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AN INTERIOR-POINT ALGORITHM FOR LARGE-SCALE
NONLINEAR OPTIMIZATION WITH INEXACT STEP

COMPUTATIONS

FRANK E. CURTIS∗, OLAF SCHENK† , AND ANDREAS WÄCHTER‡

Abstract. We present a line-search interior-point algorithm for large-scale continuous optimiza-
tion. The algorithm is matrix-free in that it does not require the factorization of derivative matrices
and instead uses iterative linear system solvers. Inexact step computations are supported in order
to save computational expense during each iteration. The algorithm is an interior-point approach
derived from the inexact Newton method for equality constrained optimization described by Curtis,
Nocedal, and Wächter in [9], with additional functionality for handling inequality constraints. The
algorithm is shown to be globally convergent under standard assumptions. Numerical results are
presented on partial differential equation constrained model problems.

Key words. large-scale optimization, constrained optimization, interior-point methods, non-
convex programming, trust regions, inexact linear system solvers, Krylov subspace methods
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1. Introduction. We consider nonlinear optimization problems of the form

min
x∈Rn

f(x)

s.t. cE(x) = 0
cI(x) ≥ 0,

(1.1)

where the objective f : Rn → R and the constraints cE : Rn → Rp and cI : Rn → Rq
are sufficiently smooth. We are particularly interested in large-scale problems such as
those where the equality constraints are obtained by discretizing partial differential
equations (PDEs) and the inequality constraints are, for example, restrictions on a set
of control and/or state variables. However, our techniques can be applied to problems
with general nonlinear equality and inequality constraints of the form (1.1).

Contemporary optimization methods often require the use of derivatives through-
out the solution process. Fast convergence from remote starting points requires first-
order derivatives of the objective and the constraints, and local convergence in the
neighborhood of solution points can be greatly enhanced with second-order deriva-
tives in the form of the Hessian of the Lagrangian of problem (1.1). For the solution
of small to moderately large problems the storage and computational requirements of
factoring explicit derivative matrices are reasonable, which allows for the use of very
sophisticated and efficient techniques. For this reason, the use of contemporary opti-
mization methods has spread and been successful throughout a number of scientific
communities.

In many application areas, however, there is great interest in solving optimization
problems of extremely large sizes. For example, if the constraints of the problem
correspond to a discretized PDE, then the accuracy of a solution with respect to
this infinite-dimensional problem is directly related to size of the largest discrete
approximate problem that can be solved. The storage and factorization of explicit
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derivative matrices for such large-scale applications is intractable, so researchers and
practitioners are often forced to seek alternatives to the better available optimization
techniques.

One possible alternative for large-scale optimization is to reduce the original prob-
lem into one of a smaller size through a process of nonlinear elimination [11, 35]. This
process involves an iteration for determining an optimal set of control variables. For
each set of controls, the equality constraints in (1.1) are solved for the remaining
state variables, and an auxiliary system may be solved for the sensitivities of the state
variables with respect to the controls. The remainder of the iteration involves only
the computation of a displacement in the controls. Algorithms of this type, however,
suffer from a number of setbacks. For example, if a large number of iterations are
required to find an optimal set of control variables, then such a procedure requires a
large number of exact solutions of the equality constraints (a PDE) and the adjoint
equations (another set of PDEs).

The challenge is thus to design a constrained optimization algorithm that emu-
lates an efficient nonlinear programming approach. The algorithm may utilize matrix-
vector products with the constraint Jacobian, its transpose, and the Hessian of the
Lagrangian of problem (1.1) together with appropriate preconditioners — quanti-
ties that are computable for many large-scale applications of interest — but must
overcome the fact that exact factorizations of derivative matrices are impractical to
obtain. Iterative linear system solvers present a viable alternative to direct factor-
ization methods, but the benefits of these techniques are only realized if inexact step
computations are controlled appropriately in order to guarantee global convergence
of the algorithm.

A line of efficient and robust algorithms have been developed that meet these
requirements for equality constrained problems; see [4, 5, 9]. These line-search meth-
ods illustrate how inexactness in the iterative step computations can be controlled to
ensure global convergence to a solution point; first in the case of a convex sequential
quadratic programming (SQP) framework, then when handling nonconvexity of the
problem functions, and finally when the constraint functions may be ill-conditioned or
even inconsistent. A competing trust-region framework, developed in [15, 26] with a
close relationship to [6, 7], has also been developed and analyzed. However, embedded
in this approach are computations requiring approximate projections of vectors onto
the null space of the constraint Jacobian multiple times during each iteration, which
can be expensive for large-scale applications. Our interest, therefore, is the extension
of the aforementioned line-search methods to the solution of generally constrained
problems of the form (1.1).

In this paper, we propose and analyze such an algorithm for large-scale continuous
optimization problems and investigate its practical performance. We show that with
appropriate scaling matrices, the method developed in [9] is readily extendable to
problems where inequality constraints are present. The resulting method is matrix-
free, allows for inexact step computations, and is globally convergent to first-order
optimal points of (1.1), or at least to stationary points of the feasibility problem

min
x∈Rn

1
2‖cE(x)‖22 + 1

2‖cI(x)−‖22 (1.2)

that yield a nonzero objective value; i.e., infeasible stationary points of problem (1.1).
(Here, for a vector z we define z− = max{0,−z}, where the max is taken element-
wise.) In addition, the method yields encouraging numerical results on a pair of
model PDE-constrained optimization problems, implying that it has much potential
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for other large-scale applications.
We note that our method has much in common with the algorithms in [1, 2, 14, 25]

as we follow a full-space, or all-at-once, approach for PDE-constrained problems. The
major difference, however, is that we present conditions that guarantee the global
convergence of the algorithm. Other related techniques take the form of reduced-
space SQP methods [17], more general step decomposition approaches [16, 31], and
algorithms that reformulate the problem as a mixed complementarity problem [18].
We believe that our framework has an advantage over these, however, in terms of
practical applicability for general purpose problems.

We organize the paper as follows. In §2 we present our matrix-free method, at the
heart of which are conditions dictating when a given trial search direction should be
considered sufficient to ensure global convergence of the algorithm. Section 3 contains
analysis of the global behavior of the approach, while §4 illustrates the practical
behavior of a preliminary implementation of our algorithm. Finally, in §5 we present
closing remarks.

Notation.. All norms are considered `2 unless otherwise indicated, though much of
our analysis would apply for any vector-based norm. We drop function dependencies
once values are clear from the context and use the expression M1 � M2 to indicate
that the matrix M1 −M2 is positive definite. Parenthesized superscripts are used to
indicate the component of a vector and subscripts are used to indicate the current
iteration number in an algorithm.

2. An Interior-point Algorithm. In this section we present our algorithm.
We begin by describing an interior-point framework in an environment where steps
can be computed exactly from subproblems and linear systems, and then introduce al-
gorithmic components when inexact step computations are introduced. The resulting
algorithm is a line-search interior-point method with safeguards for situations when
the problem is nonconvex and when the constraint Jacobians are ill-conditioned or
rank deficient. We note that the components of our interior-point framework are de-
fined in a nonstandard fashion (as explained below), but that through our formulation
we may more directly extend the techniques presented in [9].

2.1. Interior-point Framework. Our algorithm follows a standard interior-
point strategy in that problem (1.1) is solved via the solution of a sequence of barrier
subproblems of the form

min f(x)− µ
q∑
i=1

ln s(i)

s.t. cE(x) = 0
cI(x)− s = 0

(2.1)

for decreasing values of the barrier parameter µ > 0. The Lagrangian for (2.1), with
multipliers λE ∈ Rp and λI ∈ Rq, is given by

L(x, s, λE , λI ;µ) , f(x)− µ
q∑
i=1

ln s(i) + λTE cE(x) + λTI (cI(x)− s), (2.2)
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so if f , cE , and cI are sufficiently smooth, then the first-order optimality conditions
for (2.1) are

∇f(x) + (∇cE(x))λE + (∇cI(x))λI = 0

−µS−1e− λI = 0
cE(x) = 0

cI(x)− s = 0,

(2.3)

along with s > 0. Here, we have defined S = diag(s) and e ∈ Rq as a vector of ones.
If problem (2.1) is infeasible, then the algorithm is designed to converge toward

a first-order optimal solution of the feasibility problem (1.2) so that a justified dec-
laration of infeasibility can be made. Noting that ‖cI(x)−‖2 is differentiable with
∇
(
‖cI(x)−‖2

)
= −2∇cI(x)cI(x)−, such a point can be characterized as a solution

to the nonlinear system of equations

(∇cE(x))cE(x)− (∇cI(x))cI(x)− = 0.

If s ≥ 0 and cI(x)− s ≤ 0, then this is equivalent to

(∇cE(x))cE(x) + (∇cI(x))(cI(x)− s) = 0
−S(cI(x)− s) = 0.

(2.4)

Let j be the outer iteration counter for solving the nonlinear program (1.1) and
let k be the inner iteration counter for solving the barrier subproblem (2.1). Defining
the primal and dual iterates as

z =
[
x
s

]
and λ =

[
λE
λI

]
,

respectively, the barrier objective and constraints as

ϕ(z;µ) = f(x)− µ
q∑
i=1

ln s(i) and c(z) =
[

cE(x)
cI(x)− s

]
with corresponding scaled first derivatives

γ(z;µ) =
[
∇f(x)
−µe

]
and A(z) =

[
∇cE(x)T 0
∇cI(x)T −S

]
, (2.5)

respectively, and the scaled Hessian of the Lagrangian as

W (z, λ;µ) ,

[
∇2
xxf 0
0 µI

]
+

p∑
i=1

λ
(i)
E

[
∇2
xxc

(i)
E 0

0 0

]
+

q∑
i=1

λ
(i)
I

[
∇2
xxc

(i)
I 0

0 0

]
, (2.6)

a Newton iteration for (2.1) amounts to the solution of the linear system[
Wk ATk
Ak 0

] [
dk
δk

]
= −

[
γk +ATk λk

ck

]
. (2.7)

(In our algorithm, Wk represents a bounded symmetric approximation to (2.6) that
is sufficient for ensuring global convergence.)
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Notice that our definition of the primal search direction dk is nonstandard; i.e.,
with the formulation above, the primal iterate is to be updated with a line-search
coefficient αk ∈ (0, 1] as

zk+1 ← zk + αkd̃k with d̃k =
[
dxk
Skd

s
k

]
, (2.8)

where dxk and dsk are the components of dk corresponding to the x and s variables,
respectively. This update follows from our use of scaled first and second derivatives;
see [6] for an example of another algorithm that uses such a scaling for the slack vari-
ables. The scaling is crucial for allowing us to directly apply many of the theoretical
results from [9], which discusses the algorithm below applied to problems with only
equality constraints.

Line-search interior-point methods that compute search directions directly via
(2.7) have been shown to fail to converge from remote starting points; see [32]. More-
over, in situations where the matrix Ak is (nearly) rank deficient, it is necessary to
safeguard the step computation to avoid long, unproductive search directions, or to
handle situations when the system is inconsistent and the Newton step is thus un-
defined. Following the algorithm in [9], we avoid these difficulties by replacing dk in
(2.7) by a concatenation of a normal step vk and a tangential step uk.

The normal step vk is designed as a move toward the satisfaction of a linear model
of the constraints within a trust region, and is defined via the subproblem

min
v∈Rn

1
2‖ck +Akv‖2

s.t. ‖v‖ ≤ ω‖ATk ck‖,
(2.9)

where ω > 0 is a given constant. Note that the radius of the trust region in this
problem is related to the conditions (2.4), which are equivalent to ATk ck = 0, so that,
for example, at a stationary point of the feasibility measure we have vk = 0. We
prefer this form of a trust-region constraint as it simplifies our analysis in §3; see [30]
and references therein for similar approaches used by other authors.

Our tangential step uk is intended as a move toward optimality that does not
mar the progress toward feasibility attained by the normal component. It is defined
implicitly via the perturbed Newton system[

Wk ATk
Ak 0

] [
dk
δk

]
= −

[
γk +ATk λk
−Akvk

]
, (2.10)

which yields

uk , dk − vk. (2.11)

Note that (2.10) has a consistent second block of equations even if Ak is rank deficient.
Moreover, if the matrix Wk is positive definite in the null space of Ak, then a solution
to (2.10) corresponds to a solution to the quadratic program

min
u∈Rn

(γk +Wkvk)Tu+ 1
2u

TWku

s.t. Aku = 0.
(2.12)

However, if Wk is not sufficiently positive definite, then this matrix must be modified
or replaced by a sufficiently positive definite approximation matrix in order to ensure
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that the resulting solution to (2.10) is an appropriate search direction. If a factoriza-
tion is performed, then the need for such a modification can be verified by observing
the inertia of the primal-dual matrix (see [21] and the algorithm in [28]), but for our
purposes we leave consideration of this issue until a precise procedure is outlined in
our algorithm with inexact step computations below.

With a search direction dk = uk + vk computed via (2.9) and (2.10), we perform
our line search by first determining the maximum stepsize αmax

k ∈ (0, 1] satisfying the
fraction-to-the-boundary rule

sk + αmax
k Skd

s
k ≥ (1− η1)sk (2.13)

for a constant η1 ∈ (0, 1). Then, an appropriate stepsize αk ∈ (0, αmax
k ] is determined

yielding progress in the penalty function

φ(z;µ, π) = ϕ(z;µ) + π‖c(z)‖, (2.14)

where π > 0 is a penalty parameter. Denoting Dφ(d̃;µ, π) as the directional derivative
of φ at z along d̃ (see (2.8)) and setting πk so that Dφk(d̃k;µj , πk) < 0, an appropriate
sufficient decrease requirement for αk ∈ (0, 1] is given by the Armijo condition

φ(zk + αkd̃k;µj , πk) ≤ φ(zk;µj , πk) + η2αkDφk(d̃k;µj , πk) (2.15)

for a constant η2 ∈ (0, 1).
A framework that assumes exact solutions of subproblems and linear systems

is summarized as Algorithm 2.1. A number of modifications to this framework are
possible, and further details are necessary in order to guarantee global convergence.
However, Algorithm 2.1 is suitable for our purposes of setting up the details that
follow. Notice that the fraction-to-the-boundary rule (2.13) ensures sk ≥ 0 and that
the slack reset, performed after the iterate has been updated in the inner for loop,
ensures

cI(xk+1)− sk+1 = cI(xk+1)−max{sk + αkSkd
s
k, cI(xk+1)} ≤ 0 (2.16)

for all k, so an iterate zk yielding

ATk ck = 0, (2.17)

(equivalently, (2.4)), is a stationary point of problem (1.2).

2.2. An Interior-Point Method with Inexact Step Computations. In the
remainder of this section we present techniques for applying Algorithm 2.1 when the
matrices Ak and Wk do not need to be explicitly stored or factored, meaning that
exact solutions of (2.9) and (2.10) do not need to be computed. The algorithm is very
closely related to the method for equality constrained problems presented in [9].

Our algorithm requires that the normal component vk satisfies the following con-
dition.

Normal component condition. The normal component vk must be feasible for
problem (2.9) and satisfy the Cauchy decrease condition

‖ck‖ − ‖ck +Akvk‖ ≥ εv(‖ck‖ − ‖ck + ᾱkAkv̄k‖) (2.18)
6



Algorithm 2.1 Interior-Point Framework
Choose parameters 0 < η1, η2 < 1 and initialize µ0 > 0
for j = 0, 1, 2, . . . , until termination criteria for (1.1) or for (1.2) is satisfied do

if j = 0 then
Initialize (z0, λ0) with s0 > 0 and s0 ≥ cI(x0)

else
Set (z0, λ0)← (zk, λk) from the solution of the last barrier subproblem

end if
Initialize π−1 > 0
for k = 0, 1, 2, . . . , until termination criteria for (2.1) or for (1.2) is satisfied do

Compute dk = uk + vk and δk via (2.9) and (2.10)
Set d̃k ← (dxk, Skd

s
k)

Set πk ≥ πk−1 so that Dφk(d̃k;µj , πk) < 0
Choose αk ∈ (0, 1] satisfying (2.13) and (2.15)
Update zk+1 ← zk + αkd̃k and choose λk+1

Set sk+1 ← max{sk+1, cI(xk+1)}
end for
Choose µj+1 (so that {µj} → 0)

end for

for some constant εv ∈ (0, 1), where v̄k = −ATk ck is the steepest descent direction
for the objective of problem (2.9) at v = 0 and ᾱk is chosen as the solution to the
one-dimensional problem

min
ᾱ∈R

1
2‖c+ ᾱAkv̄k‖2

s.t. ᾱ ≤ ω.
(2.19)

A number of iterative techniques have been developed and well-studied for the inex-
act solution of (2.9) with solutions satisfying this condition, including the conjugate
gradient or LSQR [22] algorithm with Steihaug stopping tests [29]. In our implemen-
tation described in §4, we prefer a type of inexact dogleg approach [23, 24], which
we found to outperform these methods, especially in cases where Ak is (nearly) rank
deficient.

Given vk satisfying the normal component condition, we next compute a tan-
gential component and a displacement for the Lagrange multipliers by applying an
iterative linear system solver to the primal-dual system (2.10). During each iteration,
this process yields the residual vector[

ρk
rk

]
,

[
Wk ATk
Ak 0

] [
dk
δk

]
+
[
γk +ATk λk
−Akvk

]
. (2.20)

Unlike common inexact Newton techniques (see [10]) that accept or reject a search
direction simply based on values of this corresponding residual vector, however, we
need to be sure that the resulting direction is one that ensures sufficient progress
toward a solution of the current barrier subproblem (2.1). Moreover, the primal-dual
matrix may need to be modified within the solution process to guarantee descent for
our penalty function.

Following the terminology developed in [4, 5, 9], we present three termination cri-
teria for the primal-dual step computation as sufficient merit function approximation
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reduction termination tests (SMART tests, for short). The central tenet of these cri-
teria is that a nonzero primal search direction is acceptable if and only if it provides
a sufficient reduction in the local model

m(d;µ, π) = ϕ+ γT d+ π‖c+Ad‖

of the penalty function φ from a given iterate zk for an appropriate value of πk. The
reduction in mk attained by dk is defined as

∆mk(dk;µj , πk) = mk(0;µj , πk)−mk(dk;µj , πk)

= −γTk dk + πk(‖ck‖ − ‖ck +Akdk‖),

and can be computed easily for any given dk. We show later on (see Lemma 3.5) that
dk corresponds to a search direction of sufficient descent in φ when ∆mk is sufficiently
large, so the following condition plays a crucial role in our termination conditions for
the primal-dual step computation.

Model reduction condition. A search direction dk = uk + vk 6= 0 must satisfy

∆mk(dk;µj , πk) ≥ max{ 1
2u

T
kWkuk, θ‖uk‖2}+ σπk(‖ck‖ − ‖ck +Akvk‖) (2.21)

for πk > 0, where σ ∈ (0, 1) and θ > 0 are given constants.

Although the model reduction condition (2.21) forms the center of the termination
conditions for the step computation of our algorithm, a couple auxiliary requirements
are also necessary in order to ensure global convergence. We present these two con-
ditions before presenting our termination tests below.

First, the following condition ensures that either the tangential component uk
is proportional in norm to the normal component vk, or that it satisfies a certain
optimality property with respect to the quadratic program (2.12).

Tangential component condition. A tangential component uk yielding dk =
uk + vk 6= 0 must satisfy

‖uk‖ ≤ ψ‖vk‖ (2.22)

or

1
2u

T
kWkuk ≥ θ‖uk‖2 (2.23a)

and (γk +Wkvk)Tuk + 1
2u

T
kWkuk ≤ ζ‖vk‖, (2.23b)

where ψ ≥ 0 and ζ ≥ 0 are given constants and θ is given in (2.21).

Specifically, (2.23) ensures that the tangential component uk yields a sufficiently low
objective value for problem (2.12) and is a direction of sufficiently positive curvature.

The second auxiliary condition resembles a common inexact Newton condition
[10]. In the analysis of our algorithm, this condition essentially ensures that dual
feasibility is attained as the algorithm converges to a primal solution point.

Dual residual condition. The dual residual vector ρk must satisfy

‖ρk‖ ≤ κmin
{∥∥∥∥[γk +ATk λk

−Akvk

]∥∥∥∥ ,∥∥∥∥[γk−1 +ATk−1λk
−Ak−1vk−1

]∥∥∥∥} (2.24)

for a given κ ∈ (0, 1).
8



We note that the norm of the residual rk in (2.20) is implicitly controlled by the
tangential component condition, so it does not need to be controlled explicitly in the
algorithm.

We are now ready to present our three termination tests for the iterative primal-
dual step computation. The first termination test is simply a compilation of the above
conditions.

Termination test 1. A search direction (dk, δk) is acceptable if for πk = πk−1

the model reduction condition (2.21) is satisfied, the tangential component condition
(2.22) or (2.23) is satisfied, and if the dual residual condition (2.24) holds.

The second termination test amounts to an adjustment of the multiplier estimates
where we temporarily suspend movement in the primal space. Inclusion of this test
may be necessary for situations when zk is a stationary point for the feasibility problem
(1.2), but γk +ATk λk 6= 0, as in these situations a (near) exact solution to (2.10) may
be required to produce an acceptable step. The test may also save computational
expense when zk is in the neighborhood of such points. It is important to note that
for search directions satisfying only this test, the primal step components are reset to
zero vectors; i.e., we set (vk, uk, dk)← (0, 0, 0), πk ← πk−1, and choose αk ← 1.

Termination test 2. If for a given constant ε2 > 0 we have

‖ATk ck‖ ≤ ε2‖γk +ATk λk‖, (2.25)

then a search direction (dk, δk) ← (0, δk) is acceptable if the dual residual condition
(2.24) holds; i.e.,

‖γk +ATk (λk + δk)‖ ≤ κmin
{
‖γk +ATk λk‖,

∥∥∥∥[γk−1 +ATk−1λk
−Ak−1vk−1

]∥∥∥∥} . (2.26)

for the given κ ∈ (0, 1).

Condition (2.25) implicitly ensures that the algorithm will allow only a finite number
of iterations where only termination test 2 is satisfied before requiring an iteration
to satisfy one of the other two tests; i.e., it ensures that the algorithm does not only
focus on reducing dual infeasibility.

The third termination test is necessary for situations where the model reduction
condition cannot be satisfied without an accompanying increase in the penalty pa-
rameter. Such an increase may be needed, for example, if the current primal iterate
is a stationary point for φ(·;µj , πk−1) that is not a solution of the current barrier
subproblem (2.1) or the feasibility problem (1.2). The test requires a reduction in the
local linear model of the constraints, so for this test to be considered during iteration
k, we require ‖ck‖ − ‖ck +Akvk‖ > 0.

Termination test 3. A search direction (dk, δk) is acceptable if the tangential
component condition (2.22) or (2.23) is satisfied, the dual residual condition (2.24)
holds, and if

‖ck‖ − ‖ck +Akdk‖ ≥ ε3(‖ck‖ − ‖ck +Akvk‖) > 0. (2.27)

for some constant ε3 ∈ (0, 1).

For steps satisfying only termination test 3, we require

πk ≥
γTk dk + max

{
1
2u

T
kWkuk, θ‖uk‖2

}
(1− τ)(‖ck‖ − ‖ck +Akdk‖)

, πtrialk , (2.28)
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for a given constant τ ∈ (0, 1). Along with (2.27) this bound yields

∆mk(dk;µj , πk) ≥ max{ 1
2u

T
kWkuk, θ‖uk‖2}+ τπk(‖ck‖ − ‖ck +Akdk‖)

≥ max{ 1
2u

T
kWkuk, θ‖uk‖2}+ τε3πk(‖ck‖ − ‖ck +Akvk‖),

so (2.21) is satisfied for σ = τε3. From now on we assume that the constants τ , σ, and
ε3 are chosen to satisfy this relationship for consistency between termination tests 1
and 3.

As previously mentioned, Wk may need to be modified or replaced by a sufficiently
positive definite matrix to ensure that an appropriate search direction satisfying the
tangential component condition (2.22) or (2.23) will eventually be computed. Dur-
ing the iterative primal-dual step computation, we call for such a modification by
implementing the following rule.

Hessian modification strategy. Let Wk be the current scaled Hessian approx-
imation and let a trial step (dk, δk) be given. If uk = dk − vk satisfies (2.22) or
(2.23a), then maintain the current Wk; otherwise, modify Wk to increase its smallest
eigenvalue.

We do not require that the modifications take on a specific form, though in our
implementation we employ the common technique of adding a multiple of a positive
definite diagonal matrix to Wk to increase all of its eigenvalues. For theoretical
purposes, our only stipulation is that after a finite number of modifications the matrix
Wk is sufficiently positive definite and uniformly bounded; see Assumptions 3.1 and
3.3 below.

Finally, once a suitable search direction has been computed, we perform a back-
tracking line search to compute αk ∈ (0, 1] so that the fraction-to-the-boundary rule
(2.13) is satisfied and sufficient decrease of the penalty function φ is made. As the
directional derivative Dφk(d̃k;µj , πk) is not easily computed for an arbitrary search
direction, in place of (2.15) we observe the related condition

φ(zk + αkd̃k;µj , πk) ≤ φ(zk;µj , πk)− η2αk∆mk(dk;µj , πk). (2.29)

This sufficient decrease condition is justified by Lemma 3.5 below. The new dual
iterate λk+1 is required to satisfy

‖γk +ATk λk+1‖ ≤ ‖γk +ATk (λk + δk)‖. (2.30)

Using the dual space direction δk to obtain λk+1 = λk + βkδk with a steplength
coefficient βk ∈ [0, 1], this inequality may be satisfied by simply setting βk ← 1, or by
performing a one-dimensional minimization of the dual feasibility measure along δk.
A third viable option is described with our implementation in §4.

The details of our algorithm are specified as Algorithm 2.2.

3. Algorithm Analysis. In this section we analyze the global behavior of Al-
gorithm 2.2. As the formulation of our approach was intentionally constructed to
resemble the method presented in [9], our analysis is facilitated by referring directly
to results in that work. In particular, the quantities in the linear system (2.7) have
the same properties as those in the primal-dual system presented in [9], so all results
pertaining to the (inexact) solution of this system and its solution carry over. The
major difference, however, is that with slack variables, a logarithmic barrier term in
the objective of (2.1), and the fraction-to-the-boundary rule (2.13), results effected
by the line search must be reanalyzed.
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Algorithm 2.2 Interior-Point Algorithm with SMART Tests
Choose parameters ψ, ζ ≥ 0, 0 < η1, η2, εv, κ, ε3, τ < 1, 0 < ω, θ, ε2, δπ and set
σ ← τε3
Initialize µ0 > 0
for j = 0, 1, 2, . . . , until termination criteria for (1.1) or for (1.2) is satisfied do

if j = 0 then
Initialize (z0, λ0) with s0 > 0 and s0 ≥ cI(x0)

else
Set (z0, λ0)← (zk, λk) from the solution of the last barrier subproblem

end if
Initialize π−1 > 0
for k = 0, 1, 2, . . . , until termination criteria for (2.1) or for (1.2) is satisfied do

Compute vk satisfying the normal component condition
Compute an approximate solution to (2.10) with the unmodified Wk

while (dk, δk) does not satisfy any of termination tests 1, 2, or 3 do
Run the Hessian modification strategy to modify Wk, if necessary
Compute an improved approximate solution to (2.10) with the current Wk

end while
if (dk, δk) satisfies termination test 3 and (2.28) does not hold then

Set πk ← πtrialk + δπ
end if
if (dk, δk) satisfies only termination test 2 then

Set dk ← 0
end if
Set d̃k ← (dxk, Skd

s
k)

if d̃k 6= 0 then
Compute the maximum αmax

k ∈ (0, 1] satisfying (2.13)
Compute the smallest l ∈ N0 such that αk ← 2−lαmax

k satisfies (2.29)
else

Set αk ← 1
end if
Update zk+1 ← zk + αkd̃k and choose λk+1 satisfying (2.30)
Set sk+1 ← max{sk+1, cI(xk+1)}

end for
Choose µj+1 (so that {µj} → 0)

end for

We begin with the following assumption concerning a particular iteration in the
solution of a given barrier subproblem (2.1).

Assumption 3.1. After a finite number of perturbations of Wk made via the
Hessian modification strategy, we have Wk � 2θI for the constant θ > 0 defined in
the model reduction condition (2.21). Moreover, the iterative linear system solver can
solve (2.10) to an arbitrary accuracy for each Wk.
This assumption is reasonable for a number of iterative linear system solvers, even in
situations where the primal-dual matrix in (2.10) is singular. We note that in practical
situations for a given Wk the primal-dual system may be inconsistent, but as this can
only be due to singularity of Wk, it can be remedied by further modifications of Wk

as in the Hessian modification strategy.
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The following lemma, proved in [9] under the same conditions as presented here,
states that Algorithm 2.2 is well-posed.

Lemma 3.2. During iteration k of the inner for loop in Algorithm 2.2, one of
the following holds:

(a) The primal-dual pair (zk−1, λk) is first-order optimal for (2.1) or (1.2), i.e.,

ATk−1ck−1 = 0 and γk−1 +ATk−1λk = 0; (3.1)

(b) The primal-dual pair (zk, λk) is first-order optimal for (2.1) or (1.2), i.e.,

ATk ck = 0 and γk +ATk λk = 0; (3.2)

(c) The while loop terminates finitely with a primal-dual search direction (dk, δk)
satisfying at least one of termination tests 1, 2, or 3.

In cases (a) and (b) in Lemma 3.2 we state that the inner iteration has terminated
finitely, so the algorithm can proceed by updating the barrier parameter and moving
on to solving the next barrier subproblem (2.1) or by terminating at an infeasible sta-
tionary point of the nonlinear program (1.1). Case (c), on the other hand, guarantees
that when we are not at a solution point of (2.1) or (1.2), the algorithm will produce
a suitable search direction.

We split the remainder of our analysis into two subsections; in the first we consider
the convergence behavior for a given barrier subproblem assuming the method does
not terminate finitely, and in the second we consider the convergence behavior for the
outer for loop of Algorithm 2.2. For convenience in the first subsection, we define
T1, T2, and T3 as the sets of iteration indices during which termination test 1, 2, and
3 are satisfied, respectively.

3.1. Global convergence for a barrier subproblem. We make the following
assumption for the solution of a given barrier subproblem (2.1). Here, and throughout
the remainder of our analysis, Wk refers exclusively to the value of this matrix used to
compute the search direction (dk, δk). In light of Lemma 3.2, we define the termination
criteria for the inner for loop of Algorithm 2.2 to be satisfied only if (3.1) or (3.2)
holds.

Assumption 3.3. The infinite sequence {(zk, λk)} generated by Algorithm 2.2
is contained in a convex set over which the functions f , cE , and cI and their first
derivatives are bounded and Lipschitz continuous. The sequence {Wk} is also bounded
over all k.

The theorem we prove is the following.
Theorem 3.4. If all limit points of {Ak} have full row rank, then {πk} is bounded

and

lim
k→∞

∥∥∥∥[γk +ATk λk+1

ck

]∥∥∥∥ = 0. (3.3)

Otherwise,

lim
k→∞

‖ATk ck‖ = 0, (3.4)

and if {πk} is bounded then

lim
k→∞

∥∥∥∥[γk +ATk λk+1

ATk ck

]∥∥∥∥ = 0. (3.5)
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This theorem states that all limit points of the algorithm are either feasible or sta-
tionary points of the feasibility measure; see (2.17). If all limit points are feasible
and satisfy the linear independence constraint qualification (LICQ) for (1.1), then the
limit points of {Ak} have full row rank and (3.3) holds.

Our first result illustrates that our local model m of the penalty function φ is
sufficiently accurate in a neighborhood of a given iterate along directions of the type
that are computed in the algorithm.

Lemma 3.5. There exists ξ1 > 0 such that for all d ∈ Rn and α ∈ (0, 1] with
αds ≥ −η1 we have

φ(z + αd̃;µ, π)− φ(z;µ, π) ≤ −α∆m(d;µ, π) + ξ1πα
2‖d‖2. (3.6)

Proof. For any scalars ξ and ξ′ satisfying ξ > 0 and ξ′ ≥ −η1ξ, we have∣∣∣∣ln(ξ + ξ′)− ln ξ − ξ′

ξ

∣∣∣∣ ≤ sup
ξ′′∈[ξ,ξ+ξ′]

∣∣∣∣ ξ′ξ′′ − ξ′

ξ

∣∣∣∣ =
ξ

ξ + ξ′

(
ξ′

ξ

)2

≤ 1
1− η1

(
ξ′

ξ

)2

.

Under Assumption 3.3, Lipschitz continuity of ∇f(x) and A(z) then implies that for
some constant ξ1 > 0 we have

φ(z + αd̃;µ, π)− φ(z;µ, π)

= f(x+ αdx)− f(x)− µ
n∑
i=1

ln(s+ αSds)(i) + µ

n∑
i=1

ln s(i)

+ π

(∥∥∥∥[ cE(x+ αdx)
cI(x+ αdx)− (s+ αSds)

]∥∥∥∥− ∥∥∥∥[ cE(x)
cI(x)− s

]∥∥∥∥)
≤ α∇f(x)T dx − αµds

+ π

(∥∥∥∥[ cE(x) + α∇cE(x)T dx

cI(x) + α∇cI(x)T dx − (s+ αSds)

]∥∥∥∥− ∥∥∥∥[ cE(x)
cI(x)− s

]∥∥∥∥)+ ξ1πα
2‖d‖2

= αγT d+ π(‖c(z) + αA(z)d‖ − ‖c(z)‖) + ξ1πα
2‖d‖2

= αγT d+ π(‖(1− α)c(z) + α(c(z) +A(z)d)‖ − ‖c(z)‖) + ξ1πα
2‖d‖2

≤ α
(
γT d− π(‖c(z)‖ − ‖c(z) +A(z)d‖)

)
+ ξ1πα

2‖d‖2,

which is (3.6).
Although the algorithm considers the penalty function φ, it will be convenient in

part of our analysis to work with the scaled and shifted penalty function

φ̂(z;µ, π) , 1
π (ϕ(z;µ)− χ) + ‖c(z)‖, (3.7)

where χ is a given constant. A useful property of the function φ̂ for a particular value
of χ is the subject of the next lemma.

Lemma 3.6. The sequence {sk} is bounded, and so {φk} is bounded below. More-
over, with χ in (3.7) set as the infimum of ϕ over all k, we find that for each k we
have

φ̂(zk;µj , πk) ≤ φ̂(zk−1;µj , πk−1)− 1
πk−1

η2αk−1∆mk−1(dk−1;µj , πk−1), (3.8)

so {φ̂(zk;µj , πk)} is monotonically decreasing.
13



Proof. By (2.29) and the fact that the slack reset (see (2.16)) only decreases φ, it
follows that

φ̂(zk;µj , πk−1) ≤ φ̂(zk−1;µj , πk−1)− 1
πk−1

η2αk−1∆mk−1(dk−1;µj , πk−1),

which implies

φ̂(zk;µj , πk) ≤ φ̂(zk−1;µj , πk−1)

+
(

1
πk
− 1

πk−1

)
(ϕ(zk;µj)− χ)− 1

πk−1
η2αk−1∆mk−1(dk−1;µj , πk−1). (3.9)

Let ξ be an upper bound for −f and ‖cI‖, the existence of which follows from
Assumption 3.3. By (3.9), the fact that {πk} is monotonically non-decreasing, the
inequalities

q∑
i=1

ln s(i)
k ≤ q ln ‖sk‖∞ ≤ q ln ‖sk‖, (3.10)

and the non-negativity of ∆mk, we then have that

φ̂(zk;µj , πk) ≤ φ̂(z0;µj , π0) +
(

1
π0
− 1

πk

)
(ξ + χ+ µjq max

0≤l≤k
ln ‖sl‖). (3.11)

On the other hand, from the definition of φ̂ and (3.10) we have that for any k,

φ̂(zk;µj , πk) ≥ − 1
πk

(ξ + χ+ µjq ln ‖sk‖) + ‖sk‖ − ξ, (3.12)

since ‖c(zk)‖ ≥ ‖cI(xk) − sk‖ ≥ ‖sk‖ − ξ. Consider the indices li such that ‖sli‖ =
maxk≤li ‖sk‖. Combining (3.11) and (3.12) for k given by any such li, we then obtain

− 1
πli

(ξ+χ+µjq ln ‖sli‖)+‖sli‖−ξ ≤ φ̂(z0;µj , π0)+
(

1
π0
− 1

πli

)
(ξ+χ+µjq ln ‖sli‖),

which implies

‖sli‖ ≤ φ̂(z0;µj , π0) + ξ + 1
π0

(ξ + χ+ µjq ln ‖sli‖).

Since the ratio (ln ‖s‖)/‖s‖ tends to zero as ‖s‖ → ∞, this relation implies that {sli}
must be bounded. By definition of the indices li we conclude that the entire sequence
{sk} is bounded.

For the second part of the lemma, we first note that if k ∈ T2, then dk = 0, the
model reduction is ∆mk(dk;µj , πk) = 0, and φ̂(zk+1;µj , πk+1) = φ̂(zk;µj , πk), and
so (3.8) follows trivially. Otherwise, with χ chosen as the infimum of ϕ over all k, it
follows from (3.9) and the fact that πk is non-decreasing that (3.8) holds.

We now state two results, proved as Lemmas 3.6–3.7 and 3.9–3.10 in [9] under the
same conditions as considered here, that will be useful in our analysis. The first relates
to the norms of the normal and tangential components computed in the algorithm.

Lemma 3.7. There exists ξ2 > 0 such that, for all k,

ξ2‖ATk ck‖2 ≤ ‖vk‖ ≤ ω‖ATk ck‖, (3.13)

and hence vk is bounded in norm over all k. Moreover, uk is bounded in norm over
all k, so together these results imply that dk is bounded in norm over all k.
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The second result provides related bounds for the model reduction ∆mk and the
primal step component.

Lemma 3.8. There exists ξ3 > 0 such that, for all k /∈ T2, we have

∆mk(dk;µj , πk) ≥ ξ3
(
‖uk‖2 + πk‖ATk ck‖2

)
.

Similarly, there exists ξ4 > 0 such that, for all k, we have

‖dk‖2 ≤ ξ4
(
‖uk‖2 + max{1, πk}‖ATk ck‖2

)
. (3.14)

The limit (3.4) now follows from the above results.
Lemma 3.9. The sequence {zk} yields

lim
k→∞

‖ATk ck‖ = 0.

Proof. Consider an arbitrary constant ξ > 0 and define the set

Σ = {z : ξ ≤ ‖A(z)T c(z)‖}. (3.15)

We prove the result by showing that there can only be a finite number of iterates
zk ∈ Σ. Since ξ is chosen arbitrarily, this will prove the result.

We first show that if the algorithm computes an iterate in the set Σ, then we
eventually have an iteration not in the set T2. By contradiction, suppose that there
exists an iteration number k′ ≥ 0 such that zk′ ∈ Σ and for all k ≥ k′ we have k ∈ T2.
Then, since dk = 0 for k ∈ T2, we have zk = zk′ for all k ≥ k′ and the inequalities
(2.26) and (2.30) yield

‖γk+1 +ATk+1λk+1‖ ≤ ‖γk +ATk (λk + δk) ‖ ≤ κ‖γk +ATk λk‖.

Thus, since κ ∈ (0, 1) we have the limit

‖γk +ATk λk‖ → 0. (3.16)

On the other hand, by the conditions of termination test 2 and the fact that zk′ ∈ Σ,
we have that for all k ≥ k′

0 < ξ ≤ ‖ATk′ck′‖ = ‖ATk ck‖ ≤ ε2‖γk +ATk λk‖,

which contradicts (3.16). Therefore, there must exist k′′ ≥ k′ such that zk′′ ∈ Σ and
k′′ /∈ T2.

Now consider zk ∈ Σ with k /∈ T2. By Lemma 3.7 we have

‖vk‖ ≥ ξ2‖ATk ck‖2 ≥ ξ2ξ2

and we may define

uΣ
sup , sup{‖uk‖ : zk ∈ Σ} <∞,

so together we have

‖uk‖ ≤
(
uΣ

sup/(ξ2ξ
2)
)
‖vk‖. (3.17)
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Lemmas 3.7 and 3.8 then imply that there exists a constant ξ′ > 0 yielding

∆mk(dk;µj , πk) ≥ ξ3πk‖ATk ck‖2 (3.18)

≥ ξ3πk
1
ω2
‖vk‖2

≥ ξ′πk‖dk‖2, (3.19)

where the last inequality follows from (3.17). The steplength coefficient αk can now
be bounded in the following manner. First, we note that the fraction-to-the-boundary
rule (2.13) is satisfied for any αk ≤ η1/‖dsk‖ ≤ η1/dsup, where ‖dsk‖ ≤ dsup for some
constant dsup > 0 independent of k whose existence follows from Lemma 3.7. More-
over, if the line search condition (2.29) does not hold for some ᾱ ∈ (0, η1/dsup), then

φ(zk + ᾱd̃k;µj , πk)− φ(zk;µj , πk) > −η2ᾱ∆mk(dk;µj , πk), (3.20)

which, along with Lemma 3.5, yields

(1− η2)∆mk(dk;µj , πk) < ξ1ᾱπk‖dk‖2. (3.21)

This inequality and (3.19) implies

(1− η2)ξ′πk‖dk‖2 < ξ1ᾱπk‖dk‖2,

so αk ≥ αΣ
inf > 0 where αΣ

inf , (1/2) min{η1/dsup, (1 − η2)ξ′/ξ1} is a constant inde-
pendent of k.

Suppose that there is an infinite number of iterations with zk ∈ Σ. For those
zk ∈ Σ, Lemma 3.6, (3.15), and (3.18) imply that for each iterate with this property
we have

φ̂(zk+1;µj , πk+1) ≤ φ̂(zk;µj , πk)− 1
πk
η2αk∆mk(dk;µj , πk)

≤ φ̂(zk;µj , πk)− η2α
Σ
infξ
′‖ATk ck‖2

≤ φ̂(zk;µj , πk)− η2α
Σ
infξ
′ξ2, (3.22)

so φ̂ is reduced by at least a positive constant amount. However, this contradicts the
fact that by Lemma 3.6, φ̂ is bounded below and monotonically decreasing, which
means that there can only be a finite number of iterates with zk ∈ Σ.

The first statement in Theorem 3.4 inspires special consideration for situations
where all limit points of the sequence {Ak} produced by Algorithm 2.2 for a given
µj have full row rank. This next result, proved in [9] under these conditions, high-
lights important instances for which we can expect the penalty parameter to remain
bounded.

Lemma 3.10. Suppose that there exists kA ≥ 0 such that the smallest singular
values of {Ak}k≥kA

are bounded away from zero. Then, the sequence {zk} yields

lim
k→∞

‖ck‖ = 0 (3.23)

and πk = π̄ for all k ≥ k̄ for some k̄ ≥ kA and π̄ <∞.
There may be other situations, however, when the sequence of penalty parameter

values remains constant after a given iteration. In general, this behavior implies that
the sequence of steplength coefficients will remain bounded away from zero, as seen
in the following lemma.
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Lemma 3.11. If πk = π̄ for all k ≥ k̄ for some k̄ ≥ 0 and π̄ < ∞, then the
sequence {αk} is bounded away from zero.

Proof. First, for k ∈ T2, Algorithm 2.2 sets αk = 1, so we need only consider
cases where k /∈ T2.

For k /∈ T2, the fraction-to-the-boundary rule (2.13) is satisfied for all αk ≤
η1/‖dsk‖ ≤ η1/dsup, where ‖dsk‖ ≤ dsup for some constant dsup > 0 independent of k
whose existence follows from Lemma 3.7. Then, as in the proof of Lemma 3.9 (see
(3.20)-(3.21)), we have that if (2.29) fails for ᾱ ∈ (0, η1/dsup), then

(1− η2)∆mk(dk;µj , πk) < ξ1ᾱπk‖dk‖2.

Lemma 3.8 then yields

(1− η2)ξ3
(
‖uk‖2 + πk‖ATk ck‖2

)
< ξ1ξ4ᾱπk

(
‖uk‖2 + max{1, πk}‖ATk ck‖2

)
,

so

ᾱ >
(1− η2)ξ3

(
‖uk‖2 + πk‖ATk ck‖2

)
ξ1ξ4πk

(
‖uk‖2 + max{1, πk}‖ATk ck‖2

) ≥ αinf ,

where αinf > 0 is some constant bounded away from zero whose existence follows from
the fact that 0 < π−1 ≤ πk ≤ π̄. Thus, if πk = π̄ for all k ≥ k̄ for some k̄ ≥ 0 and
π̄ <∞, then αk for k /∈ T2 need never be set below (1/2) min{η1/dsup, αinf} for (2.29)
to be satisfied.

This last result ensures that sufficient progress toward a solution point will be
made along each nonzero search direction dk computed in the algorithm. As a result,
the following lemma, proved in [9] under these same conditions, states that if the
penalty function settles with a particular value of the penalty parameter, the primal
step components vanish and dual feasibility is guaranteed.

Lemma 3.12. If πk = π̄ for all k ≥ k̄ for some k̄ ≥ 0 and π̄ <∞, then

lim
k→∞

‖dk‖ = 0

and

lim
k→∞

‖γk +ATk λk+1‖ = 0.

We are now ready to prove the main result stated at the beginning of this section.
Proof. (Theorem 3.4) If all limit points of {Ak} have full row rank, then there

exists kA ≥ 0 such that the smallest singular values of {Ak}k≥kA
are bounded away

from zero. By Lemma 3.10 we then have that the penalty parameter is constant for
all k sufficiently large, which means {πk} is bounded, and so by Lemma 3.10 and
Lemma 3.12 we have the limit (3.3). On the other hand, if a limit point of {Ak} does
not have full row rank, then we have the limit (3.4) by Lemma 3.9. Moreover, if {πk}
is bounded, then the fact that if Algorithm 2.2 increases πk it does so by at least δπ
implies that the penalty parameter is in fact constant for all k sufficiently large. This
implies with Lemma 3.12 that we have the limit (3.5).

We reiterate here some key features of our algorithm that have allowed us to
extend so many of the results presented in [9] for equality constrained optimization in
order to prove Theorem 3.4. First, the inclusion of a slack reset to ensure sk ≥ 0 and
cI(xk)− sk ≤ 0 have allowed us to require only ATk ck → 0 to state that the algorithm
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converges to a feasible point, or at least to an infeasible stationary point of problem
(1.1). Without such a slack reset, the algorithm may stall at a point with sk ≥ 0,
ATk ck = 0, and c

(i)
I (xk) − s(i)

k > 0 for some i, which is not a stationary point for the
feasibility measure in (1.2). The second critical component of our approach was our
use of scaled derivatives in our definition of the primal-dual system (2.10). Naturally,
in an implementation an equivalent system can be defined without such a scaling, but
it is important to note that our termination tests must be enforced with this scaling
in order for our global convergence results to apply.

3.2. Global convergence for the nonlinear program. We close this section
by proving a result related to the overall global convergence of Algorithm 2.2. In the
following theorem, we suppose that for a given j, the inner for loop terminates when

‖∇f(xk) +∇cE(xk)λE,k+1 +∇cI(xk)λI,k+1‖∞ ≤ εµj , (3.24a)
‖SkλI,k+1 + µje‖∞ ≤ εµj , (3.24b)

and ‖ck‖∞ ≤ εµj , (3.24c)

for some constant ε ∈ (0, 1), yielding the outer iterate {(zj , λj)}. Note that if the
algorithm terminates finitely with (3.2) satisfied, we set λk+1 ← λk so that (3.24)
holds.

Theorem 3.13. Suppose that Assumptions 3.1 and 3.3 hold and define {µj} be
a sequence of positive constants such that {µj} → 0. Algorithm 2.2 then yields one of
the following outcomes:

(i) During outer iteration j, (3.24c) is never satisfied, in which case the sta-
tionarity condition (2.4) for the infeasibility problem (1.2) is satisfied in the
limit.

(ii) During outer iteration j, there exists an infinite subsequence of inner iterates
where (3.24c) is satisfied but (3.24a) or (3.24b) (or both) is not, in which case
the stationarity condition (2.4) for the feasibility problem (1.2) is satisfied in
the limit and {πk} → ∞.

(iii) Each outer iteration results in an iterate {(zj , λj)} satisfying (3.24), in which
case all limit points of {xj} are feasible, and if a limit point x̄ of {xj} sat-
isfies the linear independence constraint qualification (LICQ), the first-order
optimality conditions of (1.1) hold at x̄; i.e., there exists λ̄ such that

∇f(x̄) + (∇cE(x̄))λ̄E + (∇cI(x̄))λ̄I = 0 (3.25a)
cE(x̄) = 0 (3.25b)
cI(x̄) ≥ 0 (3.25c)
λ̄I ≤ 0 (3.25d)

λ̄(i)c
(i)
I (x̄) = 0, i = 1, . . . , q. (3.25e)

Proof. If (3.24c) is never satisfied during outer iteration j, then we know by
Theorem 3.4 that the limit (3.4) holds, which means that (2.4) is satisfied in the
limit. This corresponds to situation (i). Further, by Theorem 3.4, we have that if
(3.24a) or (3.24b) (or both) is not satisfied for an infinite subsequence of iterates, then
{πk} → ∞, which along with (3.4) completes the proof of situation (ii).

The remaining possibility is that (3.24) is eventually satisfied during each outer
iteration j ≥ 0. Define an infinite subsequence of indices jl such that xjl → x̄ as
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l → ∞. Since sjl ≥ 0 and c(zjl) = (cE(xjl), cI(xjl) − sjl) → 0, we have cE(x̄) = 0,
sjl → s̄ = cI(x̄) as l → ∞, and cI(x̄) ≥ 0. Therefore, all limit points of {xj} are
feasible, and in particular (3.25b) and (3.25c) hold.

Now define Î = {i : c(i)I (x̄) = 0}. By (3.24b), we have SjλI,j → 0, which means
that λ(i)

I,jl → 0 for i /∈ Î. Along with (3.24a), this implies

∇f(xjl) +∇cE(xjl)λE,jl +
∑
i∈Î

λ
(i)
I,jl∇c

(i)
I (xjl)→ 0. (3.26)

The inequality (3.24b) also yields

s
(i)
j λ

(i)
I,j ≤ (ε− 1)µj < 0 (3.27)

for i = 1, . . . , q, which along with sj ≥ 0 implies that λI,j ≤ 0 for all j. By LICQ,
the columns of ∇cE(x̄) and the vectors ∇c(i)I (x̄) for i ∈ Î form a linearly independent
set, so (3.26) and (3.27) imply that the sequence {λjl} converges to some value λ̄
satisfying (3.25a) and (3.25d).

4. Numerical Experiments. We included an implementation of our algorithm
in the Ipopt optimization package [34, 33] version 3.5.5, tied with the iterative linear
system solver and preconditioners implemented in the PARDISO software package [27]
version 3.4. In this section we describe some details of our code and illustrate its
performance on a pair of model PDE-constrained test problems.

4.1. Implementation details. The default Ipopt code implements the algo-
rithm described in [33]. In order to test the method described in this paper, the
following modifications were made.

We augmented the Ipopt code to include the option to obtain the search direction
by means of inexact normal step and primal-dual step computations. Rather than
scale the derivative matrices in order to set up the primal-dual system (2.10), however,
we solve an equivalent system with unscaled derivatives (as already implemented
in Ipopt ) and scale the search direction for the slack variables in order to apply
our termination tests. Note also that although the algorithm in this paper defines
d̃sk = Skd

s
k (see (2.8)), all of our theoretical results still hold if the matrix Sk in this

definition is replaced by Ŝk = diag(ŝk), where ŝ(i)
k = min{100, sk}; i.e., only the small

elements in the slack variable vector need to be scaled. The advantage of this modified
scaling, as it is used in our implementation, is that the algorithm does not encounter
inefficiencies or numerical problems if some slacks become very large.

If the (2,2)-block µI in (2.6) were unscaled, it would correspond to the (2,2)-block
of the primal Hessian µS−2

k . We use this form in the discussion of our algorithm for
simplicity, as it results from applying a Newton iteration to (2.3). An equivalent
system of primal-dual equations, however, would result in the primal-dual Hessian
S−1
k Yk, where yk are additional dual iterates corresponding to slack bounds. The

original Ipopt implementation and our implementation of Algorithm 2.2 use this
primal-dual Hessian. We argue that all of our theoretical results still hold with this
choice, since yk are set to ensure that S−1

k Yk does not deviate too much from µS−2
k

and hence Wk remains bounded; see [33]. We initialize λ0 ← 0 and y0 ← 10−4.
Finally, Ipopt ’s default filter line-search procedure is replaced by the backtrack-

ing line-search method described in Algorithm 2.2 using the exact penalty function
(2.14), including the slack reset. Moreover, since we observed in some cases that the
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penalty parameter was set to a high value in the early stages of the optimization that
hampered progress later on, we employ the flexible penalty method described in [8]
since it proved to be more efficient in our tests.

Next we describe some of the details of the normal and primal-dual step computa-
tions of Algorithm 2.2. Each is performed by applying the symmetric quasi-minimum
residual (SQMR) method [12, 13] as implemented in PARDISO to a large symmetric
indefinite linear system.

As previously mentioned, a conjugate gradient or the LSQR method can be used
to compute the normal component vk. However, we found this approach to perform
poorly for ill-conditioned Jacobians. Furthermore, it is not clear how to precondition
the underdetermined problem (2.9). Therefore, we chose to apply an inexact dogleg
approach; see [23, 24]. We begin by computing the Cauchy point vCk = ᾱkv̄k (see the
normal component condition (2.18)) and then (approximately) solve the augmented
system (e.g., see [7]) [

I ATk
Ak 0

] [
vNk
δNk

]
= −

[
0
ck

]
, (4.1)

which for an inexact solution yields the residual vector[
ρNk
rNk

]
=
[
I ATk
Ak 0

] [
vNk
δNk

]
+
[

0
ck

]
. (4.2)

Note that an exact solution of (4.1) gives the least-norm solution of (2.9) with ω =∞.
The inexact dogleg step is then defined as a point along the line segment between
the Cauchy point and vNk that is feasible for problem (2.9) and satisfies the Cauchy
decrease condition (2.18); i.e., it satisfies our normal component condition. We tailor
this approach into an implementation that has worked well in our tests, which means,
for example, that we consider the fraction-to-the-boundary rule (2.13) when choosing
between the Cauchy and inexact dogleg steps. A detailed description of the normal
step computation is provided as Algorithm 4.1.

Algorithm 4.1 Normal Step Computation
Given parameters 0 < ε̃v, κv < 1 and lnmax, ω > 0.
Compute the Cauchy point vCk = ᾱkv̄k, where v̄k = −ATk ck and ᾱk solves (2.19)
Initialize vk ← vCk
for l = 0, 1, 2, . . . , lnmax do

Perform a SQMR iteration on (4.1) to compute (vN,l, δN,l)
if ‖(ρN,l, rN,l‖) ≤ κv‖ck‖ and ‖ck +Akv

N,l‖ ≤ ‖ck +Akv
C
k ‖ then

break
end if

end for
Set vNk ← vN,l

Set vDk = (1 − α)vCk + αvNk where α ∈ [0, 1] is the largest value such that vDk is
feasible for (2.9)
Set αCk and αDk as the largest values in [0, 1] satisfying (2.13) along vCk and vDk ,
respectively
if (‖ck‖ − ‖ck + αDk Akv

D
k ‖) ≥ ε̃v(‖ck‖ − ‖ck + αCk Akv

C
k ‖) then

Set vk ← vDk
end if
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Algorithm 4.2 provides details of the primal-dual step computation. We run the
SQMR algorithm until either an acceptable search direction has been computed (i.e., one
satisfying at least one of our termination tests) or the Hessian modification strategy
indicates that a perturbation to Wk is appropriate. In the latter case, we restart SQMR
with the zero vector and continue this process until an acceptable search direction
is computed. The form of the Hessian modification is the same as in the default
Ipopt algorithm and described in [33]. We write the algorithm with an iteration limit
lpd
max to indicate that due to numerical errors a solver may fail to satisfy our tests in

a finite number of iterations, in which case one may simply accept the last inexact
solution that is computed. Note, however, that this upper limit was reached in our
experiments only once and the resulting step did not adversely affect progress of the
algorithm.

To avoid an unnecessarily large number of outer iterations k and to promote fast
local convergence, Algorithm 4.2 aims to produce reasonably accurate solutions that
satisfy the residual bound ∥∥∥∥[ρkrk

]∥∥∥∥ ≤ κ′ ∥∥∥∥[γk +ATk λk
Akvk

]∥∥∥∥ (4.3)

for a given κ′ ∈ (0, 1) before consideration of our termination tests. However, if after
a fixed number of iterations, l′max, this condition is not satisfied, then it is dropped
and the algorithm requires only that one of termination test 1, 2, or 3 is satisfied.

Algorithm 4.2 Primal-dual Step Computation

Choose κ′, l̃pd
max, l

pd
max > 0

Set l← 0, (d0, δ0)← 0, and Wk via (2.6)
for l = 1, 2, . . . , lpd

max do
Perform a SQMR iteration on (2.10) to compute (dl, δl)
if l ≥ l̃pd

max or (4.3) holds then
if termination test 1 or 3 is satisfied then

break
else if termination test 2 is satisfied then

Set dl ← 0 and break
else if (2.22) and (2.23a) do not hold for dl then

Set l← 0, (d0, δ0)← 0, and modify Wk to increase its smallest eigenvalue
end if

end if
end for
Set (dk, δk)← (dl, δl)

As preconditioner, both for the augmented system (4.1) and the primal-dual
system (2.7), we use the incomplete multilevel factorization solver in PARDISO with
inverse-based pivoting [3], stabilized by symmetric-weighted matchings; see [28]. Here,
we used the maximum inverse norm factor κ1 = 5 and the dropping tolerances 10−3

and 10−4 for the Schur complement and the factor, respectively.
As for the input parameters used in our implementation, these quantities are

summarized in Table 4.1. Otherwise, Ipopt ’s default parameters were used, except
that the termination tolerance for the nonlinear program (1.1) was set to 10−6.

Finally, we note that we update λk+1 = λk + βkδk by choosing βk as the smallest
value in [αk, 1] satisfying (2.30), as this choice yields good practical performance in
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Para. Value Para. Value Para. Value
ψ 0.1 κ 0.1 ε2 1
ζ 0.1 ε3 0.99 δπ 10−4

η1 max{0.99, 1− µj} τ 0.1 σ τε3
η2 10−8 ω 100 µ0 0.1
εv 1 θ 10−12 π−1 10−6

ε̃v 0.1 lnmax 200 κv 10−3

κ′ 10−3 l̃pd
max 100 lpd

max 500
Table 4.1

Parameter values used for Algorithm 2.2

our tests.

4.2. Numerical results on PDE-constrained model problems. We applied
our implementation to two PDE-constrained optimal control problems to illustrate its
performance on large-scale models implemented in MATLAB. Each problem is solved on
the three-dimensional domain Ω = [0, 1]× [0, 1]× [0, 1] over which we use equidistant
Cartesian grids with N grid points in each spacial direction and a standard 7-point
stencil for discretizing the differential operators. The goal is to find optimal values of
the control u and state variables y(x) to fit a target yt(x); i.e., the objective of each
problem is to minimize

f(y(x)) = 1
2

∫
Ω

(y(x)− yt(x))2 dx (4.4)

The results were obtained on a 2GHz Xeon machine running RedHat Linux.
Our first model is a boundary control problem, inspired by Example 5.1 in [19].
Example 4.1. Let u(x) be defined on the boundary ∂Ω. Then, minimize (4.4)

for

yt(x) = 3 + 10x(1)(x(1) − 1)x(2)(x(2) − 1) sin(2πx(3)),

subject to y(x) = u(x) on ∂Ω, the differential equation

−∇(ey(x) · ∇y(x)) = 20 in Ω,

and the bounds

2.5 ≤ u(x) ≤ 3.5 on ∂Ω.

We use y0(x) = 3 and u0(x) = 3 as starting point. Numerical results for different
discretization levels are presented in Table 4.2. Here, the first column shows the
number of grid points per spacial dimension, followed by the number of variables,
equality constraints, and inequality constraints, respectively. The column headed “#
nnz” lists the number of nonzero elements in the primal-dual matrix in (2.10). The
next column indicates if the inexact Algorithm 2.2 was used (“I”) or, for the sake
of comparison, the default Ipopt algorithm with the direct linear solver in PARDISO
was employed (“D”). The last entries show the number of iterations, the required
computation time in CPU seconds, and the final value of the objective function.

We find that our implementation of Algorithm 2.2 solves all instances of Exam-
ple 4.1 in a small number of iterations. The gain in efficiency compared to the original
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N n p q # nnz Alg # iter CPU sec f∗

20 8000 5832 4336 95561 I 12 33.4 1.3368e-2
30 27000 21952 10096 339871 I 12 139.4 1.3039e-2
40 64000 54872 18256 827181 I 12 406.0 1.2924e-2
50 125000 110592 28816 1641491 I 12 935.6 1.2871e-2
60 216000 195112 41776 2866801 I 13 1987.2 1.2843e-2
70 343000 314432 57136 4587111 I 13 3504.6 1.2826e-2
30 27000 21952 10096 339871 D 10 500.0 1.3039e-2
40 64000 54872 18256 827181 D 10 3196.3 1.2924e-2

Table 4.2
Numerical results for Example 4.1

Ipopt algorithm that uses a direct linear solver is apparent, particularly in the case
of N = 40. Even though the original algorithm required fewer iterations and solves
only one linear system per iteration instead of both (4.1) and (2.10), the computation
time is about 8 times higher. This discrepancy will most likely be more pronounced
for larger N .

Example 4.1 is nonlinear and nonconvex, but it was solved in few iterations with-
out ever requiring modifications to the Hessian during the primal-dual step compu-
tation. Thus, we now turn to a more challenging problem to illustrate further the
efficiency of our method.

Our second example is a simplified hyperthermia cancer treatment model; see
[20, 28]. Regional hyperthermia is a cancer therapy that aims at heating large and
deeply seated tumors by means of radio wave adsorption, as heating tumors above
a temperature of about 41◦C results in preferential killing of tumor cells and makes
them more susceptible to an accompanying radio or chemotherapy. For designing an
optimal therapy, amplitudes and phases of the antennas have to be selected such that
the tumor temperature is maximized up to a target therapeutical temperature yt of
43◦C.

Example 4.2. Let the control u(j) = a(j)eiφ
(j)

be a complex vector of amplitudes
a ∈ R10 and phases φ ∈ R10 of 10 antennas, let M(x) be a 10 × 10 matrix with
M (j,k)(x) =< E(j)(x), E(k)(x) > where E(j)(x) = sin

(
j · π · x(1)x(2)x(3)

)
, and define

the “tumor” to be the central region Ω0 = [3/8, 5/8] × [3/8, 5/8] × [3/8, 5/8]. Then,
minimize (4.4) for

yt(x) =
{

37 in Ω\Ω0

43 in Ω0

subject to the differential equation

−∆y(x)− 10(y(x)− 37)− u∗M(x)u = 0 in Ω, (4.5)

the state variable bounds

37.0 ≤ y(x) ≤ 37.5 on ∂Ω
42.0 ≤ y(x) ≤ 44.0 in Ω0

and the control variable bounds

−10 ≤ a ≤ 10
−4π ≤ φ ≤ 4π.
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The PDE (4.5) describes heat dissipation in the tissue, removal of heat via 37◦C
blood flow, and absorbed energy produced by the 10 microwave antennas. Note that
the algorithm uses a and φ as control variables (that form the complex numbers u),
and that the u∗M(x)u term in (4.5) is real-valued. As starting point we selected
y(x) = 40, a = (1, 0, . . . , 0)T and φ = 0.

Results for Example 4.2 are presented in Table 4.3. Again, the proposed algo-
rithm is able to solve the problem in a number of iterations comparable to the original
algorithm, while savings in computation time become apparent as N increases. The
higher iteration count shows that this problem is more difficult to solve than Exam-
ple 4.1, and both algorithms encountered a significant number of iterations in which
the Hessian had to be modified. Also, the problem has several local solutions which
explains the difference in the final objective function values.

N n p q # nnz Alg # iter CPU sec f∗

10 1020 512 1070 20701 I 40 15.0 2.3037
20 8020 5832 4626 212411 I 62 564.7 2.3619
30 27020 21952 10822 779121 I 146 4716.5 2.3843
40 64020 54872 20958 1924831 I 83 9579.7 2.6460
20 8020 5832 4626 212411 D 87 667.6 2.3571
30 27020 21952 10822 779121 D 91 10952.4 2.3719

Table 4.3
Numerical results for Example 4.2

For illustrative purposes, we end by providing plots of the target function yt and
the solution y obtained by Algorithm 2.2 for N = 40; see Figures 4.1 and 4.2.

Fig. 4.1. Target function yt(x) for Ex-
ample 4.2 with N = 40

Fig. 4.2. Solution y(x) obtained by Al-
gorithm 2.2 for Example 4.2 with N = 40

5. Conclusion and Final Remarks. We have presented and analyzed an
interior-point algorithm for large-scale nonlinear nonconvex optimization. By ex-
tending the results from [9] to problems with inequality constraints, we were able to
show that the proposed method is globally convergent under standard assumptions.

The novel aspects of the approach include our definition of termination tests for
iterative linear system solvers. These conditions allow for inexact step computations
and therefore offer flexibility to the user in terms of computational expense while
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providing a theoretical convergence guarantee. Furthermore, the use of iterative linear
solvers avoids the requirement to store large derivative matrices explicitly.

In addition, the normal step computation, incorporating a trust region, allows the
algorithm to deal with situations where the active constraint gradients are not linearly
independent at infeasible limit points. As a consequence, this line-search algorithm
can be shown to avoid the convergence problem discussed in [32] and to generate
limit points that are stationary points for an infeasibility measure if feasibility is not
achieved asymptotically.

An implementation of our algorithm was described and numerical results were
presented on two large-scale PDE-constrained problems. These experiments illus-
trate the computational advantages of our algorithm, especially as the problem size
increases. We showed that our method is comparable with respect to iteration count
and solution quality with a state-of-the-art continuous optimization algorithm and
outperforms the conventional approach in terms of storage and CPU time for the
larger problem instances in our tests.
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