
RC24721 (W0901-037) January 12, 2009
Computer Science

IBM Research Report

Blue Eyes: Scalable and Reliable System Management for
Cloud Computing

Sukhyun Song
Department of Computer Science

University of Maryland
College Park, MD

Kyung Dong Ryu, Dilma Da Silva
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Blue Eyes: Scalable and Reliable System Management for Cloud Computing

Sukhyun Song1, Kyung Dong Ryu2, Dilma Da Silva2

1Department of Computer Science
University of Maryland, College Park, MD

shsong@cs.umd.edu

2IBM T.J. Watson Research Center
Yorktown Heights, NY

{kryu, dilmasilva}@us.ibm.com

Abstract
With the advent of cloud computing, massive and

automated system management has become more
important for successful and economical operation of
computing resources. However, traditional monolithic
system management solutions are designed to scale to
only hundreds or thousands of systems at most. In this
paper, we present Blue Eyes, a new system
management solution with a multi-server scale-out
architecture to handle hundreds of thousands of
systems. Blue Eyes enables highly scalable and
reliable system management by running many
management servers in a distributed manner to
collaboratively work on management tasks. In
particular, we structure the management servers into a
hierarchical tree to achieve scalability and
management information is replicated into secondary
servers to provide reliability and high availability. In
addition, Blue Eyes is designed to extend the existing
single server implementation without significantly
restructuring the code base. Several experimental
results with the Blue Eyes prototype have
demonstrated that our multi-server system can reliably
handle typical management tasks for a large scale of
endpoints with dynamic load-balancing across the
servers, near linear performance gain with server
additions, and an acceptable network overhead.

1. Introduction

Today, there are more than a hundred million
computing devices connected to the Internet. These
networked devices include high-end servers,
workstation PCs, network routers, and printers. A
significant portion of them are owned by corporate and
large organizations, and managed in groups through
system management tools in a semi-automated way.
Massive and automated management of these
networked computing resources becomes even more
critical with introduction of a new cloud computing
paradigm where numerous workloads are expected to
migrate from a small number of dedicated machines in
separate domains to a securely-shared and virtualized

computing pool in mega-scale datacenters. In addition,
efficient and effective management of computing
systems can dramatically reduce overall IT costs as
recent data shows that system management costs
outweigh acquisition costs.

However, traditional system management solutions
that are in use in the field are targeted at the scale of
only hundreds or thousands of systems at most. The
inherent scalability limitation of such solutions is due
to its single server architecture. Simple tasks such as
discovering systems on the network and collecting
inventory can easily overwhelm a high-end server
when its target endpoints are in the size of thousands or
more. Its only option to scalability is a scale-up
approach: replacing the management server with a
more powerful machine with more processors and
memory.

We believe a true solution to this scalability
bottleneck is the multi-server scale-out architecture,
where management servers can be added on demand to
increase management power when the target system to
be managed grows. Similar approaches have been
attempted. However, their requirement of significant
changes into the legacy software kept them from being
adopted. In addition, there is an increasing need for
aggregating multiple existing management domains
into one due to mergers and acquisitions. The multi-
server architecture can provide a seamless integration
of system management domains by simply grouping
management servers into one management server
network. A server can continue to operate for its own
domains as it did before while providing its local
information and accessibility to its endpoints to other
servers when requested.

Another requirement for system management for a
large datacenter is its reliability and availability.
Downtime of management servers can mean delayed
deployment of critical security patches and untimely
reconfiguration of cloud resources to respond to
rapidly changing computation demands, both of which
are costly for production systems.

In this paper, we introduce the Blue Eyes system
management architecture and its prototype that provide

1

high scalability and reliability using a structured
network of management servers. Blue Eyes is designed
to provide the following five important characteristics.

• Dynamic scaling: management servers can be
added dynamically in a scale-out manner to
meet the growing demand for management
capacity.

• Domain merging: management servers can be
merged into one management domain when
administration sub-domains are combined.

• Distribution transparency with locality: users
can connect to any server in the server network
to manage any endpoint while endpoint locality
can be exploited when requested.

• Failure Resistance: all the endpoints are still
manageable even in the presence of a
management server failure.

• Easy applicability to existing solutions:
Changes to the existing legacy management
software are mostly limited to the addition of
server-server interactions, not affecting
implementation of core management functions
between the server and managed endpoints.

This paper is organized as follows. Section 2

describes the design and core algorithms of Blue Eyes
that provide scale-out scalability and reliability.
Section 3 presents core management operations and
tasks that Blue Eyes provides and performs. Section 4
describes the current implementation of the prototype.
Section 5 evaluates the Blue Eyes prototype by
demonstrating how it achieves its scalability and
reliability goals. Section 6 lists the related work and
contrasts it to our work. Section 7, finally, concludes
the paper with summary and future work.

2. Design

In this section, we describe the overall design and
architecture of Blue Eyes and how it can satisfy both
scalability and reliability requirements in large-scale
system management required in cloud computing.

2.1 Overall Architecture

Unlike the traditional system management solutions
(Figure 1), our Blue Eyes system is designed to
maintain multiple management servers (Figure 2) by
scaling out from a single management server. In a
nutshell, the systems and networked devices to be
managed (referred to as managed endpoints) are
partitioned to be assigned to multiple management
servers so that management workload can be balanced.
For example, in Figure 2, all the servers collaboratively

manage different groups of endpoints using a
management server network while the traditional
system management server in Figure 1 has to directly
manage all the endpoints.

In addition to dynamic scalability, a system
management solution also requires server failure
resistance to provide reliability of system management.
This becomes more important and also viable as we
adopt the multi-server architecture. To this end, Blue
Eyes maintains another structured network of backup
servers and provides a detect-and-switch type of fail-
over mechanism. A simple example is shown in Figure
2 where one primary server and one secondary server
are collocated on each machine. The primary server A
has the corresponding secondary server A' which is
placed on a different machine.

The structure of and the interactions among
management servers to provide dynamic scalability
and reliability in Blue Eyes are described in the
following subsections in detail.

…………

Single Mgmt

Server

Database

Mgmt

Console

Managed

Endpoints

Managed

Endpoints

Managed

Endpoints

Managed

Endpoints
…

Figure 1: Traditional System Management

Architecture

…………

Mgmt

Server

A

Database

Mgmt

Console

Mgmt

Server

Z’

Mgmt

Server

B

Mgmt

Server

A’

Mgmt

Server

Z

Mgmt

Server

Y’

Managed

Endpoints

Managed

Endpoints

Managed

Endpoints

Database Database

Mgmt

Server

C

Mgmt

Server

B’

Managed

Endpoints

Database

…

Machine A Machine B Machine C Machine Z

Figure 2: Blue Eyes Multi-Server System

Management Architecture

2.2 Management Server Tree

In Blue Eyes, a group of management servers
construct a management network for its
communication for collaborative operations. We chose
a hierarchical tree topology for two reasons. First,
global server information and system monitoring data
can be naturally aggregated upward when it is
collected and central information can be easily
propagated down the tree to all the servers. Second,

2

system administration domains and network domains
are often structured following the business
organization hierarchy. In this case, management task
locality can be exploited by using only the relevant
sub-tree for domain-specific management operations.
The alternative centralized star topology with one
master server and all slave servers, despite its
simplicity, causes a bottleneck problem. On the other
hand, the use of DHT for P2P structuring among
management servers would suffer from its unbeneficial
complexity as management server additions and
deletions do not occur frequently. In our prototype, we
use a binary tree, which is referred to as Management
Server Tree (MST).

An MST is implicitly constructed using the tree
index numbers of the servers. This tree index
information is shared through a globally shared data
structure called Management Server List (MSL). An
example of the server tree is depicted in Figure 3. Each
node is a management server denoted by its tree index
number. A management server with the tree index
number 1 becomes the root node in the tree. Since all
management servers share the MST structure
information, a user’s console can connect to any server
to access and manage any endpoints. When the MST
changes by adding or deleting a management server,
the tree index number for each server can be changed
accordingly, and the updates are forwarded downward
through the new tree structure.

The MST is exploited to balance the
communication workload among servers. Suppose we
need to execute a management task for all the
endpoints in the entire management domain. The
management task should be forwarded to all the
servers. Each server sends a message only to its direct
children to forward the management task (red arrows
in Figure 3). For management tasks such as system
monitoring, data from endpoints can be aggregated
upward from the endpoints to the root. In this case,
each server sends a message only to its parent (blue
arrows in Figure 3). Thus, the root node does not
handle excessive messages and hence hardly becomes
a performance bottleneck.

1

2 3

4 5

8

6 7

Figure 3: Management Server Tree for Scalability

2.3 Management Reliability Ring

Management servers constitute another logical

network to provide failure resistance for reliable
management. This network naturally forms a ring
structure, named Management Reliability Ring (MRR),
through a primary-secondary relationship. Like the
MST, the MRR is implicitly constructed by tree index
number in the MSL. Figure 4 presents an example with
k-level backup. A solid-lined node denotes a primary
server and a dashed-lined node denotes a backup server.
One primary server and k backup servers run on the
same machine where those backup servers are for
different primary servers running on different
machines.

For failure detection and state synchronization, the
primary server periodically sends a keep-alive message
and management information to its first backup
(secondary) server in another machine. The
management information includes all information of all
endpoints managed by each primary management
server. For efficient communication, only the changes
(delta) are sent piggybacking on the keep-alive
message. Likewise, each backup server synchronizes
with its next backup server. The arrow lines between
servers in Figure 4 indicate this relayed communication
process. For example, the primary server 1
synchronizes with the backup server 1’ (solid line),
which then forwards the message to 1’’ and then 1’’’
(dashed lines) in a 3-level backup for very high
reliability.

1
2

3

4

5

6

7

14

15

16

8
9

10

11

12

13

16’
1’

2’

3’

4’

5’

6’

13’

14’

15’

7’ 8’ 9’

10’

11’

12’

14’’

11’’’

15’’

12’’’
16’’

13’’’
1’’

14’’’

2’’ 15’’’

3’’
16’’’

4’’

1’’’

…

…

… …

……

……

…

…

…

…

… …

…

…

one machine

Figure 4: Management Reliability Ring for Failure
Resistance

Note that we have a special placement algorithm for

the backup servers. In Figure 4, the first backup server
1’ is placed on the next machine where primary server
2 is located (or machine 2). However, the second and
third backup servers 1’’ and 1’’’ are not located on
machine 3 and 4. Instead of using the straight-forward

3

round-robin placement scheme, we use the following
scatter placement scheme:

m(bx(i)) = (x+(1+2+…+i) + (n-1)) % n + 1

, where m(bx(i)) is the machine where the i-th backup
server for primary server x is to be placed and n is the
total number of machines. We assume one machine
hosts only one primary server.

Our scatter backup placement scheme yields better
load balancing than straight-forward round-robin
scheme, where m(bx(i))=(x+i+(n-1))%n+1. This can
be demonstrated by comparing the two schemes as to
how many machines should fail to make all the k
backup servers located on the same machine active.
Note that the i-th backup server becomes active and
takes over the management role only when its primary
and all the prior (i-1) backup servers fail. With the
round-robin scheme, all the k backup servers
collocated on one machine become active when only k
machines fail since the machines needed to fail to
make the k-th backup server active cover all the
machines needed to fail to run all the other (k-1)
backup servers. In contrast, our scatter placement
scheme requires at least 2k-1 machines to fail since we
need k machines to run the k-th backup server and each
of the other k-1 backup servers has its previous backup
server in a different machine. Therefore, the scatter
placement scheme has the much lower probability of
having many backup servers active at the same time on
a single machine reducing load imbalance in case of
serious failures.

There is a trade-off between providing high
reliability with many levels of backup servers and
efficient use of management resources. Since our
scheme is general for any arbitrary level for backup
servers, this is left to users as a configurable parameter.
In our prototype, we choose a single backup server and
call it a secondary server. It is reported that average
availability of a single server can be achieved up to
three nines (99.9%) [10]. With one secondary server,
the management server availability can be calculated as
1 – (1 – 0.999) 2 = 99.9999%, six nines, which seems
more than sufficient for most cases.1

In the presence of failure of the machine where the
primary server is running, the secondary server
becomes active to handle management tasks. For the
process of this take-over, there are three states for a
management server: PRIMARY, SECONDARY, and
SECONDARYWAIT. A primary server starts in
PRIMARY state while its secondary server starts in

1 This observation considers only hardware failure. If
software failure and maintenance time is added, the
effective availability can be much lower.

SECONDARYWAIT state. When the primary server
fails, the secondary server switches over its role by
changing its state from SECONDARYWAIT to
SECONDARY. When the primary server recovers, the
secondary server propagates updated management data
to the primary server and returns to the
SECONDARYWAIT state. An alternative is to put the
recovered primary server in wait state and keep the
secondary active. However, our policy enforces the
secondary server to release its active role to the
primary server since it is not desirable to have two
servers (one primary server and one secondary server)
active at the same time on the same machine while the
machine where the primary server recovered just sits
idling.

2.4 Management Server List

Aforementioned management networks,

Management Server Tree and Management Reliability
Ring, are constructed implicitly based on a globally
shared data structure, called Management Server List
(MSL). MSL contains the basic information of all the
servers in the management network, such as the ID and
IP address of the currently active servers and the
alternative servers. During normal operations, an active
server is in PRIMARY state, and an alternative server
is in SECONDARYWAIT state. When an active server
in PRIMARY state fails, the active server and the
alternative server are switched in MSL, and the active
server turns into SECONDARY state, indicating the
secondary server has taken over the management role.
It also contains a tree index number which is used to
construct the MST. An example of MSL is shown in
Table 1. Whenever there is a change in the server
network, the root server in the tree structure modifies
the MSL and propagates the updates down the tree to
the other management servers. Thanks to this globally
shared management server index, users can manage
any endpoints by connecting to any server in the
network.

Tree Index

Number
Active

Server ID
Active

Server IP
Alternative
Server ID

Alternative
Server IP

1 A 1.1.1.1 A’ 2.2.2.2
2 B 2.2.2.1 B’ 3.3.3.2
3 C’ 4.4.4.2 C 3.3.3.1
… … … … …

Table 1: Management Server List

3. Mechanism

In this section, we first introduce and describe in
detail a suite of new server operations that can expand
or contract the management capacity in a scale-out

4

fashion. Then, we describe a set of simple and
representative management tasks and how they are
accomplished in a distributed manner in Blue Eyes.

3.1 Management Server Operations

We define a set of server operations to maintain the
distributed server network. In Blue Eyes, a system
administrator can add a new management server to an
existing server network or merge two existing
independent server networks into one. With these add
and merge operations, the management server network
can be expanded to handle more managed endpoints.
Likewise, retiring management servers also can be
deleted from a network to scale down the management
system. On the other hand, to achieve high availability
of system management, a fail-over operation is
provided. Unlike add and delete operations, this
operation is triggered implicitly. A secondary server
automatically notifies the root server of the primary
server’s failure, so that the root server modifies MSL
reflecting the change of the network where the
secondary server takes over the failed primary server.
A recovery of the primary server is also automatically
reported to the root server and processed in a similar
way. The root server balances the number of endpoints
over the management servers by relocating some
endpoints when there is a change in the management
server network.

The balance operation, which is executed at the end
of other operations that change the MSL, works as
follows: the root server of MST reads the number of
endpoints in each server and assesses the balance of
management workload. If the imbalance exceeds a
threshold, the root server sends the relocation request
to other management servers to shed the load. The
relocation request includes the number of endpoints to
be relocated and a destination server. The servers
which receive the relocation request pick the requested
number of endpoints and move them to the specified
destination server.

The add and merge operations share the same
mechanism. The only difference is that add is used to
add a single empty management server while merge is
to merge two different server networks combining
endpoints of each network into one network. In other
words, add is equivalent to merge for joining an empty
single server to an existing network. For a merge
operation, a management console first sends the merge
request of two management networks, one as a base
and the other as a joining network. The request is
forwarded to the root server of the target network,
which modifies the MSL following the request and
spreads it down to each server constructing a new
expanded tree having the merged server network. The

MSL of the joining network is added to the end of the
MSL of the base network. The last server, the one with
the largest tree index number in the MSL, of each
network sends management information for their new
secondary servers. Finally, the root server triggers the
balance operation by sending relocation requests to
each server. Figure 5 shows an example of merging the
network Y into the network R. X and Z send their
management information to new secondary servers.

The delete operation operates as follows: when a
console issues a deletion of a server, the request is
forwarded to the root server and the MSL is modified
accordingly. Then, to adjust the MRR, the predecessor
of the deleted server in the ring sends management
information to its new secondary server which is to be
located on the successor of the deleted server in the
ring. Finally, the root server triggers the balance
operation. An example of the delete operation is
illustrated in Figure 6. The server W is deleted, and the
server R sends the management information to its new
secondary server.

R W X Y

Z’ R’ W’ Y’

Z

Console

4. SS_SECONDARY_FULL

4. SS_SECONDARY_FULL

3. SS_SVRLIST_TOPDOWN

5. SS_BALANCE

R W X

Y

X’ R’ W’

Z’

Console

1. C_SVRMERGE
2. SS_SVRMERGE

Z

Y’

X’

Y

R R
+

Figure 5: add and merge

R X Y W

X’

Console

4. SS_SECONDARY_FULL

3. SS_SVRLIST_TOPDOWN

5. SS_BALANCE

R W X

Y’ R’ W’

Console

1. C_SVRDEL
2. SS_SVRDEL

W’
R R

Y

X’ Y’ R’

4. SS_SECONDARY_FULL

Figure 6: delete

To achieve system reliability, a server network must

be self-organized when a server fails or recovers from
failures. When a primary server fails, its secondary
server detects the failure after a timeout of keep-alive
messages from the failed server and notifies the root
server. Then, the secondary server takes over the job
and turns into SECONDARY state from the initial
SECONDARYWAIT state. The root server modifies
the MSL by switching the active server and the
alternative server for the entry, and propagates the
updates down to each server through the new tree
topology. Figure 7 shows an example of the fail-over
operation. The primary server W fails, and its
secondary server W’ takes over W. For the recovery
operation, the root server is contacted in the same way
to restructure the network. In Figure 7, when the failed
W comes back alive, it takes over W’, and W’ goes

5

back to the SECONDARYWAIT state. It is possible
not to switch back when the original primary server
recovers. There is a trade-off between switch-over
overhead and load imbalance. If the recovered primary
server does not take back its management role, the
machine hosting that server will not actively participate
in management whereas the machine hosting the
currently active secondary server can suffer by taking
two roles. We chose to make the recovered primary
server take over for management load balancing as this
fail-over and recovery does not frequently occur and
hence the switch-over overhead can be amortized.

R X Y

W’

2. SS_SVRLIST_TOPDOWN

R W X

Y’ R’ W’

1. SS_FAIL

X’
R R

Y

X’ Y’

Figure 7: fail-over

3.2 Management Tasks

There are five basic types of management tasks that
typical system management solutions support:
discovery, collect_inventory, view_inventory,
software_distribution, and event_action.

With these operations, an administrator can
discover endpoint systems to manage given an IP
address range, collect inventory information of
discovered managed endpoints, or view collected
inventory information, which includes hardware,
operating system, network connectivity, and installed
software information. Software or its updates can be
installed on managed endpoints in a distributed and
parallel manner through management servers. System
administrators also can specify events to monitor and
corresponding actions to take. For example, for the
event “CPU usage of endpoint X becomes greater than
70%”, an action can be set to “report the event to an
administrator by email.”

For the discovery task in Blue Eyes, a console sends
the discovery task with a specific IP range and,
optionally, a specific sub-tree, to the connected
management server (say X). By allowing a specified
sub-tree in the MST to run the discovery task,
proximity of endpoints to nearby management servers
in the network can be exploited. In this case, the
discovered endpoints are marked not to be relocated to
the servers outside the sub-tree during the balance
operation. X first divides the IP range evenly into sub-
ranges and assigns each range to each server in the
specified sub-tree. Then, X forwards the discovery task
with the divided IP ranges to the root server R of the
sub-tree. R forwards the discovery task to all the other
servers in the sub-tree down through the tree topology
in the MST. Finally, each server independently

discovers endpoints in the assigned IP range in parallel.
Note that this local discovery procedure leverages the
old traditional single server discovery implementation
without changes. Figure 8 shows an example of the
discovery task. The discovery task is executed under
all the five servers through the root server, so that the
IP range is divided into five sub-ranges.

The collect_inventory task is used when an

administrator wants to collect more detailed
information, such as resource usage and installed
software, for the discovered endpoints. The algorithm
is very similar to the discovery task algorithm except
that the task carries endpoint IDs rather than IP ranges.
The root server of the specified sub-tree in the MST
forwards the collect-inventory task to relevant
management servers. Then, each server collects
inventory information of endpoints given the endpoint
ID list and stores them locally.

The view-inventory task is used to aggregate and
view inventory information of distributed endpoints.
When a console sends the view-inventory task with an
endpoint ID list and a specific sub-tree to the
connected server X, X forwards the task to the root
server R of the sub-tree. Then, R broadcasts the task to
all the other servers in the sub-tree down the tree
topology. Unlike collect_inventory, the
view_inventory task performs extra work to aggregate
inventory information using the tree topology. Each
server aggregates collected inventory information from
the management servers in a bottom-up manner.
Finally, R sends the full inventory information to X,
which then forwards it to the console. Figure 9 shows
an example of the view-inventory task which lists the
inventory of all endpoints in the entire system.

The software_distribution task is used when a
software application or its updates need to be installed
on specific endpoints. The first phase of the
mechanism is similar to that of collect_inventory. The
software_distribution task with an endpoint ID list, a
specific sub-tree, and the software installer file URL is
forwarded to servers through the tree topology. Then,
each server sends the software installer URL to the
specified endpoints in the task, and the endpoints
download and install the software.

The last basic operation is event_action. A user can
specify an event to monitor and set a corresponding
action for endpoints. This task operates as follows. In
Figure 8, a console sends the event_action task to the
connected server Z. Then, Z specifies the event-
handling server X, a root of the smallest sub-tree
covering servers related to the event. For example,
suppose the event is “CPU usage of endpoint EZ1 is
higher than 80% and Disk usage of endpoint EW1 is
higher than 80%.” X distributes sub-events to the

6

relevant servers that cover the endpoints specified by
the sub-events. Then, Z, the server managing EZ1,
starts to monitor its CPU usage, and W, the server
managing EW1, starts to monitor its disk usage. When
Z or W detects the sub-events, it sends the information
to the event-handling server X. X evaluates the event
condition with the sub-event information. If the
condition is evaluated true, X triggers the action
specified by users, e.g. emailing an administrator about
the event occurrence.

X Y

10.1.2.0~10.1.2.255

Console

Z

10.1.4.0~10.1.4.255

10.1.3.0~10.1.3.255

“discover 10.1.1.0 10.1.5.255”

R

10.1.1.0~10.1.1.255

W

10.1.5.0~10.1.5.255

broadcast

Figure 8: discovery

X Y

ENDPOINTS X

Console

Z

ENDPOINTS Z

ENDPOINTS Y

“viewinv all”

R

ENDPOINTS R

W

ENDPOINTS W

broadcast

aggregation
Figure 9: view_inventory

X Y

Console

Z

EZ1, EZ2, …

eventaction

[EZ1_CPU>80% && EW1_Disk>80%]

[email admin]

R

W

EW1, EW2, …
Figure 10: event_action

In a tree structure, the root can typically suffer a

workload and communication bottleneck. As Blue
Eyes exploits the tree structure for load distribution
with an MST, we examine this potential problem.
Regarding the network traffic between servers and
endpoints, all the servers have almost equal workload
because the number of endpoints is balanced over the
servers through the balance operation overall or within
a sub-tree if specified by users. For communication
between servers, the root server handles more when it
aggregates information from other servers if the task
requires all the management servers to work. However,
the tree structure is intended for the locality in group
tasks where only a subset of endpoints are targeted and

they are managed by a subset of management servers
within a sub-tree. We believe this locality of task
targets will prevent the root of an MST from being
overloaded. In addition, the server-to-server traffic and
task processing is far smaller than server-to-endpoint
traffic and task processing, which will be shown in the
evaluation section.

4. Implementation

We implemented a prototype of Blue Eyes with
IBM Java 1.6.0 SDK. It is composed of three
components: a management server, a management
console, and a management agent. A management
agent is a program running on each managed endpoint
that communicates with a management server. Figure
11 illustrates the overall architecture of the Blue Eyes
prototype. For simplicity, our prototype currently does
not include a database component. Instead, all the
information is handled and locally stored by
management server. Each management server keeps
the management information on the management
server list storage and the agent information storage.
A management server has a management engine that
consists of a console manager, an agent manager, and
a server manager. A console manager receives
requests from a management console, processes them,
and returns the results back to the console. An agent
manager sends a management task to an agent, receives
a response, and stores the result in the agent
information storage. A server manager is the central
part of our implementation of Blue Eyes. It maintains
the MSL and handles all the server-to-server operations
described in the last section such as balance, add,
merge, delete, fail-over, and recovery. The server
manager also sends the management information to a
secondary server in order to provide reliability. Our
prototype uses the lightweight UDP protocol between a
management server and a management agent and the
reliable TCP protocol for all other communications.

Mgmt Server

Mgmt

Agent

Another Mgmt

Server

Mgmt

Console

Console

Manager

Agent

Manager

Server

Manager

Mgmt Server ListAgent Information

Agent Msg

Transmitter

& Receiver

Console Msg

Transmitter

& Receiver

Server Msg

Transmitter

& Receiver

Network Manager

Xmit Queue Xmit Queue Xmit Queue

Mgmt Engine

Figure 11: Implementation Architecture

7

5. Evaluation

In this section we evaluate Blue Eyes in terms of
load balancing, performance, network traffic overhead,
and reliability.

5.1 Experimental Setup

We used a Windows machine, the most popular
platform on which to run a system management
solution today, to host eight management server
processes and one management console process. Each
server process in the experiment setup represents a
server machine in a real environment. Two Linux
machines, each of which hosting 1024 agents, are used
to represent 2048 managed endpoints totally.

Figure 12 shows our experimental environment. We
assigned different port numbers to different
management servers. For example, the first
management server SVR1 uses TCP port 7001 to
communicate with other management servers, UDP
port 8001 to communicate with agents, and TCP port
9001 to communicate with a console. Even though
secondary servers are not shown in Figure 12, each
server has a corresponding secondary server in another
process. Each agent on the same agent experiment
machine uses its own IP address. All the agents use the
same well-known port for discovery. All our
experiments were scripted with Python to automate and
repeat starting and finishing server processes and
running server operations and management tasks

.

10.1.1.0/8

UDP 8000

…

10.0.0.1/8

TCP 7002

UDP 8002

TCP 9002

10.0.0.1/8

TCP 7003

UDP 8003

TCP 9003

10.0.0.1/8

TCP 7004

UDP 8004

TCP 9004

10.0.0.1/8

TCP 7005

UDP 8005

TCP 9005

10.0.0.1/8

TCP 7006

UDP 8006

TCP 9006

10.0.0.1/8

TCP 7007

UDP 8007

TCP 9007

10.0.0.1/8

TCP 7008

UDP 8008

TCP 9008

10.0.0.1/8

TCP 7001

UDP 8001

TCP 9001

SVR1 SVR2 SVR3 SVR4 SVR5 SVR6 SVR7 SVR8

MultiAgent1

Console10.0.0.1/8 TCP 9000

10.1.1.1/8

UDP 8000

10.1.1.2/8

UDP 8000

10.1.4.253/8

UDP 8000

10.1.4.254/8

UDP 8000

10.1.4.255/8

UDP 8000

10.1.5.0/8

UDP 8000

…

MultiAgent2

10.1.5.1/8

UDP 8000

10.1.5.2/8

UDP 8000

10.1.8.253/8

UDP 8000

10.1.8.254/8

UDP 8000

10.1.8.255/8

UDP 8000

Windows XP, Pentium M 1.7GHz, 1GB RAM

Linux 2.6, Pentium 4-M 2.40GHz, 1GB RAM Linux 2.6, Pentium 4 2.40GHz, 1.5GB RAM
Figure 12: Experimental Environment

5.2 Load Balance

The first experiment demonstrates that the workload
is distributed across management servers by balancing
the number of endpoints. Figure 13 shows how the
number of endpoints in each management server is

balanced over time. We started with one server and
discovered 256 endpoints at time 0. Then, we added an
empty server and discovered another 256 endpoints
every 60 seconds until reaching 240 seconds. At time
290 seconds, we merged a server network which
contained three servers and 768 endpoints. The upper
curve in the graph represents the total number of
endpoints in the system; the number increases as new
endpoints are discovered. The other curves on the
bottom represent the number of endpoints managed by
each server. This number is adjusted whenever a new
server added, so that every server covers the same
number of endpoints. For example, each of the three
management servers, SVR1, SVR2, and SVR3
managed 256 endpoints before 170 seconds. Just after
adding the fourth server SVR4, the balancing
mechanism was executed by the root server. Each of
the three old servers SVR1, SVR2, and SVR3 moved
64 endpoints to the new server SVR4, so that each
server maintains the same number of endpoints, 192
endpoints. This experiment demonstrates that by
balancing the number of endpoints to be covered, Blue
Eyes distributes the management load over
management servers.

Balance # Endpoints

0

500

1000

1500

2000

2500

0 60 120 180 240 300 360

Time(s)

En

dp
oi

nt
s

TOTAL SVR1 SVR2 SVR3 SVR4 SVR5 SVR6 SVR7 SVR8

Figure 13: Load Balance

5.3 Performance

We conducted another experiment showing that
Blue Eyes scales well in performance with addition of
management servers. In this experiment, we varied the
number of servers: one, two, four, or eight servers. For
each setup, we started with all servers added and all
2,048 endpoints discovered, and then measured the
progress of collect_inventory every five seconds. The
eight servers took 50 seconds to collect inventory from
2048 endpoints, while a single server took 350 seconds.
The speedup of the response time in this case is 7,
which is quite close to the linear speedup. The
difference is due to a communication delay over the
tree structure for spreading the collect_inventory task

8

and aggregating the number of inventory-collected
endpoints over servers. This shows the scalability of
Blue Eyes is fairly good with near-linear speedup and
the server-to-server interaction overhead is acceptable.

Performance (Collect-inventory)

0

500

1000

1500

2000

2500

0 60 120 180 240 300 360 420

Time(s)

In

ve
nt

or
y-

co
lle

ct
ed

 E
nd

po
in

ts

1 server 2 servers 4 servers 8 servers

Figure 14: Performance

5.4 Network Traffic Overhead

We ran another experiment to analyze server-to-
server interaction overhead in network traffic. In this
experimental scenario, a user started with eight
management servers, discovered all 2,048 endpoints at
20 seconds, collected inventory of all endpoints at 400
seconds, and viewed the inventory list of 512
endpoints in a sub-tree at 950 seconds. The experiment
is finished at 1000 seconds. We categorized network
traffic into three types of messages: server-to-endpoint,
server-to-server for management tasks and server
operations, and server-to-server for management
information replication and keep-alive checking. Table
2 shows the total number of messages and the total
amount of network traffic in the system for each
category.

 total Server-
to-

Endpoint

Server – to-
Server

(Management)

Server –to-
Server

(Reliability)
msg
(msgs)

69818 68110
97.5%

135
0.2%

1573
2.3%

Size
(KBytes)

5791 4236
73.1%

171
3.0%

1384
23.9%

Table 2: Network Traffic (8 servers, 1000 seconds)

Note that server-to-endpoint traffic is independent

of the number of management servers since each
endpoint will receive the same number of requests and
send out the same number of results. The results in
Table 2 show that the messages between servers and
endpoints dominate the management network traffic
with more than 97% in the number of messages and
73% in total traffic amount. The server-to-server

network overhead for management is sufficiently low
in both of these metrics.

The extra network traffic overhead for reliability
(24%) is not negligible. However, this is the trade-off
between high reliability and resource efficiency. In this
experimental setup, the keep-alive message period was
set to 10 seconds, for very fast fail-over and recovery.
This can be relaxed in practice, depending on the
management availability requirement, which will
further reduce the reliability overhead traffic. In
addition, when more management servers are inserted
with the addition of more systems to managed, extra
network cables and subnets are typically added. This
proportional expansion of network facility will lead to
an acceptable constant bandwidth consumption among
management servers when management network grows.

5.5 Fail-over and Recovery

The last experiment examines how the fail-over and
recovery mechanisms operate in Blue Eyes. Figure 15
demonstrates that our system reliably manages
endpoints in the existence of a server failure. Our
failure scenario started with eight servers (SVR1~8)
with 2,048 endpoints discovered and their inventory
collected. We terminated the process running the
primary server of the server SVR6 at 180 seconds. The
secondary server of SVR6 detected the failure of the
primary server at 210 seconds and took it over. We
restarted the terminated process for SVR6 at 360
seconds to simulate the recovery. The curve on the top
represents the number of endpoints available for
management. The impact of the failure is localized and
confined. For the 30-second between the failure and
detection, only the local endpoints of SVR6 cannot be
managed, but all the other endpoints covered by other
servers are still manageable.

The curves on the bottom in Figure 15 show the
CPU usage of the two processes 2 , one (black solid
curve) running the primary server of SVR6 and the
secondary server of SVR5 and one (red dotted curve)
running the secondary server of SVR6 and the primary
server of SVR7. When the secondary server of SVR6
is active after fail-over between 210 seconds and 360
seconds, its CPU usage doubles whereas and the CPU
usage of the process with the primary server of SVR6
stays at 0. This is due to increased management
workload of that process as both primary SVR7 and
secondary SVR6 become active. When the failed
SVR6 primary recovers, it takes over SVR6’s role

2 This process represents a management server machine in the real
use. In experiment, we use single machine and multiple processes,
each of which represents a management server.

9

from the secondary and the CPU usages become
balanced.

Reliability Management

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 60 120 180 240 300 360 420 480 540 600

Time(s)

C
PU

 u
sa

ge
 (%

)

0

500

1000

1500

2000

Endpoints

WinAvg Process(SVR6.Pri) WinAvg Process(SVR6.Sec) Process(SVR6.Pri)
Process(SVR6.Sec) #Endpoints

Figure 15: Reliable Management

6. Related Work

Many commercial system management solutions
[1][2][3][4] have been developed to manage computing
resources on different platforms. Those solutions
support a set of common administration tasks such as
discovery, inventory, and event notification. They also
share a similar software architecture having only a
single management server. This restricts the scalability.
Their reliability model also relies on database recovery,
which oftentimes extends the unavailable time.

There are several cluster monitoring systems that
have a scalable architecture. Ganglia [5][6] is a
scalable distributed monitoring system based on a
hierarchical design for high performance computing
systems such as clusters and Grids. Ganglia monitoring
daemon (gmond) collects cluster information and
provides it for the Ganglia Meta Daemon (gmetad) and
a client. Ganglia is robust to failures of gmond but if
the gmetad fails, the system becomes unavailable,
resulting in a hole in reliability. Supermon [7] is
another hierarchical cluster monitoring system that
uses a statically configured hierarchy of point-to-point
connections to gather and aggregate cluster data. A
data concentrator aggregates information from node
data servers running on cluster nodes. Cluster nodes
are similar to managed endpoints in system
management and data concentrators are similar to
management servers. The data concentrators can build
a hierarchical tree to support additional managed
endpoints, but only the leaf data concentrators in the
tree communicate with node data servers, whereas
intermediate nodes in the Blue Eyes’s MST covers its
share of endpoints. Also, there is no fail-over
mechanism for data concentrators, resulting in lack of
reliability. PARMON [8] is a client/server cluster
monitoring system that uses servers that export a fixed

set of node information and clients that poll the servers
and interpret the data. Servers in PARMON are similar
to management agents in our system. Clients in
PARMON correspond to management servers in our
system, but they cannot be connected to one another in
order to handle a large amount of managed endpoints,
therefore PARMON does not offer a scalable solution.

Linux Virtual Server [11][12] provides a basic
framework to build scalable and available network
services. It has a three-tier architecture with a load
balancer, a server pool, and back-end storage. The
front-end load balancer simply forwards incoming
packets to the server pool which then performs the
work and manipulates data in the back-end storage.
The state of concurrent connections is maintained by
the load balancer and servers in the server pool are
required to be stateless. This architecture with stateless
servers is not suitable for existing system management
solutions. A system management server frequently
monitors the status of each endpoint and keeps them in
memory. Requiring servers to keep all the frequent
changes of endpoints in the shared back-end database
is prohibitively expensive. The P2P research
[13][14][15][16] has shown that a scalable and reliable
system for storing and retrieving data can be built upon
unreliable machines and networks. Nodes in a P2P
network do not need a global map to create a highly
scalable network. However, the complexity of
managing a network in a P2P system is too high to be
applied to a system management solution. In addition,
machines used for management servers are usually
more robust than the nodes joining and leaving in a
P2P network since management servers are set up and
maintained by enterprise administrators. We believe a
hierarchical structure is sufficient to achieve low
complexity and high scalability for a management
server network.

Our previous research [9] describes a technique for
testing and validating a commercial grade system
management tool for thousands of managed endpoints.
It uses “agent multiplication” to make one physical test
machine appear as many managed endpoints to the
management server, while maintaining all of the
managed endpoints as distinct management agents. We
leveraged this technology to evaluate Blue Eyes in a
large scale environment with a small number of testing
machines.

7. Conclusions and Future work

This paper presents and evaluates Blue Eyes, a
scalable and reliable system management solution
based on a multi-server architecture. We described
how multiple management servers are organized to

10

effectively and reliably manage ever increasing
endpoint systems requiring administration.
Management workload is evenly distributed by
balancing the number of endpoints covered by each
management server. Management tasks are forwarded
efficiently to endpoints through a tree structure (MST)
of management servers. Secondary servers organized
in a logical ring (MRR) help the system be reliable and
highly available. We implemented a prototype of Blue
Eyes with a core set of server-server operations and
distributed mechanisms to support a basic management
tasks. It is important to note that this implementation
does not impose significant modification of
management task code of the legacy management
solutions. Our early experimental results, using the
prototype, show that Blue Eyes can be expanded with
balanced workload for endpoints, good performance
characteristic for management tasks, and a small scale-
out overhead. We also assessed how the system
resource utilization changes over a fail-over process.

Currently, we are investigating adding automatic
endpoint grouping based on proximity to management
servers. By automatically grouping endpoints within a
short distance and managing them under a certain
management server of a sub-tree, IT administrators can
manage endpoints even more efficiently exploiting
locality. We are also expanding our experiments in two
dimensions, 1) larger scale experiments and
measurements with hundreds of thousands of endpoints,
and 2) various types of management tasks that our
experiment did not explore in this paper such as
software_distribution and event_action.

References

[1] D. Watts, et al., Implementing IBM Director 5.20.

SG24-6188, IBM Corp., April 2007, http://publib-
b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg2
46188.html.

[2] Microsoft Corp., Microsoft System Management Server
Planning Guide. 2008.
http://www.microsoft.com/technet/prodtechnol/sms/sms
2/proddocs/default.mspx?mfr=true.

[3] C. Cook, et. al., An Introduction to Tivoli Enterprise.
SG24-5494, IBM Corp.
http://www.redbooks.ibm.com/abstracts/sg245494.htm.

[4] HP, HP Systems Insight Manager Technical Reference
Guide. November 2005.
www.hp.com/wwsolutions/misc/hpsim-helpfiles/sys-
book.pdf.

[5] M. Massie, et. al., The Ganglia Distributed Monitoring
System: Design, Implementation, and Experience.
Parallel Computing, Vol. 30, Issue 7, July 2004.

[6] F. Sacerdoti, et. al., Wide Area Cluster Monitoring with
Ganglia. IEEE Cluster 2003 Conference, Hong Kong,
December 2003.

[7] M. Sottile, et. al., a high-speed cluster monitoring
system. Proceedings of Cluster
2002, September 2002.

[8] R. Buyya, Parmon, a portable and scalable monitoring
system for clusters. Software––Practice and Experience
30 (7) (2000) 723–739.

[9] K. Ryu, et. al., Agent Multiplication: An Economical
Large-scale Testing Environment for System
Management Solutions. Workshop on System
Management Techniques, Processes, and Services
(SMTPS), April 2008.

[10] W. H. Highleyman, Availabilty versus Performance.
Sombers Associates, Inc., August 2007.
http://www.availabilitydigest.com/public_articles/0208/
availability_versus_performance.pdf.

[11] W. Zhang, et. al., Creating Linux Virtual Servers.
LinuxExpo 1999.

[12] W. Zhang, Linux Virtual Server for Scalable Network
Services. Ottawa Linux Symposium 2000.

[13] S. Ratnasamy, et. al., A Scalable Content Addressable
Network. Proceedings of the ACM SIGCOMM, Aug.
2001.

[14] A. Rowstran, et. al., Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer
systems. Proceedings of the 18th IFIP/ACM
International Conference on Distributed Systems
Platforms (Middleware 2001), November 2001.

[15] I. Stoica, et. al., Chord: A Scalable Peer-to-peer Lookup
Service for Internet Applications. Proceedings of the
ACM SIGCOMM, August 2001.

[16] B. Zhao, et. al., Tapestry: A Resilient Global-scale
Overlay for Service Deployment. IEEE Journal on
Selected Areas in Communications, 22(1), January
2004.

11

	1. Introduction
	2. Design
	2.1 Overall Architecture
	2.2 Management Server Tree
	2.3 Management Reliability Ring
	2.4 Management Server List

	3. Mechanism
	3.1 Management Server Operations
	3.2 Management Tasks

	4. Implementation
	5. Evaluation
	5.1 Experimental Setup
	5.2 Load Balance
	5.3 Performance
	5.4 Network Traffic Overhead
	5.5 Fail-over and Recovery

	6. Related Work
	7. Conclusions and Future work
	References

