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Abstract 
With the advent of cloud computing, massive and 

automated system management has become more 
important for successful and economical operation of 
computing resources. However, traditional monolithic 
system management solutions are designed to scale to 
only hundreds or thousands of systems at most. In this 
paper, we present Blue Eyes, a new system 
management solution with a multi-server scale-out 
architecture to handle hundreds of thousands of 
systems. Blue Eyes enables highly scalable and 
reliable system management by running many 
management servers in a distributed manner to 
collaboratively work on management tasks.  In 
particular, we structure the management servers into a 
hierarchical tree to achieve scalability and 
management information is replicated into secondary 
servers to provide reliability and high availability. In 
addition, Blue Eyes is designed to extend the existing 
single server implementation without significantly 
restructuring the code base. Several experimental 
results with the Blue Eyes prototype have 
demonstrated that our multi-server system can reliably 
handle typical management tasks for a large scale of 
endpoints with dynamic load-balancing across the 
servers, near linear performance gain with server 
additions, and an acceptable network overhead. 

 
1. Introduction 
 

Today, there are more than a hundred million 
computing devices connected to the Internet. These 
networked devices include high-end servers, 
workstation PCs, network routers, and printers. A 
significant portion of them are owned by corporate and 
large organizations, and managed in groups through 
system management tools in a semi-automated way. 
Massive and automated management of these 
networked computing resources becomes even more 
critical with introduction of a new cloud computing 
paradigm where numerous workloads are expected to 
migrate from a small number of dedicated machines in 
separate domains to a securely-shared and virtualized 

computing pool in mega-scale datacenters. In addition, 
efficient and effective management of computing 
systems can dramatically reduce overall IT costs as 
recent data shows that system management costs 
outweigh acquisition costs. 

However, traditional system management solutions 
that are in use in the field are targeted at the scale of 
only hundreds or thousands of systems at most. The 
inherent scalability limitation of such solutions is due 
to its single server architecture.  Simple tasks such as 
discovering systems on the network and collecting 
inventory can easily overwhelm a high-end server 
when its target endpoints are in the size of thousands or 
more. Its only option to scalability is a scale-up 
approach: replacing the management server with a 
more powerful machine with more processors and 
memory. 

We believe a true solution to this scalability 
bottleneck is the multi-server scale-out architecture, 
where management servers can be added on demand to 
increase management power when the target system to 
be managed grows. Similar approaches have been 
attempted. However, their requirement of significant 
changes into the legacy software kept them from being 
adopted. In addition, there is an increasing need for 
aggregating multiple existing management domains 
into one due to mergers and acquisitions. The multi-
server architecture can provide a seamless integration 
of system management domains by simply grouping 
management servers into one management server 
network. A server can continue to operate for its own 
domains as it did before while providing its local 
information and accessibility to its endpoints to other 
servers when requested. 

Another requirement for system management for a 
large datacenter is its reliability and availability. 
Downtime of management servers can mean delayed 
deployment of critical security patches and untimely 
reconfiguration of cloud resources to respond to 
rapidly changing computation demands, both of which 
are costly for production systems. 

In this paper, we introduce the Blue Eyes system 
management architecture and its prototype that provide 
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high scalability and reliability using a structured 
network of management servers. Blue Eyes is designed 
to provide the following five important characteristics. 

• Dynamic scaling: management servers can be 
added dynamically in a scale-out manner to 
meet the growing demand for management 
capacity. 

• Domain merging: management servers can be 
merged into one management domain when 
administration sub-domains are combined. 

• Distribution transparency with locality: users 
can connect to any server in the server network 
to manage any endpoint while endpoint locality 
can be exploited when requested. 

• Failure Resistance: all the endpoints are still 
manageable even in the presence of a 
management server failure. 

• Easy applicability to existing solutions: 
Changes to the existing legacy management 
software are mostly limited to the addition of 
server-server interactions, not affecting 
implementation of core management functions 
between the server and managed endpoints. 

 
This paper is organized as follows. Section 2 

describes the design and core algorithms of Blue Eyes 
that provide scale-out scalability and reliability. 
Section 3 presents core management operations and 
tasks that Blue Eyes provides and performs. Section 4 
describes the current implementation of the prototype. 
Section 5 evaluates the Blue Eyes prototype by 
demonstrating how it achieves its scalability and 
reliability goals. Section 6 lists the related work and 
contrasts it to our work. Section 7, finally, concludes 
the paper with summary and future work. 

 
2. Design 
 

In this section, we describe the overall design and 
architecture of Blue Eyes and how it can satisfy both 
scalability and reliability requirements in large-scale 
system management required in cloud computing. 

 
2.1 Overall Architecture 
 

Unlike the traditional system management solutions 
(Figure 1), our Blue Eyes system is designed to 
maintain multiple management servers (Figure 2) by 
scaling out from a single management server. In a 
nutshell, the systems and networked devices to be 
managed (referred to as managed endpoints) are 
partitioned to be assigned to multiple management 
servers so that management workload can be balanced. 
For example, in Figure 2, all the servers collaboratively 

manage different groups of endpoints using a 
management server network while the traditional 
system management server in Figure 1 has to directly 
manage all the endpoints.  

In addition to dynamic scalability, a system 
management solution also requires server failure 
resistance to provide reliability of system management.  
This becomes more important and also viable as we 
adopt the multi-server architecture. To this end, Blue 
Eyes maintains another structured network of backup 
servers and provides a detect-and-switch type of fail-
over mechanism. A simple example is shown in Figure 
2 where one primary server and one secondary server 
are collocated on each machine. The primary server A 
has the corresponding secondary server A' which is 
placed on a different machine. 

The structure of and the interactions among 
management servers to provide dynamic scalability 
and reliability in Blue Eyes are described in the 
following subsections in detail. 
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Figure 2: Blue Eyes Multi-Server System 

Management Architecture 
 

2.2 Management Server Tree 
 

In Blue Eyes, a group of management servers 
construct a management network for its 
communication for collaborative operations. We chose 
a hierarchical tree topology for two reasons. First, 
global server information and system monitoring data 
can be naturally aggregated upward when it is 
collected and central information can be easily 
propagated down the tree to all the servers. Second, 
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system administration domains and network domains 
are often structured following the business 
organization hierarchy. In this case, management task 
locality can be exploited by using only the relevant 
sub-tree for domain-specific management operations. 
The alternative centralized star topology with one 
master server and all slave servers, despite its 
simplicity, causes a bottleneck problem. On the other 
hand, the use of DHT for P2P structuring among 
management servers would suffer from its unbeneficial 
complexity as management server additions and 
deletions do not occur frequently. In our prototype, we 
use a binary tree, which is referred to as Management 
Server Tree (MST). 

An MST is implicitly constructed using the tree 
index numbers of the servers. This tree index 
information is shared through a globally shared data 
structure called Management Server List (MSL). An 
example of the server tree is depicted in Figure 3. Each 
node is a management server denoted by its tree index 
number. A management server with the tree index 
number 1 becomes the root node in the tree. Since all 
management servers share the MST structure 
information, a user’s console can connect to any server 
to access and manage any endpoints. When the MST 
changes by adding or deleting a management server, 
the tree index number for each server can be changed 
accordingly, and the updates are forwarded downward 
through the new tree structure. 

The MST is exploited to balance the 
communication workload among servers. Suppose we 
need to execute a management task for all the 
endpoints in the entire management domain. The 
management task should be forwarded to all the 
servers. Each server sends a message only to its direct 
children to forward the management task (red arrows 
in Figure 3). For management tasks such as system 
monitoring, data from endpoints can be aggregated 
upward from the endpoints to the root. In this case, 
each server sends a message only to its parent (blue 
arrows in Figure 3). Thus, the root node does not 
handle excessive messages and hence hardly becomes 
a performance bottleneck. 
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Figure 3: Management Server Tree for Scalability 

 

2.3 Management Reliability Ring 
 
Management servers constitute another logical 

network to provide failure resistance for reliable 
management. This network naturally forms a ring 
structure, named Management Reliability Ring (MRR), 
through a primary-secondary relationship. Like the 
MST, the MRR is implicitly constructed by tree index 
number in the MSL. Figure 4 presents an example with 
k-level backup. A solid-lined node denotes a primary 
server and a dashed-lined node denotes a backup server. 
One primary server and k backup servers run on the 
same machine where those backup servers are for 
different primary servers running on different 
machines. 

For failure detection and state synchronization, the 
primary server periodically sends a keep-alive message 
and management information to its first backup 
(secondary) server in another machine. The 
management information includes all information of all 
endpoints managed by each primary management 
server. For efficient communication, only the changes 
(delta) are sent piggybacking on the keep-alive 
message. Likewise, each backup server synchronizes 
with its next backup server. The arrow lines between 
servers in Figure 4 indicate this relayed communication 
process. For example, the primary server 1 
synchronizes with the backup server 1’ (solid line), 
which then forwards the message to 1’’ and then 1’’’ 
(dashed lines) in a 3-level backup for very high 
reliability. 
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Figure 4: Management Reliability Ring for Failure 
Resistance  

 
Note that we have a special placement algorithm for 

the backup servers. In Figure 4, the first backup server 
1’ is placed on the next machine where primary server 
2 is located (or machine 2). However, the second and 
third backup servers 1’’ and 1’’’ are not located on 
machine 3 and 4. Instead of using the straight-forward 
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round-robin placement scheme, we use the following 
scatter placement scheme: 

 
m(bx(i)) = ( x+(1+2+…+i) + (n-1) ) % n + 1 
 

, where m(bx(i)) is the machine where the i-th backup 
server for primary server x is to be placed and n is the 
total number of machines. We assume one machine 
hosts only one primary server. 

Our scatter backup placement scheme yields better 
load balancing than straight-forward round-robin 
scheme, where m(bx(i))=(x+i+(n-1))%n+1. This can 
be demonstrated by comparing the two schemes as to 
how many machines should fail to make all the k 
backup servers located on the same machine active. 
Note that the i-th backup server becomes active and 
takes over the management role only when its primary 
and all the prior (i-1) backup servers fail. With the 
round-robin scheme, all the k backup servers 
collocated on one machine become active when only k 
machines fail since the machines needed to fail to 
make the k-th backup server active cover all the 
machines needed to fail to run all the other (k-1) 
backup servers. In contrast, our scatter placement 
scheme requires at least 2k-1 machines to fail since we 
need k machines to run the k-th backup server and each 
of the other k-1 backup servers has its previous backup 
server in a different machine. Therefore, the scatter 
placement scheme has the much lower probability of 
having many backup servers active at the same time on 
a single machine reducing load imbalance in case of 
serious failures. 

There is a trade-off between providing high 
reliability with many levels of backup servers and 
efficient use of management resources. Since our 
scheme is general for any arbitrary level for backup 
servers, this is left to users as a configurable parameter. 
In our prototype, we choose a single backup server and 
call it a secondary server. It is reported that average 
availability of a single server can be achieved up to 
three nines (99.9%) [10]. With one secondary server, 
the management server availability can be calculated as 
1 – (1 – 0.999) 2 = 99.9999%, six nines, which seems 
more than sufficient for most cases.1 

In the presence of failure of the machine where the 
primary server is running, the secondary server 
becomes active to handle management tasks. For the 
process of this take-over, there are three states for a 
management server: PRIMARY, SECONDARY, and 
SECONDARYWAIT. A primary server starts in 
PRIMARY state while its secondary server starts in 
                                                           
1 This observation considers only hardware failure. If 
software failure and maintenance time is added, the 
effective availability can be much lower. 

SECONDARYWAIT state. When the primary server 
fails, the secondary server switches over its role by 
changing its state from SECONDARYWAIT to 
SECONDARY. When the primary server recovers, the 
secondary server propagates updated management data 
to the primary server and returns to the 
SECONDARYWAIT state. An alternative is to put the 
recovered primary server in wait state and keep the 
secondary active. However, our policy enforces the 
secondary server to release its active role to the 
primary server since it is not desirable to have two 
servers (one primary server and one secondary server) 
active at the same time on the same machine while the 
machine where the primary server recovered just sits 
idling.  
 
2.4 Management Server List 

 
Aforementioned management networks, 

Management Server Tree and Management Reliability 
Ring, are constructed implicitly based on a globally 
shared data structure, called Management Server List 
(MSL). MSL contains the basic information of all the 
servers in the management network, such as the ID and 
IP address of the currently active servers and the 
alternative servers. During normal operations, an active 
server is in PRIMARY state, and an alternative server 
is in SECONDARYWAIT state. When an active server 
in PRIMARY state fails, the active server and the 
alternative server are switched in MSL, and the active 
server turns into SECONDARY state, indicating the 
secondary server has taken over the management role. 
It also contains a tree index number which is used to 
construct the MST. An example of MSL is shown in 
Table 1. Whenever there is a change in the server 
network, the root server in the tree structure modifies 
the MSL and propagates the updates down the tree to 
the other management servers. Thanks to this globally 
shared management server index, users can manage 
any endpoints by connecting to any server in the 
network. 

 
Tree Index 

Number 
Active 

Server ID
Active 

Server IP 
Alternative 
Server ID 

Alternative
Server IP 

1 A 1.1.1.1 A’ 2.2.2.2 
2 B  2.2.2.1 B’ 3.3.3.2 
3 C’ 4.4.4.2 C 3.3.3.1 
… … … … … 

Table 1: Management Server List 
 
3. Mechanism  
 

In this section, we first introduce and describe in 
detail a suite of new server operations that can expand 
or contract the management capacity in a scale-out 
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fashion. Then, we describe a set of simple and 
representative management tasks and how they are 
accomplished in a distributed manner in Blue Eyes. 

 
3.1 Management Server Operations 
 

We define a set of server operations to maintain the 
distributed server network. In Blue Eyes, a system 
administrator can add a new management server to an 
existing server network or merge two existing 
independent server networks into one. With these add 
and merge operations, the management server network 
can be expanded to handle more managed endpoints. 
Likewise, retiring management servers also can be 
deleted from a network to scale down the management 
system. On the other hand, to achieve high availability 
of system management, a fail-over operation is 
provided. Unlike add and delete operations, this 
operation is triggered implicitly. A secondary server 
automatically notifies the root server of the primary 
server’s failure, so that the root server modifies MSL 
reflecting the change of the network where the 
secondary server takes over the failed primary server. 
A recovery of the primary server is also automatically 
reported to the root server and processed in a similar 
way. The root server balances the number of endpoints 
over the management servers by relocating some 
endpoints when there is a change in the management 
server network. 

The balance operation, which is executed at the end 
of other operations that change the MSL, works as 
follows: the root server of MST reads the number of 
endpoints in each server and assesses the balance of 
management workload. If the imbalance exceeds a 
threshold, the root server sends the relocation request 
to other management servers to shed the load. The 
relocation request includes the number of endpoints to 
be relocated and a destination server. The servers 
which receive the relocation request pick the requested 
number of endpoints and move them to the specified 
destination server. 

The add and merge operations share the same 
mechanism. The only difference is that add is used to 
add a single empty management server while merge is 
to merge two different server networks combining 
endpoints of each network into one network. In other 
words, add is equivalent to merge for joining an empty 
single server to an existing network. For a merge 
operation, a management console first sends the merge 
request of two management networks, one as a base 
and the other as a joining network. The request is 
forwarded to the root server of the target network, 
which modifies the MSL following the request and 
spreads it down to each server constructing a new 
expanded tree having the merged server network. The 

MSL of the joining network is added to the end of the 
MSL of the base network. The last server, the one with 
the largest tree index number in the MSL, of each 
network sends management information for their new 
secondary servers. Finally, the root server triggers the 
balance operation by sending relocation requests to 
each server. Figure 5 shows an example of merging the 
network Y into the network R. X and Z send their 
management information to new secondary servers. 

The delete operation operates as follows: when a 
console issues a deletion of a server, the request is 
forwarded to the root server and the MSL is modified 
accordingly. Then, to adjust the MRR, the predecessor 
of the deleted server in the ring sends management 
information to its new secondary server which is to be 
located on the successor of the deleted server in the 
ring. Finally, the root server triggers the balance 
operation. An example of the delete operation is 
illustrated in Figure 6. The server W is deleted, and the 
server R sends the management information to its new 
secondary server. 
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Figure 5: add and merge 
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Figure 6: delete 

 
To achieve system reliability, a server network must 

be self-organized when a server fails or recovers from 
failures. When a primary server fails, its secondary 
server detects the failure after a timeout of keep-alive 
messages from the failed server and notifies the root 
server. Then, the secondary server takes over the job 
and turns into SECONDARY state from the initial 
SECONDARYWAIT state. The root server modifies 
the MSL by switching the active server and the 
alternative server for the entry, and propagates the 
updates down to each server through the new tree 
topology. Figure 7 shows an example of the fail-over 
operation. The primary server W fails, and its 
secondary server W’ takes over W. For the recovery 
operation, the root server is contacted in the same way 
to restructure the network. In Figure 7, when the failed 
W comes back alive, it takes over W’, and W’ goes 
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back to the SECONDARYWAIT state. It is possible 
not to switch back when the original primary server 
recovers. There is a trade-off between switch-over 
overhead and load imbalance. If the recovered primary 
server does not take back its management role, the 
machine hosting that server will not actively participate 
in management whereas the machine hosting the 
currently active secondary server can suffer by taking 
two roles. We chose to make the recovered primary 
server take over for management load balancing as this 
fail-over and recovery does not frequently occur and 
hence the switch-over overhead can be amortized. 

R X Y

W’

2. SS_SVRLIST_TOPDOWN

R W X

Y’ R’ W’

1. SS_FAIL

X’
R R

Y

X’ Y’

 
Figure 7: fail-over 

 
3.2 Management Tasks 
 

There are five basic types of management tasks that 
typical system management solutions support: 
discovery, collect_inventory, view_inventory, 
software_distribution, and event_action. 

With these operations, an administrator can 
discover endpoint systems to manage given an IP 
address range, collect inventory information of 
discovered managed endpoints, or view collected 
inventory information, which includes hardware, 
operating system, network connectivity, and installed 
software information. Software or its updates can be 
installed on managed endpoints in a distributed and 
parallel manner through management servers. System 
administrators also can specify events to monitor and 
corresponding actions to take. For example, for the 
event “CPU usage of endpoint X becomes greater than 
70%”, an action can be set to “report the event to an 
administrator by email.” 

For the discovery task in Blue Eyes, a console sends 
the discovery task with a specific IP range and, 
optionally, a specific sub-tree, to the connected 
management server (say X). By allowing a specified 
sub-tree in the MST to run the discovery task, 
proximity of endpoints to nearby management servers 
in the network can be exploited. In this case, the 
discovered endpoints are marked not to be relocated to 
the servers outside the sub-tree during the balance 
operation. X first divides the IP range evenly into sub-
ranges and assigns each range to each server in the 
specified sub-tree. Then, X forwards the discovery task 
with the divided IP ranges to the root server R of the 
sub-tree. R forwards the discovery task to all the other 
servers in the sub-tree down through the tree topology 
in the MST. Finally, each server independently 

discovers endpoints in the assigned IP range in parallel. 
Note that this local discovery procedure leverages the 
old traditional single server discovery implementation 
without changes. Figure 8 shows an example of the 
discovery task. The discovery task is executed under 
all the five servers through the root server, so that the 
IP range is divided into five sub-ranges. 

 
The collect_inventory task is used when an 

administrator wants to collect more detailed 
information, such as resource usage and installed 
software, for the discovered endpoints. The algorithm 
is very similar to the discovery task algorithm except 
that the task carries endpoint IDs rather than IP ranges. 
The root server of the specified sub-tree in the MST 
forwards the collect-inventory task to relevant 
management servers. Then, each server collects 
inventory information of endpoints given the endpoint 
ID list and stores them locally. 

The view-inventory task is used to aggregate and 
view inventory information of distributed endpoints. 
When a console sends the view-inventory task with an 
endpoint ID list and a specific sub-tree to the 
connected server X, X forwards the task to the root 
server R of the sub-tree. Then, R broadcasts the task to 
all the other servers in the sub-tree down the tree 
topology. Unlike collect_inventory, the 
view_inventory task performs extra work to aggregate 
inventory information using the tree topology. Each 
server aggregates collected inventory information from 
the management servers in a bottom-up manner. 
Finally, R sends the full inventory information to X, 
which then forwards it to the console. Figure 9 shows 
an example of the view-inventory task which lists the 
inventory of all endpoints in the entire system. 

The software_distribution task is used when a 
software application or its updates need to be installed 
on specific endpoints. The first phase of the 
mechanism is similar to that of collect_inventory. The 
software_distribution task with an endpoint ID list, a 
specific sub-tree, and the software installer file URL is 
forwarded to servers through the tree topology. Then, 
each server sends the software installer URL to the 
specified endpoints in the task, and the endpoints 
download and install the software. 

The last basic operation is event_action. A user can 
specify an event to monitor and set a corresponding 
action for endpoints. This task operates as follows. In 
Figure 8, a console sends the event_action task to the 
connected server Z. Then, Z specifies the event-
handling server X, a root of the smallest sub-tree 
covering servers related to the event. For example, 
suppose the event is “CPU usage of endpoint EZ1 is 
higher than 80% and Disk usage of endpoint EW1 is 
higher than 80%.” X distributes sub-events to the 
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relevant servers that cover the endpoints specified by 
the sub-events. Then, Z, the server managing EZ1, 
starts to monitor its CPU usage, and W, the server 
managing EW1, starts to monitor its disk usage. When 
Z or W detects the sub-events, it sends the information 
to the event-handling server X. X evaluates the event 
condition with the sub-event information. If the 
condition is evaluated true, X triggers the action 
specified by users, e.g. emailing an administrator about 
the event occurrence. 

X Y

10.1.2.0~10.1.2.255

Console

Z

10.1.4.0~10.1.4.255

10.1.3.0~10.1.3.255

“discover 10.1.1.0 10.1.5.255”

R

10.1.1.0~10.1.1.255

W

10.1.5.0~10.1.5.255

broadcast

 
Figure 8: discovery 
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Figure 9: view_inventory 
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R

W
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Figure 10: event_action 

 
In a tree structure, the root can typically suffer a 

workload and communication bottleneck. As Blue 
Eyes exploits the tree structure for load distribution 
with an MST, we examine this potential problem. 
Regarding the network traffic between servers and 
endpoints, all the servers have almost equal workload 
because the number of endpoints is balanced over the 
servers through the balance operation overall or within 
a sub-tree if specified by users. For communication 
between servers, the root server handles more when it 
aggregates information from other servers if the task 
requires all the management servers to work. However, 
the tree structure is intended for the locality in group 
tasks where only a subset of endpoints are targeted and 

they are managed by a subset of management servers 
within a sub-tree. We believe this locality of task 
targets will prevent the root of an MST from being 
overloaded. In addition, the server-to-server traffic and 
task processing is far smaller than server-to-endpoint 
traffic and task processing, which will be shown in the 
evaluation section.   

 
4. Implementation 
 

We implemented a prototype of Blue Eyes with 
IBM Java 1.6.0 SDK. It is composed of three 
components: a management server, a management 
console, and a management agent. A management 
agent is a program running on each managed endpoint 
that communicates with a management server. Figure 
11 illustrates the overall architecture of the Blue Eyes 
prototype. For simplicity, our prototype currently does 
not include a database component. Instead, all the 
information is handled and locally stored by 
management server. Each management server keeps 
the management information on the management 
server list storage and the agent information storage. 
A management server has a management engine that 
consists of a console manager, an agent manager, and 
a server manager. A console manager receives 
requests from a management console, processes them, 
and returns the results back to the console. An agent 
manager sends a management task to an agent, receives 
a response, and stores the result in the agent 
information storage. A server manager is the central 
part of our implementation of Blue Eyes. It maintains 
the MSL and handles all the server-to-server operations 
described in the last section such as balance, add, 
merge, delete, fail-over, and recovery. The server 
manager also sends the management information to a 
secondary server in order to provide reliability. Our 
prototype uses the lightweight UDP protocol between a 
management server and a management agent and the 
reliable TCP protocol for all other communications. 
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Figure 11: Implementation Architecture  
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5. Evaluation 
 

In this section we evaluate Blue Eyes in terms of 
load balancing, performance, network traffic overhead, 
and reliability. 
 
5.1 Experimental Setup 
 

We used a Windows machine, the most popular 
platform on which to run a system management 
solution today, to host eight management server 
processes and one management console process. Each 
server process in the experiment setup represents a 
server machine in a real environment. Two Linux 
machines, each of which hosting 1024 agents, are used 
to represent 2048 managed endpoints totally. 

Figure 12 shows our experimental environment. We 
assigned different port numbers to different 
management servers. For example, the first 
management server SVR1 uses TCP port 7001 to 
communicate with other management servers, UDP 
port 8001 to communicate with agents, and TCP port 
9001 to communicate with a console. Even though 
secondary servers are not shown in Figure 12, each 
server has a corresponding secondary server in another 
process. Each agent on the same agent experiment 
machine uses its own IP address. All the agents use the 
same well-known port for discovery. All our 
experiments were scripted with Python to automate and 
repeat starting and finishing server processes and 
running server operations and management tasks 
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5.2 Load Balance 
 

The first experiment demonstrates that the workload 
is distributed across management servers by balancing 
the number of endpoints. Figure 13 shows how the 
number of endpoints in each management server is 

balanced over time. We started with one server and 
discovered 256 endpoints at time 0. Then, we added an 
empty server and discovered another 256 endpoints 
every 60 seconds until reaching 240 seconds. At time 
290 seconds, we merged a server network which 
contained three servers and 768 endpoints. The upper 
curve in the graph represents the total number of 
endpoints in the system; the number increases as new 
endpoints are discovered. The other curves on the 
bottom represent the number of endpoints managed by 
each server. This number is adjusted whenever a new 
server added, so that every server covers the same 
number of endpoints. For example, each of the three 
management servers, SVR1, SVR2, and SVR3 
managed 256 endpoints before 170 seconds. Just after 
adding the fourth server SVR4, the balancing 
mechanism was executed by the root server. Each of 
the three old servers SVR1, SVR2, and SVR3 moved 
64 endpoints to the new server SVR4, so that each 
server maintains the same number of endpoints, 192 
endpoints. This experiment demonstrates that by 
balancing the number of endpoints to be covered, Blue 
Eyes distributes the management load over 
management servers. 
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Figure 13: Load Balance 

 
5.3 Performance 
 

We conducted another experiment showing that 
Blue Eyes scales well in performance with addition of 
management servers. In this experiment, we varied the 
number of servers: one, two, four, or eight servers. For 
each setup, we started with all servers added and all 
2,048 endpoints discovered, and then measured the 
progress of collect_inventory every five seconds.  The 
eight servers took 50 seconds to collect inventory from 
2048 endpoints, while a single server took 350 seconds. 
The speedup of the response time in this case is 7, 
which is quite close to the linear speedup. The 
difference is due to a communication delay over the 
tree structure for spreading the collect_inventory task 
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and aggregating the number of inventory-collected 
endpoints over servers. This shows the scalability of 
Blue Eyes is fairly good with near-linear speedup and 
the server-to-server interaction overhead is acceptable. 
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Figure 14: Performance 

 
5.4 Network Traffic Overhead 
 

We ran another experiment to analyze server-to-
server interaction overhead in network traffic. In this 
experimental scenario, a user started with eight 
management servers, discovered all 2,048 endpoints at 
20 seconds, collected inventory of all endpoints at 400 
seconds, and viewed the inventory list of 512 
endpoints in a sub-tree at 950 seconds. The experiment 
is finished at 1000 seconds. We categorized network 
traffic into three types of messages: server-to-endpoint, 
server-to-server for management tasks and server 
operations, and server-to-server for management 
information replication and keep-alive checking. Table 
2 shows the total number of messages and the total 
amount of network traffic in the system for each 
category. 
 

 total Server-
to- 

Endpoint 

Server – to-
Server 

(Management) 

Server –to- 
Server 

(Reliability)
# msg 
(msgs) 

69818 68110 
97.5% 

135 
0.2% 

1573 
2.3% 

Size 
(KBytes) 

5791 4236 
73.1% 

171 
3.0% 

1384 
23.9% 

Table 2: Network Traffic (8 servers, 1000 seconds) 
 
Note that server-to-endpoint traffic is independent 

of the number of management servers since each 
endpoint will receive the same number of requests and 
send out the same number of results. The results in 
Table 2 show that the messages between servers and 
endpoints dominate the management network traffic 
with more than 97% in the number of messages and 
73% in total traffic amount. The server-to-server 

network overhead for management is sufficiently low 
in both of these metrics. 

The extra network traffic overhead for reliability 
(24%) is not negligible. However, this is the trade-off 
between high reliability and resource efficiency. In this 
experimental setup, the keep-alive message period was 
set to 10 seconds, for very fast fail-over and recovery. 
This can be relaxed in practice, depending on the 
management availability requirement, which will 
further reduce the reliability overhead traffic. In 
addition, when more management servers are inserted 
with the addition of more systems to managed, extra 
network cables and subnets are typically added. This 
proportional expansion of network facility will lead to 
an acceptable constant bandwidth consumption among 
management servers when management network grows. 
 
5.5 Fail-over and Recovery 
 

The last experiment examines how the fail-over and 
recovery mechanisms operate in Blue Eyes. Figure 15 
demonstrates that our system reliably manages 
endpoints in the existence of a server failure. Our 
failure scenario started with eight servers (SVR1~8) 
with 2,048 endpoints discovered and their inventory 
collected. We terminated the process running the 
primary server of the server SVR6 at 180 seconds. The 
secondary server of SVR6 detected the failure of the 
primary server at 210 seconds and took it over. We 
restarted the terminated process for SVR6 at 360 
seconds to simulate the recovery. The curve on the top 
represents the number of endpoints available for 
management. The impact of the failure is localized and 
confined. For the 30-second between the failure and 
detection, only the local endpoints of SVR6 cannot be 
managed, but all the other endpoints covered by other 
servers are still manageable.  

The curves on the bottom in Figure 15 show the 
CPU usage of the two processes 2 , one (black solid 
curve) running the primary server of SVR6 and the 
secondary server of SVR5 and one (red dotted curve)  
running the secondary server of SVR6 and the primary 
server of SVR7. When the secondary server of SVR6 
is active after fail-over between 210 seconds and 360 
seconds, its CPU usage doubles whereas and the CPU 
usage of the process with the primary server of SVR6 
stays at 0. This is due to increased management 
workload of that process as both primary SVR7 and 
secondary SVR6 become active. When the failed 
SVR6 primary recovers, it takes over SVR6’s role 

                                                           
2 This process represents a management server machine in the real 
use. In experiment, we use single machine and multiple processes, 
each of which represents a management server. 
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from the secondary and the CPU usages become 
balanced. 
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Figure 15: Reliable Management 

 
6. Related Work 
 

Many commercial system management solutions 
[1][2][3][4] have been developed to manage computing 
resources on different platforms. Those solutions 
support a set of common administration tasks such as 
discovery, inventory, and event notification. They also 
share a similar software architecture having only a 
single management server.  This restricts the scalability. 
Their reliability model also relies on database recovery, 
which oftentimes extends the unavailable time. 

There are several cluster monitoring systems that 
have a scalable architecture. Ganglia [5][6] is a 
scalable distributed monitoring system based on a 
hierarchical design for high performance computing 
systems such as clusters and Grids. Ganglia monitoring 
daemon (gmond) collects cluster information and 
provides it for the Ganglia Meta Daemon (gmetad) and 
a client. Ganglia is robust to failures of gmond but if 
the gmetad fails, the system becomes unavailable, 
resulting in a hole in reliability. Supermon [7] is 
another hierarchical cluster monitoring system that 
uses a statically configured hierarchy of point-to-point 
connections to gather and aggregate cluster data. A 
data concentrator aggregates information from node 
data servers running on cluster nodes. Cluster nodes 
are similar to managed endpoints in system 
management and data concentrators are similar to 
management servers. The data concentrators can build 
a hierarchical tree to support additional managed 
endpoints, but only the leaf data concentrators in the 
tree communicate with node data servers, whereas 
intermediate nodes in the Blue Eyes’s MST covers its 
share of endpoints. Also, there is no fail-over 
mechanism for data concentrators, resulting in lack of 
reliability. PARMON [8] is a client/server cluster 
monitoring system that uses servers that export a fixed 

set of node information and clients that poll the servers 
and interpret the data. Servers in PARMON are similar 
to management agents in our system. Clients in 
PARMON correspond to management servers in our 
system, but they cannot be connected to one another in 
order to handle a large amount of managed endpoints, 
therefore PARMON does not offer a scalable solution. 

Linux Virtual Server [11][12] provides a basic 
framework to build scalable and available network 
services. It has a three-tier architecture with a load 
balancer, a server pool, and back-end storage. The 
front-end load balancer simply forwards incoming 
packets to the server pool which then performs the 
work and manipulates data in the back-end storage. 
The state of concurrent connections is maintained by 
the load balancer and servers in the server pool are 
required to be stateless. This architecture with stateless 
servers is not suitable for existing system management 
solutions. A system management server frequently 
monitors the status of each endpoint and keeps them in 
memory. Requiring servers to keep all the frequent 
changes of endpoints in the shared back-end database 
is prohibitively expensive. The P2P research 
[13][14][15][16] has shown that a scalable and reliable 
system for storing and retrieving data can be built upon 
unreliable machines and networks. Nodes in a P2P 
network do not need a global map to create a highly 
scalable network. However, the complexity of 
managing a network in a P2P system is too high to be 
applied to a system management solution. In addition, 
machines used for management servers are usually 
more robust than the nodes joining and leaving in a 
P2P network since management servers are set up and 
maintained by enterprise administrators. We believe a 
hierarchical structure is sufficient to achieve low 
complexity and high scalability for a management 
server network. 

Our previous research [9] describes a technique for 
testing and validating a commercial grade system 
management tool for thousands of managed endpoints. 
It uses “agent multiplication” to make one physical test 
machine appear as many managed endpoints to the 
management server, while maintaining all of the 
managed endpoints as distinct management agents. We 
leveraged this technology to evaluate Blue Eyes in a 
large scale environment with a small number of testing 
machines. 

 
7. Conclusions and Future work 
 

This paper presents and evaluates Blue Eyes, a 
scalable and reliable system management solution 
based on a multi-server architecture. We described 
how multiple management servers are organized to 
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effectively and reliably manage ever increasing 
endpoint systems requiring administration. 
Management workload is evenly distributed by 
balancing the number of endpoints covered by each 
management server. Management tasks are forwarded 
efficiently to endpoints through a tree structure (MST) 
of management servers. Secondary servers organized 
in a logical ring (MRR) help the system be reliable and 
highly available. We implemented a prototype of Blue 
Eyes with a core set of server-server operations and 
distributed mechanisms to support a basic management 
tasks. It is important to note that this implementation 
does not impose significant modification of 
management task code of the legacy management 
solutions. Our early experimental results, using the 
prototype, show that Blue Eyes can be expanded with 
balanced workload for endpoints, good performance 
characteristic for management tasks, and a small scale-
out overhead. We also assessed how the system 
resource utilization changes over a fail-over process. 

Currently, we are investigating adding automatic 
endpoint grouping based on proximity to management 
servers. By automatically grouping endpoints within a 
short distance and managing them under a certain 
management server of a sub-tree, IT administrators can 
manage endpoints even more efficiently exploiting 
locality. We are also expanding our experiments in two 
dimensions, 1) larger scale experiments and 
measurements with hundreds of thousands of endpoints, 
and 2) various types of management tasks that our 
experiment did not explore in this paper such as 
software_distribution and event_action.  
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