-protection period and of technological obsolescence. We show that the total cost is convex

under DMI, which results in the optimal policy being a non-stationary base-stock policy.

We use the reformulated problem to illustrate the performance of decentralized policies in stan-

dard settings characterizing the high-technology industry. While the lack of price protection might

lead to under-stocking, we found that distributors tend to over-stock under DMI with price pro-

tection, leading to excessive costs for the manufacturer driven by unnecessarily early, and therefore

expensive, production. This is consistent with what we have observed in practice.

The length of the price protection period is shown to be a potentially effective method to coor-

dinate the supply chain. However, its use in practice is extremely limited as different products and

different suppliers would require a different length of price protection and because price protection

terms are usually difficult to change. We therefore analyzed other contractual remedies, including

VMI and risk sharing.

Our analysis of VMI benefits from the same type of myopic reformulation as used in the analysis

of DMI. The use of VMI, however, is not without drawbacks. Specifically, all VMI contracts have

the general tendency to “stuff” the channel. This tendency exists in price-protection environments

as well, but is less acute (in some situations, setting upper bounds on inventory is still necessary).

Our analysis of VMI shows that it is likely to result in under-stocking in the presence of price

protection. Subsidies on expediting costs can coordinate the supply chain under both VMI and

DMI. When choosing subsidies, to make them practical, we assign the decision right to the supply

chain entity not in control of the ordering process (rather than assuming the presence of a central

decision maker who would set them).

We numerically evaluate the performance of the policies using parameters that capture the na-

ture and the scale of critical economic tradeoffs in the computer industry. Using the centralized

system as the benchmark, we observed that VMI performs closer to the centralized system than

DMI in terms of total supply chain costs for a broad range of parameters. Also, the use of VMI

helps to reduce price protection expenses to the manufacturer. VMI is especially beneficial when

technological obsolescence is high, shortages have a higher impact on the manufacturer, inventory

carrying costs (other than technological obsolescence) are low and profit margins are low to mod-

erate. Such situations typically characterize the computer industry. This along with the benefits

of risk-pooling and better manufacturing planning makes VMI a suitable mechanism for inventory

control in the computer industry. We also found that risk sharing (in the form of subsidies on expe-

diting costs) helps both DMI and VMI, with the combination of VMI with risk sharing performing

closer to the centralized system than DMI in terms of the total supply chain costs.

In situations where there is a higher impact of shortages on the distributor than the manu-

facturer, or where the inventory carrying costs (other than obsolescence costs) are high, or where
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obsolescence is low and prices are stable VMI was no better or worse than DMI. Moreover, VMI can

lead to “channel stuffing” (although mitigated by price protection), especially in situations when

the prices are stable.

Appendix

Proof of Theorem 1 The problem is equivalent to the case of backlogging. Cost of shortage

could be re-assigned to the beginning of the following period (with the appropriate state and cost-

function redefinition, with the starting inventory in the following period yt − dt). The penalties

are the same, but the production decision is shifted to the next period. Clearly, it is optimal to

immediately satisfy the backlog. Thus, the penalty for shortage would be gt and the penalty for

over-ordering would be ct−βEct+1 +ht. For the equivalent backlogging case, standard proof shows

that the optimal policy is a non-stationary base-stock policy. The derivative of the current-period

value function w.r.t. yt is:

WSC′
t (yt) = −gt + [gt + ht + (ct − βEct+1)]Φt(yt)

and the myopic up-to level can then be obtained as (1) by setting WSC′
t (yt) to zero. (1) is solution

to Newsvendor problem with cost of underage cu = gt and the cost of overage, co, composed of

holding inventory ht as well as decrease in value due to cost decreases and discounting, ct − βct+1.
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