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Abstract

Acoustic sensor networks can be used for localization of an acoustic-energy emitting source. While
maximum-likelihood (ML) methods are widely used for estimating the pattern of motion, more advanced
machine learning schemes should be employed for improving the accuracy of localization. In this paper,
we develop a learning Bayesian tracking algorithm that is capable of reconstructing the target transition
model using passive wireless acoustic sensors. The adaptive scheme is intended to track targets that exhibit
a complex motion pattern that cannot be adequately modeled prior to the implementation of the filtering
algorithm. The derivation of the algorithm begins by modeling the likelihood assuming perfect knowledge
of the sensors locations. Since this assumption is inadequate when the number of sensors is large, it is
further relaxed by resorting to a probabilistic representation of the underlined locations. A Markov random
field (MRF) model facilitates the implementation of an optimization method for estimating the unknown
sensor locations. The convergence of this method is proven using the Kullback-Leibler divergence measure.
Modeling the source path as a stochastic process yields a Bayesian localization filter. The filtering algorithm
is rendered adaptive by incorporating a novel motion pattern recognition procedure based on the Baum-
Welch (BW) algorithm, implemented when the target dynamicsis inadequately modeled or completely
unknown. Simulations show that the the tracking accuracy ofthe new adaptive algorithm outperforms the
conventional ML scheme.

Index Terms

Sensor Network, Maximum Likelihood, Baum-Welch Algorithm, Expectation Maximization, Acoustic
Energy.
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I. I NTRODUCTION

Wireless sensor networks (WSN) are distributed systems composed of static and/or dynamic devices
that are capable of monitoring the environment and transmitting the gathered data using transceivers. WSN
can be used for a variety of applications, such as wide-area surveillance, underwater acoustics, oil-field
monitoring, geophysics and seismic monitoring [1], [2].

The design and analysis of WSN have two aspects: The micro aspect, that deals with the architecture
of a single sensor, including the transceiver, battery, sensing device, microprocessor and logic; and the
macro aspect, that deals with the the data collection and fusion processes, aimed at transforming a number
of inter-communicating, cooperative sensors into a singlevirtual sensor. The current work focuses on the
latter aspect.

The gathering of data using WSN can be performed using a variety of sensors. These include optical
sensors, temperature and pressure sensors, and acoustic sensors. Since sensor networks are characterized
by limited battery power, limited communication bandwidthand limited processing power, efficient coop-
erative signal processing methods must be developed. Acoustic sensors (microphones) are simple devices
that constitute a potentially promising method for creating a virtual sensor that consumes very little power
while requiring minimal communication bandwidth [3]. However, designing an accurate source localization
algorithm using acoustic sensors is challenging, because of the limited sensing range of each microphone
and the noisy nature of the source signature. In addition, sensor locations are often uncertain to some
degree; thus, trilateration or time-difference-of-arrival methods, used for relative sensor localization, must
be upgraded to account for this uncertainty.

WSN were employed for source localization in [3]–[5] using maximum likelihood (ML)-based op-
timization schemes. These methods, however, are intended for localizing a stationary source and may
perform poorly in the case of moving targets owing to inefficient modeling of time correlations induced
by the motion.

Bayesian target tracking and detection methods based on WSNobservations were proposed in [6]–[10].
With no exception, all the algorithms presented by these works belong to the class of sequential Monte
Carlo methods also known as particle filters (PFs). In particular, decentralized computation schemes were
derived for improving the estimation performance and for reducing the computational burden. Particle
filtering methods are well-known for their performance, flexibility and ease of implementation in a wide
range of applications. These Bayesian methods solve for theoptimal probability density function (pdf)
of inherently nonlinear, non-Gaussian systems, which in turn makes them appealing in the WSN context.
Thus, an energy-based source localization PF was derived in[6]. This algorithm assumes a simple linear
transition model of the moving target while an approximation procedure is used to obtain the origin source
energy. The decentralized particle filtering algorithms proposed in [7], [9], [10] exploit the sensor network’s
architecture for reducing computational load. These PFs tend to spread the associated computations over
the network, thereby allowing parallel processing. In addition, much effort is devoted for reducing the
computational load over sensor cliques [9].

In another work [11], a multi-target tracking scheme is derived based on a hidden Markov model
(HMM) representation of the moving source dynamics. Following this, Viterbi decoding is employed for
searching the most likely target states.

In this paper, we develop an adaptive Bayesian localizationfilter that uses passive wireless acoustic
sensor readings for tracking a moving energy source of whichthe transition model is inaccurate or
completely unknown. The derivation of the algorithm beginsby modeling the likelihood pdf, which forms
the core of the conventional ML methods, and proceeds with the development of the adaptive filtering
method.

The energy source attenuation model is used for constructing an approximate likelihood function relating
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the noisy sensors’ readings and the source location. Firstly, the derivation of the likelihood pdf assumes
perfect knowledge of the sensors locations. Since this assumption is inadequate when the number of
sensors is large, it is relaxed by resorting to a probabilistic representation of the locations. Following
this approach, it is assumed that every sensor communicateswith its nearest neighbors, providing them
with a relative distance information. We subsequently use aMarkov random field (MRF) to model the
network’s communication topology, which in turn facilitates the derivation of an expectation maximization
(EM) scheme for estimating the unknown sensor locations. Weprove the convergence of this optimization
method using the Kullback-Leibler [12] divergence measure.

The second part of this work is devoted to the derivation of anadaptive Bayesian filtering algorithm
that is capable of tracking a moving source of which the Markovian transition model is inaccurate or
completely unknown. Thus, a motion recognition procedure is incorporated into the plain localization
filter, thereby providing it with an online adaptive tracking capability. The resulting scheme yields the
energy source location as well as an estimated transition probability kernel.

The source motion pattern is estimated using the Baum-Welch(BW) algorithm [13]. The BW procedure
is an iterative batch algorithm aimed at estimating the parameters of a HMM. In particular, it is aimed at
yielding the transition, emission and initial probabilities associated with the HMM and the corresponding
observed data. Using the BW procedure, the estimated quantities are computed in an iterative manner
using an analytic recipe (assuming Gaussian emission probabilities). This algorithm turns out to be very
efficient when the HMM is specified by a large number of parameters (i.e., many transition states), thereby
allowing adequate representation of complex learning models.

The main contributions of this work are therefore

1) Development of a learning Bayesian tracking algorithm capable of reconstructing the target unknown
transition model. As opposed to other Bayesian algorithms,the method developed herein assumes no
knowledge of the Markovian transition model describing theenergy source movement. This adaptive
scheme is intended to track targets that exhibit a complex motion pattern that cannot be adequately
modeled prior to the implementation of the filtering algorithm. Motion learning is facilitated by the
using a novel pattern recognition algorithm based on the BW mechanism. To the best of the authors’
knowledge, this is the first application of the BW learning scheme for acoustic pattern recognition
in the sensor networks field. It is shown in this work that the BW-based learning outperforms the
conventional ML schemes.

2) Design of an iterative optimization procedure for localizing sensors with unknown initial locations
over the entire network. The derived method is essentially an EM procedure aimed at maximizing a
network auxiliary function. The convergence of the proposed method is proved using the Kullback-
Leibler divergence measure.

This paper is organized as follows. The next section derivesa likelihood pdf based on the energy
source attenuation model. As part of this, a likelihood model that accounts for uncertainties in sensor
locations is obtained. An optimization method for localizing sensors in large networks is then described.
The Bayesian localization filter and its grid-based implementation are given in Section III following by a
detailed derivation of the BW procedure and its implementation for motion estimation. Section V presents
a numerical study in which the adaptive filtering algorithm is compared against the conventional ML
scheme. Conclusions are given in the last section.
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II. M AXIMUM -L IKELIHOOD-BASED SOURCE LOCALIZATION

In this section we present a maximum likelihood approach forsolving the source localization problem.
We obtain a likelihood expression relating the measurements and the energy source position while assuming
that the sensor locations are known. This assumption is relaxed based on two approaches that utilize the
network structure for communicating distance informationbetween nodes.

Throughout this work, the following notational conventions are used. Random variables and their
realizations are denoted by lower- and upper-case letters,respectively. If the random variable is denoted
by a Greek letter, its corresponding realization is denotedby a different Greek letter.

A. Observation Model

Let {θi}M
i=1, θi ∈ R

2 be a coordinate set ofM acoustic sensors comprising a network,T = {1, . . . , M}.
Let alsoXk ∈ R

2 be the location of some acoustic source (energy source) at time k. The energy emitted
at the source decays approximately proportionally to the square of the distance from theith sensor’s. This
allows formulating a basic measurement equation that relates theith sensor’s reading with the source
energy,Sk, that is [4],

yi
k = gi

Sk

‖ θi − Xk ‖α
+ ni (1)

where yi
k, ni and gi ∈ R denote theith sensor’s reading, measurement noise random variable, and

a proportionality constant, respectively. The value of theenergy decay factor,α, is roughly 2.08 [4].
Furthermore, it is assumed thatni, i = 1, . . . , M are statistically independent with some known probability
density function (pdf)ni ∼ pni .

The basic measurement model in Eq. (1) assumes the knowledgeof the source energy,Sk. This
assumption is relaxed by combining two distinct sensor readings,yi

k andyj
k, to yield

yi
k =

gi

gj

(

‖ θj − Xk ‖

‖ θi − Xk ‖

)α

yj
k + vi,j (2)

where

vi,j = ni −
gi

gj

(

‖ θj − Xk ‖

‖ θi − Xk ‖

)α

nj (3)

is the effective measurement noise. Notice that the measurement model thus derived renders the sensor
readings statistically dependent. Moreover, this dependency is strongly affected by the distance between
the sensor locations.

In what follows we derive two approximate likelihood expressions based on the model in Eq. (2)
assuming either known or uncertain sensor locations. The obtained relations facilitate the application of
an ML-based localization algorithm.

B. Approximate Likelihood Derivation

The model in Eq. (2) implies

pyi
k
|Xk,yj

k

(Y i
k | Xk, Y j

k ) = pvi,j

(

Y i
k −

gi

gj

(

‖ θj − Xk ‖

‖ θi − Xk ‖

)α

Y j
k

)

(4)

where the sensors locations act as parameters in Eq. (4). At this point it is assumed that any statistical
dependency manifested by the effective measurement noise random variables{vi,j | i 6= j} is negligible.
That in turn allows deriving a simplified expression for the likelihood of the source location given the
complete measurement set.
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Denote byZk = {yi
k}

M
i=1 andZk = {Y i

k}
M
i=1 the set of all sensors measurements and its realization at

time k, respectively. Assuming that the virtual edges{{Y i
k , Y j

k } | i, j ∈ T } form a tree with rootl ∈ T ,
the likelihood ofXk given Zk is

pZk|Xk
(Zk | Xk) = pyl

k
|Xk

(Y l
k | Xk)

∏

i,j∈T

pyi
k
|Xk,yj

k

(Y i
k | Xk, Y j

k ) (5)

WhenM is sufficiently large, the contribution of the root termpyl
k
|Xk

in Eq. (5) is negligible. Following
this, Eqs. (5) and (4) yield

pZk|Xk
(Zk | Xk) ≈

∏

i,j∈T

pvi,j

(

Y i
k −

gi

gj

(

‖ θj − Xk ‖

‖ θi − Xk ‖

)α

Y j
k

)

(6)

where the pdf ofvi,j is obtained using the convolution operator, as

pvi,j (V i,j) =

∫ +∞

−∞

pni

(

V i,j +
gi

gj

(

‖ θj − Xk ‖

‖ θi − Xk ‖

)α

N j

)

pnj

(

gj

gi

(

‖ θi − Xk ‖

‖ θj − Xk ‖

)α

N j

)

dN j (7)

C. Uncertainty in Sensors Locations

The derivation of the preceding likelihood pdf assumes perfect knowledge of the sensors locations
{θi}M

i=1. This underlying assumption is inadequate when the number of sensors is prominently large.
In such cases, resorting to a probabilistic representationof the locations provides a promising solution.
Following this approach, every sensor communicates with its nearest neighbors, providing them with
relative distance information. It can be verified that within a sensor network consisting of at least 3
sensors whose locations are known, the ambiguity in determining the locations of the rest of the members
can be resolved (see Fig. 1 and [14]).

Denoting bydi,j the relative distance between two neighboring sensors yields

‖ ϑi − ϑj ‖= di,j + wi,j (8)

where{ϑi}M
i=1 and wi,j denote the sensors locations random vectors (as opposed to the deterministic

locations{θi}M
i=1) and the relative measurement noise, respectively. Eq. (8)allows formulating the pdf

pϑi|ϑj in terms of the (known) pdf ofwi,j , that is

pϑi|ϑj (θi | θj) = pwi,j

(

‖ θi − θj ‖ −di,j
)

(9)

Further assuming that{wi,j | i 6= j} are statistically independent allows writing the joint pdfof all sensor
locations as a pairwise Markovian network{i, j} ∈ T

pϑM ,ϑM−1...,ϑ1(θM , θM−1, . . . , θ1) =
∏

i,j∈T

pϑi|ϑj (θi | θj) (10)

wherepϑi|ϑj act as the clique potentials. As mentioned above, the knowledge of{θj}3
j=1 provides sufficient

information for determining the rest of the sensors locations in the network. Considering the uncertainty
introduced by the relative measurement noise, it can be deduced that in this case having at least 3 perfectly
known locations renders the joint pdf in Eq. (10) sharply peaked 1.

1Assuming sufficiently low intensity noisewi,j .
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Fig. 1. The 4th sensor locationθi is determined based on the locations of the other 3 sensorsθ1, θ2 andθ3.

The likelihood pdf in Eq. (5) can now be modified to account forsensor locations uncertainty. Thus,

pZk|Xk
(Zk | Xk) =
∫ +∞

−∞

· · ·

∫ +∞

−∞

pZk,ϑM ,ϑM−1,...,ϑ4|Xk
(Zk, θM , θM−1, . . . , θ4 | Xk)dθMdθM−1 · · · dθ4

≈

∫ +∞

−∞

· · ·

∫ +∞

−∞

∏

i,j∈T

pyi
k
|Xk,yj

k
,ϑi,ϑj (Y

i
k | Xk, Y j

k , θi, θj)×

∏

i,j∈T

pϑi|ϑj (θi | θj)dθMdθM−1 · · ·dθ4

≈

∫ +∞

−∞

· · ·

∫ +∞

−∞

∏

i,j∈T

pvi,j

(

Y i
k −

gi

gj

(

‖ θj − Xk ‖

‖ θi − Xk ‖

)α

Y j
k

)

×

∏

i,j∈T

pϑi|ϑj (θi | θj)dθMdθM−1 · · · dθ4 (11)

where the known locations{θj}3
j=1 act as parameters ofpZk|Xk

(Zk | Xk).
The likelihood expression in Eq. (11) relies on the potentials pϑi|ϑj , which form the network’s com-

munication topology. This formulation implicitly assumesthat each node transmits its estimated location
computed based on the position of its neighbors. In this setting, the transmitted signals carry the nodes’
location (and possibly other classification parameters), so that the signals traveling time is proportional to
the relative distance. The network’s root consists of the fixed nodes of which the locations are perfectly
known.
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The above method suffers from the following shortcomings. Firstly, the likelihood in Eq. (11) may
become computationally excessive as the number of sensors increases owing to the marginalization ofθi

over the entire network. Secondly, the energy consumption of individual nodes and thereby of the overall
network may be intensive due to transmission of multiple identification messages consisting of the nodes’
location and labeling information.

In light of the above, we suggest an alternative approach based on a rather different communication
topology for estimating the unknown sensor locations.

D. Expectation Maximization for the Sensor Network

In this section we derive an efficient EM optimization procedure for localizing sensors withinT .
The technique described herein assumes a unique structure of the sensor network, which alleviates the
previously-mentioned drawbacks.

Network’s Communication Topology: Suppose that the sensor networkT consist of three types of
nodes: 1) Passive (or unlabeled) nodes. These nodes do not transmit any information (i.e., location and
labeling) but rather reflect the transmitted signals from other nodes. It is assumed that the location of
the passive nodes are perfectly known. 2) Observed nodes. These nodes have their transmitted signals
reflected by the passive nodes. In other words, the observed nodes acquire relative distance measurements
with respect to the unlabeled sources (i.e., the passive nodes). 3) Unobserved nodes. These nodes do not
share a direct communication link with the passive nodes.

Now, let θ = {θi}i∈T denote the collection of all observed and unobserved node locations. Let also
{m ∈ T } be the subset of observed nodes of which a likelihood function pym|ϑm,w is specified, where
ym and w denote the measurement acquired bym and its passive node (unknown) labeling parameter,
respectively. In this context,w is a nuisance variable used to associate measurements with their origin
(passive) nodes. We further assume that each measurementym is a set of relative distances computed based
on reflected signals fromL distinct passive nodes (see Fig. 2). The labeling parameters {w1, . . . , wL} ∈ w
associated withym satisfyqw(W ) =

∏L
t=1

qwt
(Wt), whereqwt

(Wt) denotes the class probability ofwt,
that is, qwi

(j) represents the probability of theith signal to be reflected by thejth passive node (see
Fig. 2). In order to illustrate this construction, considera case in which the relative distance measured by
m with respect to theith passive node satisfy

dm
i =‖ θm − θp

i ‖ +rm (12)

whereθp
i denotes theith passive node (known) location andrm ∼ prm is the measurement noise. Further

assuming there are exactlynp passive nodes, yields

pym|ϑm,w(Y m | θm, W ) =

L
∏

j=1

np
∑

i=1

prm (dm
i − ‖ θm − θp

i ‖) δ(Wj − i) (13)

whereδ(·) denotes the Dirac delta measure.
Following the above and assuming, as before, that the cliques are restricted to pair of nodes that are

directly linked (see Eq. (9)), the networkT can be represented via a pairwise Markov random field (MRF)
model

pϑ|y,w(θ | Y, W ) = c(Y, W )−1
∏

i,j∈T

pϑi|ϑj (θi | θj)
∏

m∈T

pym|ϑm,w(Y m | θm, W ) (14)

wherey = {ym}m∈T denotes the entire measurement set andpϑi|ϑj , {i, j ∈ T } are the clique potentials.

The network MRF model in Eq. (14) facilitates the derivationof an iterative optimization scheme for
maximizingpϑ|y(θ | Y ). This method is detailed below.
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(a) A packet ofL = 3 reflected signals from the passive nodes
c, d ande forms the unlabeled measurement setym.

(b) Communication topology

Fig. 2. An example of sensor network communication topology. Showing the passive nodesa, b, c, d, e andf , the observed nodes
(bold circles) and the unobserved nodes (empty circles). Inthis network each measurementym is constructed based onL = 3
reflected signals.

Network Auxiliary Function: Let us define an auxiliary function over the networkT

F (qw, θ, Y ) =

∫

qw(W ) log

∏

i,j∈T pϑi|ϑj (θi | θj)
∏

m∈T pym|ϑm,w(Y m | θm, W )

qw(W )
dW (15)

Proposition 1: Using the above, the following iteration forT :

qn+1
w = arg max

qw

F (qn
w, θn, Y ) (16a)

θn+1 = arg max
θ

F (qn+1
w , θn, Y ) (16b)

constitutes an EM recursion that converges to a local maximum of pϑ|y(θ | Y ).
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Proof: Defining w/wk = {wi | wi ∈ w, i 6= k} yields

F (qw, θ, Y ) =

∫

qw/wk
(W/Wk)qwk

(Wk) log

[

pϑ|y,w(θ | Y, W )

qw/wk
(W/Wk)qwk

(Wk)

]

dWkd(W/Wk)

=

∫

qw/wk
(W/Wk)qwk

(Wk) log

[

pϑ|y,w(θ | Y, W )

qwk
(Wk)

]

dWkd(W/Wk)

−

∫

qw/wk
(W/Wk) log qw/wk

(W/Wk)d(W/Wk)

=

∫

qw/wk
(W/Wk)qwk

(Wk) log

[

∑

i,j∈T

log pϑi|ϑj (θi | θj) +
∑

m∈T

log pym|ϑm,w(Y m | θm, W )

− log qwk
(Wk)

]

dWkd(W/Wk) −

∫

qw|wk
(W/Wk) log qw/wk

(W/Wk)d(W/Wk)

=
∑

i,j∈T

log pϑi|ϑj (θi | θj)

+

∫

qwk
(Wk)

[

∑

m∈T

∫

qw/wk
(W/Wk) log pym|ϑm,w(Y m | θm, W )d(W/Wk)

]

dWk

−

∫

qwk
(Wk) log qwk

(Wk)dWk −

∫

qw/wk
(W/WK) log qw/wk

(W/WK)d(W/Wk)

=
∑

i,j∈T

log pϑi|ϑj(θi | θj) +

∫

qwk
(Wk) log

p̄(Y | θ, Wk)

qwk
(Wk)

dWk

−

∫

qw/wk
(W/Wk) log qw/wk

(W/Wk)d(W/Wk) (17)

where
log p̄(Y | θ, Wk) =

∑

m∈T

∫

qw/wk
(W/Wk) log pym|ϑm,w(Y m | θm, W )d(W/Wk) (18)

Now, letting
g(Wk | Y, θ) = b(Y, θ)−1p̄(Y | θ, Wk) (19)

where
b(Y, θ) =

∫

p̄(Y | θ, Wk)dWk (20)

yields

F (qw, θ, Y ) =
∑

i,j∈T

log pϑi|ϑj (θi | θj) − KL (qwk
(Wk) ‖ g(Wk | Y, θ))

+ log b(Y, θ) −

∫

qw/wk
(W/Wk) log qw/wk

(W/Wk)d(W/Wk) (21)
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whereKL denotes the Kullback-Leibler distance.2 From the above it easily follows that

qn+1
wk

(Wk) = g(Wk | Y, θ) =
p̄(Y | θ, Wk)

∫

p̄(Y | θ, Wk)dWk
(22)

which constitutes an E-step (see Eq. (18)). Notice that the optimal class probabilitiesqn+1
wk

are exclusively
evaluated over the observed nodes{m ∈ T }. The new estimateqn+1

w =
∏L

t=1
qn+1
wt

is then used in the
M-step for obtainingθn+1 which follows from Eq. (16b).

The EM recursion in Proposition 1 can be used to obtain estimates ofθ over the entire network based
on the knowledge of the passive nodes fixed locations and of the datay.

E. Maximum Likelihood Estimate

The energy source location can be now obtained as the ML estimate based on either approximate
likelihood pdfs derived in Eqs. (6) (assuming the sensor locations are perfectly known or estimated using
Proposition 1) and (11). At every time step the ML estimate isgiven as

X̂ML
k = argmax

X
pZk|Xk

(Zk | X) (23)

The likelihood map ofpZk|Xk
for various sensor networks is illustrated in Fig. 3 over a20 m2 region.

The role of the amount of nodes used in the network is perfectly demonstrated as the likelihood pdf
becomes sharply peaked owing to an increasing number of sensors.

In practice, the ML estimate can be obtained using either parametric or non-parametric optimization
methods. An extensive survey of parametric methods for solving Eq. (23) is given in [4]. In the simulation
section of this work the likelihoodpZk|xk

is computed over a discrete grid for obtaininĝXML
k .

2The Kullback-Leibler distance [12] is a most frequently used information-theoretic “distance” measure. Ifp0, p1 are two
probability densities, the Kullback- Leibler distance is defined to be

KL(p1 ‖ p0) =

∫

p1(x) log
p1(x)

p0(x)
dx
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(a) 10 Sensors (b) 20 Sensors
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Fig. 3. Likelihood pdfs and their corresponding level curves of 10 and 20 sensor networks. The actual target location is cross
marked in the level curves figures.
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III. B AYESIAN TRACKING USING THE SENSORNETWORK

The ML localization method performs poorly when applied fortracking a dynamic energy source.
This is manifested by a rather noisy behavior of the algorithm owing to inefficient modeling of time
correlations. In that case, improved tracking performanceis achieved by implementing a filtering scheme
that assumes a probabilistic transition model of the targetmotion.

Considering the energy source path to be a stochastic process leads to a Bayesian formulation of
the localization filter. Let{xk}

∞
k=0 be a random process representing the energy source trajectory with

some initial pdfpx0
(X0). Assuming that the motion is characterized by a Markovian transition kernel

pxk|xk−1
(Xk | Xk−1) facilitates the implementation of the conventional Bayesian filtering recursion, that

is [15], [16]

pxk|Z k−1(Xk | Zk−1) =

∫ +∞

−∞

pxk|xk−1
(Xk | Xk−1)pxk−1|Z k−1(Xk−1 | Zk−1)dXk−1 (24a)

pxk|Z k(Xk | Zk) =
pZk|xk

(Zk | Xk)pxk|Z k−1(Xk | Zk−1)
∫ +∞

−∞ pZk|xk
(Zk | Xk)pxk|Z k−1(Xk | Zk−1)dXk

(24b)

where Z k = {Z1, . . . , Zk} and Zk = {Z1, . . . , Zk} denote the measurements time history and its
realization up to timek, respectively.

A. Exact Grid-Based Filter

When the energy source location can take a finite number of states it is convenient to implement a grid-
based filter for numerically solving Eqs. (24) [17]. In such cases, the obtained solution is an exact one.
In other cases, this approach can be implemented for approximating the Bayesian solution of continuous
state space models.

Having a discrete sample space, the pdfs constituting the Bayesian recursion in Eqs. (24) are replaced
by probability mass functions (pmf) [18]. Thus, an equivalent discrete version of this recursion is given
by

fxk|Z k−1(Xk | Zk−1) =
∑

Xk−1∈Xk−1

fxk|xk−1
(Xk | Xk−1)fxk−1|Z k−1(Xk−1 | Zk−1) (25a)

fxk|Z k(Xk | Zk) =
fZk|xk

(Zk | Xk)fxk|Z k−1(Xk | Zk−1)
∑

Xk∈Xk
fZk|xk

(Zk | Xk)fxk|Z k−1(Xk | Zk−1)
(25b)

where the pmf is defined asfa|b(A | B) = Pr(a = A | b = B) andXk−1 denotes the set of all possible
outcomes ofxk−1. Recalling that

fZk|xk
(Zk | Xk) = pZk|xk

(Zk | Xk)dµ (26)

for someσ-finite measureµ, the pmffZk|xk
(Zk | Xk) can be replaced by the conventional likelihood pdf

pZk|xk
(Zk | Xk) (which was previously derived) in Eq. (25b). The minimum mean square error (MMSE)

estimate ofxk is then obtained as

X̂MMSE
k =

∑

Xk∈Xk−1

Xkfxk|Z k(Xk | Zk) (27)



14

IV. M OTION PATTERN RECOGNITION

This part of the work is concerned with the implementation ofthe Bayesian tracking filter of the
preceding section in cases where the energy source motion model is inaccurate or completely unknown.
In such situations the sensor network can be further utilized for reconstructing the motion pattern using
the Baum-Welch algorithm [13].

The motion pattern recognition procedure derived herein isincorporated into the Bayesian filter, thus
providing it with an online adaptive tracking capability. The resulting scheme yields the energy source
location as well as an estimated transition probability kernel f̂xk|xk−1

(Xk | Xk−1).

A. Transition Model

For simplicity and mathematical tractability, the following assumptions are made: 1) the energy source
motion model can be described via a homogeneous Markov chain, and 2) the finite set of possible
movements is independent of the location. The former assumption allows the proposed learning algorithm
to infer the motion pattern by processing observations gained over a time interval whereas the latter allows
significant reduction of the search space (i.e. of possible movements).

Let Ω be the set ofNs possible movements of the energy source independently of its location. This
set is constructed out of subsets of an optional movement label (name) and a specific associated action.
In this work, the following set which describesNs = 9 possible movements is considered

Ω =







{’Left-Up’ , [−1, +1]T}, {’Up’ , [0, +1]T}, {’Right-Up’, [+1, +1]T},
{’Left’ , [−1, 0]T}, {’Stay’, [0, 0]T}, {’Right’ , [+1, 0]T},

{’Left-Down’, [−1,−1]T}, {’Down’, [0,−1]T}, {’Right-Down’, [+1,−1]T}







(28)

The actions associated with each movement are described by avector whose elements are the number of
steps along each axis. Because the movement is independent of the location, the transition kernel in this
case is given as

fxk|xk−1
(Xk | Xk−1) = Pr(uk = Xk − Xk−1) (29)

where the possible outcomes of the random variableuk are the actions contained in the setΩ. The
transition model associated withΩ is further illustrated in Fig. 4.

B. Likelihood Derivation

The derivation of the likelihood associated with each action uk yields two expressions for two different
purposes. The first likelihood expression takes into account the immediate past of the measurements
which in turn renders the motion learning algorithm independent of the Bayesian filter outcome (i.e., the
posterior pmf). This allows the motion reconstruction procedure to be executed prior to the application
of the tracking filter and therefore it is most suitable for initialization purposes. The second likelihood
expression, however, takes into account the measurements time history and is adequate for online motion
estimation.

Recognizing that givenUk

fZk|xk
(Zk | Xk) = fZk|xk

(Zk | Xk−1 + Uk) = fZk|xk−1,uk
(Zk | Xk−1, Uk) (30)
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Fig. 4. The Markovian motion model. Showing the 9 possible actions (bold arrows) at locationXk. The empty circles represent
all possible locations at time stepk + 1.

the first likelihood expression is obtained by merging two consecutive measurementsZk and Zk−1 to
yield

fZk,Zk−1|uk
(Zk, Zk−1 | Uk) =

∑

Xk−1∈Xk−1

fZk,Zk−1,xk−1|uk
(Zk, Zk−1, Xk−1 | Uk)

=
∑

Xk−1∈Xk−1

fZk|xk−1,uk
(Zk | Xk−1, Uk)fZk−1|xk−1

(Zk−1 | Xk−1)fxk−1
(Xk−1)

=
∑

Xk−1∈Xk−1

fZk|xk
(Zk | Xk−1 + Uk)fZk−1|xk−1

(Zk−1 | Xk−1)fxk−1
(Xk−1) (31)

where the priorfxk−1
(Xk−1) is assumed to be a uniform pmf (since the transition kernel isunknown).
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The expression of the second likelihood function is derivedas follows

fZ k|uk
(Zk | Uk) = fZk,Zk−1|uk,Z k−2(Zk, Zk−1 | Uk, Zk−2)fZ k−2(Zk−2)

∝ fZk,Zk−1|uk,Z k−2(Zk, Zk−1 | Uk, Zk−2)

=
∑

Xk−1∈Xk−1

fZk,Zk−1,xk−1|uk,Z k−2(Zk, Zk−1, Xk−1 | Uk, Zk−2)

=
∑

Xk−1∈Xk−1

fZk|xk−1,uk
(Zk | Xk−1, Uk)fZk−1|xk−1

(Zk−1 | Xk−1)fxk−1|Z k−2(Xk−1 | Zk−2)

=
∑

Xk−1∈Xk−1

fZk|xk
(Zk | Xk−1 + Uk)fZk−1|xk−1

(Zk−1 | Xk−1)fxk−1|Z k−2(Xk−1 | Zk−2) (32)

Observing Eqs. (31) and (32), it can be recognized that the prior pmf term in Eq. (31) is replaced by the
propagated pmffxk−1|Z k−2(Xk−1 | Zk−2) computed by the Bayesian filter.

C. Motion Pattern Reconstruction Using the Baum-Welch Algorithm

The transition kernel in Eq. (29) is estimated using the BW algorithm. The BW is an iterative batch
algorithm aimed at estimating the parameters of a HMM. In particular, it is aimed at yielding the transition,
emission and initial probabilities associated with the HMMand the corresponding observed data. Using
the BW procedure, the estimated quantities are computed in an iterative manner using an analytic recipe
(assuming Gaussian emission probabilities). This algorithm turns out to be extremely efficient when the
HMM is specified by a large number of parameters (i.e., consisting of many transition states), thereby
allowing adequate representation of complex learning models.

In this work it is assumed that the sensors noise pdfs are perfectly known, therefore the BW algorithm
is applied for the estimation offxk|xk−1

(Xk | Xk−1) exclusively. The derivation proceeds as follows. Let
Gk = {Zk, Zk−1} andGk = {Zk, Zk−1}. Let also{Gl}

Nm

l=1
and{Gl}

Nm

l=1
be a measurement batch and its

realization, respectively. The transition between two actions uk−1 anduk is described by the stochastic
matrix

A = {ai,j} ∈ R
Ns×Ns , ai,j = Pr(uk = Ω(j) | uk−1 = Ω(i)) (33)

where Ω(i) denotes theith action in the set of all possible movementsΩ. The first-order Markovian
transition model,fxk|xk−1

(Xk | Xk−1), implies that the actions{ui}
k
i=1 performed at every time step are

all independent. Therefore,

Pr(uk = Ω(j) | uk−1 = Ω(i)) = Pr(uk = Ω(j)) (34)

Eqs. (33) and (34) imply

Pr(uk = Ω(j)) =
1

Ns

Ns
∑

i=1

ai,j (35)

From Eqs. (29) and (35) it follows that

fxk|xk−1
(Xk | Xk−1) =

1

Ns

Ns
∑

j=1

Ns
∑

i=1

ai,jδ(Ω(j), Xk − Xk−1) (36)

where δ(i, j) denotes the Kronecker delta. Eq. (36) implies that the stochastic matrix A completely
specifies the transition kernel of the moving source. In whatfollows, a single BW iteration, aimed at
estimating the elements ofA, is described.
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The Baum-Welch Iteration: The so-called forward and backward probabilities, denotedby βF
i (l) and

βB
i (l), are defined for everyi = 1, . . . , Ns and l = 1, . . . , Nm, as

βF
i (l) = Pr(G1 = G1, . . . , Gl = Gl, ul = Ω(i)) (37a)

βB
i (l) = Pr(Gl+1 = Gl+1, . . . , GNm

= GNm
| ul = Ω(i)) (37b)

These probabilities are computed recursively assuming theknowledge ofÂ, the previous-time estimate
of the transition matrix. Thus,

βF
i (l + 1) = L (Gl+1, Ω(i))

Ns
∑

j=1

âj,iβ
F
j (l) (38a)

βB
i (l) =

Ns
∑

j=1

âi,jL (Gl+1, Ω(j))βB
j (l + 1) (38b)

where

βF
i (1) =

1

Ns

Ns
∑

j=1

âj,iL (G1, Ω(i)), βB
i (Nm) = 1 (39)

andL (Gl, Ω(i)) is either one of the likelihoods in Eqs. (31) and (32)3. Now, it can be verified that

γi(l) = Pr(ul = Ω(i) | {Gt = Gt}
Nm

t=1) =
βF

i (l)βB
i (l)

∑Ns

j=1
βF

j (l)βB
j (l)

(40a)

ξi,j(l) = Pr(ul = Ω(i), ul+1 = Ω(j) | {Gt = Gt}
Nm

t=1)

=
βF

i (l)βB
j (l + 1)âi,jL (Gl+1, Ω(j))

∑Ns

r=1

∑Ns

t=1
βF

r (l)βB
t (l + 1)âr,tL (Gl+1, Ω(t))

(40b)

Recalling the definition ofai,j , the following re-estimation formula is obtained using Eqs. (40)

âi,j =

∑Nm−1

l=1
ξi,j(l)

∑Nm−1

l=1
γi(l)

(41)

This estimate is then used in the next time step carried out following Eqs. (38) - (41).
Following the algorithm’s convergence, Eqs. (36) and (41) are used to yield the energy source estimated

transition kernel, that is

f̂xk|xk−1
(Xk | Xk−1) =

1

Ns

Ns
∑

j=1

Ns
∑

i=1

âi,jδ(Ω(j), Xk − Xk−1)

=
1

Ns

Ns
∑

j=1

Ns
∑

i=1

∑Nm−1

l=1
ξi,j(l)

∑Nm−1

l=1
γi(l)

δ(Ω(j), Xk − Xk−1) (42)

3For instance, if the likelihood in Eq. (31) is used thenL (Gl,Ω(i)) = fZl,Zl−1|ul
(Zl, Zl−1 | Ω(i)).
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Practical Implementation: The BW algorithm is a special case of the EM algorithm. As suchits
convergence is sensitive to initial conditions. For that reason it is suggested that the estimated quantities
obtained using this algorithm will be averaged upon severalruns. Following this approach, the stochastic
matrix Â used for reconstructing the transition kernel in Eq. (42) isreplaced byÂ∗ = 1

NB

∑NB

i=1
Â(i),

whereÂ(i) denotes theith outcome of the BW algorithm applied to a single measurement batch realization
out of as many asNB such realizations.
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V. NUMERICAL STUDY

The tracking algorithms derived in the preceding sections are tested numerically using a network
consisting of 50 acoustic sensors. The sensors are spread uniformly in a 20×2 meters region. The noise
associated with each sensor is modeled by a zero-mean Gaussian random variable with standard deviation
of 10−3.

The energy source movement is modeled by a Markov chain bounded in a 20×20 meters region. The
probabilities associated with the various actions/movements are set arbitrarily as

Pr(Action) =























































Action = ’Up-Left’, 0.05
Action = ’Up’, 0.1
Action = ’Up-Right’, 0
Action = ’Left’ , 0.11
Action = ’Stay’, 0.40
Action = ’Right’, 0.20
Action = ’Down-Left’, 0
Action = ’Down’, 0.09
Action = ’Down-Right’, 0.05























































(43)

The stochastic motion of the energy source is exemplified by two distinct path samples illustrated in
Fig. 5.
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(b) Sample 2

Fig. 5. Two samples of the energy source path (consisting of 50 steps). Circles represent sensor locations.

The Bayesian grid-based tracking filter sample space consists of 20 × 20 = 400 possible states. That
is, each 1 m2 rectangle in the total region is mapped as a possible location of the energy source. In all
runs, the initial location of the energy source is sampled from a uniform distribution over the total region.
Correspondingly, the prior pmf of the tracking filter is set as px0

(X0) = 1/400.
The motion recognition algorithm is used for providing the tracking filter with the estimate of the

transition kernel. The likelihood function used by the BW algorithm is the one in Eq. (31). The BW
algorithm itself is implemented forNB = 100 measurement batches each consisting ofNm = 50
measurements. A single BW iteration is used for each measurement batch. Following the argumentation
in Section IV-C, the estimated transition kernel is computed using the matrixÂ∗.
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The performance of the motion recognition algorithm is demonstrated in Fig. 6. In this figure, both true
and estimated transition kernels are represented by a probabilistic decision wheel. It can be seen that the
BW algorithm manages to capture the source motion as the largest estimation error is approximately4%
(in both the ’Right’ and ’Down’ actions).
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Up−Right
Left
Up−Left
Down
Stay
Up
Down−Right
Right
Down−Left

Fig. 6. True (right) and estimated (left) energy source decision wheels (transition probabilities). Estimated transition kernel
constructed based onNB = 100 batches, each consisting ofNm = 50 measurements.

Figure 7 depicts the cumulative distribution function of the mean norm estimation error of both the
Bayesian tracking filter (which is fed with the transition kernel estimate obtained by the motion recognition
algorithm) and the ML estimator derived in Sections III-A and II, respectively. The performance measure
used here (i.e., the mean norm estimation error) is defined as

e =
1

T

T
∑

k=1

‖ xk − x̂k ‖ (44)

wherex̂k is either the MMSE or ML estimates. The distribution is constructed based on 500 Monte Carlo
runs, each consisting ofT = 50 time steps. The advantage of using the Bayesian filter over the ML
estimator is clearly manifested in this figure. It can be recognized that

Pr(eML < 2.3 m ) = 0.9, Pr(eMMSE < 1.5 m ) = 0.9 (45)

which reads as follows: The mean norm position estimation error of the ML estimator is less than2.3
meters in 90% of the runs whereas the same measure is less than1.5 meters when using the Bayesian
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filter.
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Fig. 7. Mean norm position estimation error cumulative distribution function of the Bayesian grid filter equipped with the motion
pattern recognition algorithm (thick line) and of the ML estimation scheme (thin line). 500 Monte Carlo runs.

VI. CONCLUSIONS

An efficient method for tracking and motion pattern recognition of an acoustic source using sensor
networks was developed. The new algorithm is a Bayesian filter equipped with a novel motion pattern
recognition scheme based on the Baum-Welch (BW) mechanism.The BW procedure uses the sensor
readings to reconstruct the unknown Markovian transition kernel, which is then fed into the localization
filter. The new filtering algorithm is implemented using an exact grid-based scheme. The results of a
Monte Carlo simulation are shown in which the adaptive algorithm outperforms the conventional ML
method.

In addition, an iterative optimization scheme was derived for estimating unknown sensor locations in
prominently large networks. The suggested method is essentially an expectation maximization recursion
aimed at maximizing a network auxiliary function, which is composed based on the underlying com-
munication topology. The convergence of this method was proven using the Kullback-Leibler divergence
measure.
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