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Abstract

A classification method based on random field models is derived. A few innovative concepts that
are incorporated into the algorithm such as efficient training via Kalman filtering and adaptation
via extended Baum-Welch (EBW) demonstrate improvement both in computational complexity and
classification accuracy. The most significant contribution of this work, however, is the derivation of
an online compression and training mechanism that is capable of representing the sparsity patterns
which arise naturally in the high dimensional data sets. Thus, the improved classifier uses compressed
sensing techniques for learning the statistical relations within the random field models. The resulting
representations are compressed in the sense that only few connections are considered for each node.
The performance of the new algorithm is demonstrated in fMRI classification.



Chapter 1

Random Field-Based Classification

1.1 Problem Formulation

Let the data set X ∈ R
m (of which m is very large) be associated with some response Y ∈ Y where

Y is some real-valued discrete space (i.e., classes). We are aimed at predicting Y , the class associated
with X . For simplicity, we assume here only two classes Y = {0, 1}. The assumption underlying
the following derivations is that both X and Y are real-valued random variables of which the joint
probability density function (pdf) p(X,Y ) exists.

In what follows we denote X̄ the reduced feature space obtained by some feature extraction
algorithm. The Appendix section details the two simple feature ranking methods (cross correlation
and mutual information) used for obtaining the results presented inhere.

1.2 Random Field Models

Let G(X, e) be an undirected graph, where e is an edge representing statistical dependency between
vertices in X̄. Let us denote Gi the neighborhood of Xi ∈ X̄ . For every class Y = θ we define a
parametric functional relation of the form

ϕθ(Xi, Gi,Wi) = 0 (1.1)

where Wi ∼ pWi
(·) is a noise random variable representing uncertainty. Now, suppose that we can

express the following relation
Wi = ϕ−1

θ (Xi, Gi) (1.2)

then it easily follows that

p(Xi | Gi, θ) = pWi
(ϕ−1

θ (Xi, Gi)) det
(

∇Xi
ϕ−1

θ (Xi, Gi)
)

(1.3)

is the pdf describing statistical relation between Xi and Gi for a given class Y = θ. The above
formulation describes a random field (RF) of which the joint pdf can be approximated by the pseudo-
likelihood

p(X̄ | Y = θ) =
1

Zθ

n
∏

i=1

p(Xi | Gi, θ), Xi ∈ X̄ (1.4)

where n denotes the total number of nodes in X̄. The normalizing constant Zθ is given as

Zθ =
∑

X̄∈Ω

n
∏

i=1(Xi∈X̄)

p(Xi | Gi, θ) (1.5)

1.2.1 The Predicted Class

The predicted class is taken as the one with the highest probability p(X̄test | Y = θ), where Xtest

denotes the test data set. In the binary case, one has to compare

p(X̄test | Y = 0) >
< p(X̄test | Y = 1) (1.6)
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or equivalently
p(X̄test | Y = 0)

p(X̄test | Y = 1)
>
< 1 (1.7)

Further defining

l :=
n

∏

i=1

p(Xi | Gi, θ = 0)

p(Xi | Gi, θ = 1)
(1.8)

and

c := log
Z0

Z1
(1.9)

yields an equivalent test to (1.6)

log l =

n
∑

i=1

log
p(Xi | Gi, θ = 0)

p(Xi | Gi, θ = 1)
>
< c (1.10)

where the constant c (which rarely can be computed straightforwardly) can be tuned using either
training or development data sets (see appendix). Using Eq. (1.10), the predicted class is obtained
as

Ŷ =

{

0, log l > c
1, log l < c

(1.11)

A few aspects concerning the converges of this likelihood ratio test are given in the Appendix.

1.2.2 Gaussian Random Fields

Let us assume linear functionals of the form

Xi =
(

βθ
i

)T
Gi +Wi, Xi ∈ X̄, Wi ∼ N (0, σ2

w) (1.12)

where Gi ∈ Rn−1 and βθ
i ∈ Rn−1, i ∈ [1, n]. Following this, the conditional pdf p(Xi | Gi, θ) can be

expressed by means of the pdf of Wi as

p(Xi | Gi, θ) ∝ exp

{

−
1

2
σ−1

w ‖ Xi −
(

βθ
i

)T
Gi ‖

2
2

}

(1.13)

In practice, the random parameter vector associated with the class θ, βθ
i , is estimated using the

training data set. Let β̂θ
i be an estimator of βθ

i , then

βθ
i = β̂θ

i + β̃θ
i (1.14)

where β̃θ
i is the estimation error. Substituting (1.14) into (1.12) gives

Xi =
(

β̂θ
i + β̃θ

i

)T

Gi +Wi (1.15)

Further defining ζθ
i :=

(

β̃θ
i

)T

Gi +Wi yields

Xi =
(

β̂θ
i

)T

Gi + ζθ
i (1.16)

which is similar to (1.12) with the only difference of βθ
i replaced by its estimate. The conditional

pdf p(Xi | Gi, θ) can now be expressed in terms of β̂θ
i instead of the unknown βθ

i . Thus, assuming
ζi ∼ N (0, σθ

i ) yields

p(Xi | Gi, θ) ∝ exp

{

−
1

2σθ
i

‖ Xi −
(

β̂θ
i

)T

Gi ‖
2
2

}

(1.17)

In what follows we shall see that ζθ
i represents the innovation noise in the Kalman filtering

formulation. This sequence has some well-known statistical properties [1].
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1.3 Efficient Training via Kalman Filtering

We use the Kalman filter (KF) algorithm for training the RF models of every class in a computation-
ally efficient manner. The KF estimates the parameters βθ

i , i ∈ [1, n] sequentially using the training
samples thereby allowing significant reduction of computational load.

Suppose that there are kθ training samples for class Y = θ, and let Xθ
train :=

{

X̄(1), . . . , X̄(kθ)
}

be the set of these samples. The KF is the best linear estimator in the minimum mean square error
(MMSE) sense [1], that is

β̂θ
i = argmin

β̂θ

i

E
{

‖ βθ
i − β̂θ

i ‖2
2

}

(1.18)

Taking (1.12) as the measurement equation while assuming σw = 1 yields the following KF recursion
Initialization:

P0 = γ−1I,
(

β̂θ
i

)

0
= 0, γ << 1 (1.19)

Measurement update:

Kk = PkGi(k)
[

Gi(k)PkGi(k)
T + 1

]−1
(1.20a)

(

β̂θ
i

)

k+1
=

(

β̂θ
i

)

k
+Kk

[

Xi(k) −Gi(k)
T

(

β̂θ
i

)

k

]

(1.20b)

Pk+1 =
(

I −KkGi(k)
T
)

Pk (1.20c)

It should be noted that the KF is used here for parameter estimation rather than state estimation.
However, if the training samples are obtained from time-series then the conventional KF algorithm,
which includes a time-propagation stage, may be more adequate.

The next stage consists of computing the conditionals p(Xi | Gi, θ) in (1.17). For that purpose
we need to know the statistics of ζθ

i , the innovation. It is well known from KF theory that (ζθ
i )k is a

zero-mean white Gaussian sequence 1

(ζθ
i )k ∼ N

(

0, Gi(k)
TPkGi(k) + 1

)

(1.21)

In this work we compute the sample covariance of ζθ
i as

σθ
i =

1

kθ − 1

kθ
∑

j=1

[

Xi(j) −
(

β̂θ
i

)T

kθ

Gi(j)

] [

Xi(j) −
(

β̂θ
i

)T

kθ

Gi(j)

]T

(1.22)

1.3.1 Generalization of The KF Formulation

The linear connections (1.12) can be generalized as follows. Consider two sets of nodes Gi ∈ Rr and
Gj ∈ Rm satisfying the relation

Gi = βθ
ijGj +Wij (1.23)

where βθ
ij ∈ Rr×m.

In order to implement the previously described KF scheme for estimating the matrices βθ
ij we

rewrite the above equation as follows

Gi = (GT
j ⊗ Ir×r)β̄

θ
ij +Wij (1.24)

where
β̄θ

ij := Vec
(

βθ
ij

)

(1.25)

is the vectorized form of βθ
ij and ⊗ is Kronecker product. The KF can now be applied for estimating

β̄θ
ij using (1.24).

1The innovations process is non-stationary.
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1.3.2 Adaptation

Given the test data set X̄test = {X̄(1), . . . , X̄(ktest)}, we adapt the MRF models of every class using
extended Baum-Welch (EBW) iterations as follows (see [2–4])

(

β̂θ
i

)

j+1
=

[

I −DjGi(j)
T
]

(

β̂θ
i

)

j
+DjXi(j) (1.26)

where Dj is some tuning matrix which can be set as the Kalman gain matrix, Kj (where j denotes
the test sample index), to ensure convergence [4]. Finally, the sample covariance of ζθ

i is updated as

(

σθ
i

)

new
=

kθ − 1

kθ + ktest − 1

(

σθ
i

)

old

+
1

kθ + ktest − 1

ktest
∑

j=1

[

Xi(j) −
(

β̂θ
i

)T

ktest+1
Gi(j)

] [

Xi(j) −
(

β̂θ
i

)T

ktest+1
Gi(j)

]T

(1.27)

1.3.3 Adding A Bias Term

In some cases adding a bias term to (1.12) may improve the training model. Following this, the linear
functional takes the form

Xi =
(

βθ
i

)T
Gi + bi +Wi (1.28)

where bi is some unknown bias. Alternatively, the bias can be estimated as part of βθ
i by simply

using

Xi =
(

βθ
i

)T
Ḡi +Wi (1.29)

where Ḡi = [Gi, 1].
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Chapter 2

Compressed Random Fields

Using notions from the theory of compressed sensing we devise an online training and compression
algorithm that replaces the ordinary KF described previously. The compression, as it is demonstrated
in the ensuing, significantly improves the classification accuracy. The new compression algorithm is
extensively detailed in [5].

2.1 Sparse Signal Recovery

Consider an R
n-valued random signal x that is sparse in some known orthonormal sparsity basis

ψ ∈ R
n×n, that is

z = ψTx, |supp(z)| << n (2.1)

where supp(z) denotes the support of z. The signal x is measured using a sequence of noisy observa-
tions given by

yk = Hx+ ζk = H ′z + ζk (2.2)

where ζk is a zero-mean white Gaussian sequence with covariance Rk, and H := H ′ψT ∈ R
m×n with

m < n.
Letting yk := [y1, . . . , yk], our problem is defined as follows. We are interested in a yk-measurable

estimator x̂ such that the minimum mean square error (MMSE) E
[

‖ x− x̂ ‖2
2

]

is minimized.

2.2 The Combinatorial Problem and Compressed Sensing

It has already been shown that in the deterministic case (i.e., when z is a parameter vector) one
can recover z (and therefore also x, i.e., x = ψz) with high accuracy by solving the optimization
problem [6, 7]

min ‖ ẑ ‖0 s.t.

k
∑

i=1

‖ yi −H ′ẑ ‖2
2≤ ε (2.3)

for sufficiently small ε. Following a similar approach, in the stochastic case it can be shown that the
sought-after optimal estimator satisfies

min ‖ ẑ ‖0 s.t. Ez|yk

[

‖ z − ẑ ‖2
2

]

≤ ε (2.4)

Unfortunately, the above optimization problems are NP-hard and cannot be solved efficiently. Re-
cently, it has been shown that if the sensing matrix H ′ obeys a so-called restricted isometry hypothesis

(RIH) then the solution of the combinatorial problem (2.3) can almost always be obtained by solving
the convex optimization [6, 8]

min ‖ ẑ ‖1 s.t.
k

∑

i=1

‖ yi −H ′ẑ ‖2
2≤ ε (2.5)

This is a fundamental result in the new emerging theory of compressed sensing (CS) [6, 8]. The
essential idea here is that the convex l1 minimization problem can be efficiently solved. Another
insights provided by CS are related to the construction of sensitivity matrices that satisfy the RIH.
These underlying matrices are random by nature which in turn has shed a new light on the way
observations should be sampled. For an extensive review of CS the reader is referred to [6, 8].
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2.3 Online Compression and Training

It is more likely that compressed random field models will better represent the patterns that arise
naturally in the high dimensional data. This may be thought of as a model reduction approach
for eliminating insignificant statistical relations. Following this approach we have substituted the
ordinary KF training algorithm with the Compressed sensing-embedded KF (CSKF) of [5]. The
obtained random field model in this case is compressed in the sense that only few connections are
used for every node (see Fig. 2.1).
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(b) With Compression

Figure 2.1. Visualization of the random field models constructed by the ordinary KF
(left panel) and the CS-embedded KF (right panel). All nodes are mapped onto two
circles.
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Chapter 3

fMRI Classification

The proposed classification algorithm is applied to fMRI analysis. The performance evaluation con-
sists of both the compressed and uncompressed random field models. The following study involves
three data sets. The first two data sets consists of several subjects performing a task, such as reading
a sentence or looking at a picture. The third data set (neurospin) consists of normal and mentally ill
subjects (schizophrenia).

3.1 Princeton Data Set

The data X is a vector consisting of 14, 043 elements (voxels). The testing scenario and the fMRI
datasets are the ones used in [9]. The total number of samples is 84. In this case Y represents the
stimuli response which can take either of the two classes −1 or +1 (there are exactly 42 samples of
each class). The training and testing data sets are obtained using two-out cross validation, that is, at
every run two testing samples (one of each class) is taken out of the original set, leaving 82 training
samples. This procedure is repeated 84 times. The classification algorithm is tested using Monte
Carlo runs in which the original data set, consisting of 84 samples, is randomly permuted.

The upper panel in Fig. 3.1 shows various fMRI scans of different brain sections. The correspond-
ing cross correlation maps of these sections are shown in the lower panel in the same figure.
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Figure 3.1. fMRI scans of different brain sections and their corresponding cross corre-
lation maps.
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The performance of the algorithm with 100 nodes based on 20 Monte Carlo runs is shown in
figures 3.2. From this figure it can be clearly seen that the compression scheme significantly improves
the mean classification accuracy (86% without compression and 91% with compression).
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Figure 3.2. Distribution of classification accuracy based on 20 Monte Carlo runs. The
mean accuracy when using compression increases to 91%, approximately 5% more than
in the uncompressed case. Random field consists of 100 nodes.

The connectivity of 2 distinct nodes of both the compressed and the uncompressed random field
models is depicted in Fig. 3.3. This figure clearly shows the effect of compression on the estimated
parameters βθ

i .
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(a) Node 1
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Figure 3.3. Connectivity (βθ
i ) of 2 distinct nodes of the ordinary (red line) and the com-

pressed (black line) random field models. The connectivity of the compressed random
field clearly shows a sparsity pattern.

3.2 CMU Data Set

This data set is the one that was used in [10]. The detailed description of this data set can be found
at the StarPlus web-site at http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-81/www/. In this
example we have used the first image only of each trial in which the subject is being shown either a
picture or a sentence. Thus, only 40 trials are used out of the 54 that are included in this data set
(in all others the subject is in rest). As suggested by the provided documentation in the StarPlus
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web-site we have used the following region of interest: ’CALC’, ’LIPL’, ’LT’, ’LTRIA’, ’LOPER’,
’LIPS’, ’LDLPFC’. The results are shown for the subject numbered 04847.

The classification performance of the algorithm over 20 Monte Carlo runs is shown in Fig. 3.4.
With a total of 80 nodes the mean accuracy with and without compression is 87% and 59%, respec-
tively.
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Figure 3.4. Distribution of classification accuracy based on 20 Monte Carlo runs. The
mean accuracy when using compression increases to 87%, approximately 28% more than
in the uncompressed case. Random field consists of 80 nodes.

3.3 Neurospin Data Set

This data set consists of 9 normal and 9 mentally ill subjects. There are two samples associated
with each subject. As before, the algorithm is tested using two-out cross validation. However, in
this case every sample consists of two trails performed by the same subject. The performance of the
algorithm with and without compression is shown in Fig. 3.5. In this case compression improves the
mean accuracy by more than 10% (82% without compression and 93% with compression). The last
figure for this data set, Fig. 3.6, demonstrates the effect of adaptation on the classification accuracy
of the uncompressed variant.
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Figure 3.5. Distribution of classification accuracy based on 40 Monte Carlo runs. The
mean accuracy when using compression increases to 93%, approximately 11% more than
in the uncompressed case. Random field consists of 100 nodes.
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Figure 3.6. Distribution of classification accuracy based on 40 Monte Carlo runs. The
mean accuracy when using adaptation increases to 77%, approximately 4% more than
in the non adaptive case. Random field consists of 50 nodes. No compression is used.
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Appendix A

A.1 Optimal Tuning of c

The constant c in (1.10) can be taken as the one maximizing the accuracy of prediction based on
some development dataset. Let Xθ

dev = {Xθ(1), . . . , Xθ(kθ)} be a dataset associated with the class
Y = θ, and let also

dθ(j) := log p(X̄θ(j) | Y = 0) − log p(X̄θ(j) | Y = 1) (A.1)

We are aimed at minimizing the following objective function

c∗ = arg max
c



η1

k1
∑

j=1

1 (dθ=1(j) ≤ c) + η0

k0
∑

j=1

1 (dθ=0(j) ≥ c)



 (A.2)

where 1(a ∈ A) is the indicator function of the event a ∈ A (i.e., a function which takes the value 1
if a ∈ A, and takes the value 0 otherwise). The constants η0 and η1 are the relative counts of both
classes, that is, η0 := k0/(k0 + k1) and η1 := k1/(k0 + k1).

A.2 Feature Ranking

The preliminary results obtained in this work are based on a reduced feature space obtained using
either of the following feature selection methods.

A.2.1 Cross Correlation Ranking

The cross correlation of the ith element Xi ∈ X and Y is given by

ρXi,Y =
E{(Xi − µXi

)(Y − µY )}

(E{Xi}2 − µ2
Xi

)1/2(E{Y }2 − µ2
Y )1/2

(A.3)

Given k training samples Xtrain = {X(1), ...X(k)} with known responses Ytrain = {Y (1), ...Y (k)},
Eq. (A.3) is approximated by

ρ̂Xi,Y =
k

∑k
j=1Xi(j)Y (j) −

∑k
j=1Xi(j)

∑k
j=1 Y (j)

(k
∑

j Xi(j)2 − (
∑

j Xi(j))2)1/2(k
∑

j Y (j)2 − (
∑

j Y (j))2)1/2
(A.4)

The reduced set X̄ is then obtained as

X̄ = {Xi | ρ̂Xi,Y ≥ ρTh} (A.5)

where ρTh > 0 is some predetermined threshold value.

A.2.2 Mutual Information Ranking

The mutual information (MI) of Xi and Y is given as

I(Xi, Y ) =
∑

Y

∑

Xi∈Xtrain

p(Xi, Y ) log

[

p(Xi, Y )

p(Xi)p(Y )

]

=
∑

Y

∑

Xi∈Xtrain

p(Xi | Y )p(Y ) log

[

p(Xi | Y )

p(Xi)

]

=
∑

Y =0,1

p(Y )
∑

Xi∈Xtrain

p(Xi | Y ) log

[

p(Xi | Y )

p(Xi)

]

(A.6)
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Let us assume that p(Y = 0) = p(Y = 1) = 1/2 (i.e., balanced training set), and

p(Xi | Y ) = N
(

Xi − µXi|Y , σ
2
Xi|Y

)

(A.7a)

p(Xi) = N
(

Xi − µXi
, σ2

Xi

)

(A.7b)

The statistics of the Gaussian pdfs above can be approximated using the training data samples as

µXi|Y =
1

kY

kY
∑

j=1

XY
i (j) (A.8a)

σ2
Xi|Y

=
1

kY − 1

kY
∑

j=1

(XY
i (j) − µXi|Y )2 (A.8b)

µXi
=

1

2
µXi|Y =0 +

1

2
µXi|Y =1 (A.8c)

σ2
Xi

=
k0 − 1

k − 1
σ2

Xi|Y =0 +
k1 − 1

k − 1
σ2

Xi|Y =1 (A.8d)

where
Xa

i (j) = {Xi ∈ X(j) ∩ Y (j) = a} (A.9)

and kY denotes the number of training samples of class Y . Substituting the above in Eq. (A.6) yields

I(Xi, Y ) =
1

2

∑

θ=0,1

k
∑

j=1

Ci
θ exp

{

−
1

2

(Xi(j) − µXi|Y =θ)
2

σ2
Xi|Y =θ

}

×

[

logCi
θ −

1

2

(Xi(j) − µXi|Y =θ)
2

σ2
Xi|Y =θ

− log C̄i +
1

2

(Xi(j) − µXi
)2

σ2
Xi

]

(A.10)

where Ci
θ and C̄i are normalization constants

Ci
θ =





k
∑

j=1

exp

{

−1/2
(Xi(j) − µXi|Y =θ)

2

σ2
Xi|Y =θ

}





−1

(A.11a)

C̄i =





k
∑

j=1

exp

{

−1/2
(Xi(j) − µXi

)2

σ2
Xi

}





−1

(A.11b)

The reduced set X̄ is then obtained as

X̄ = {Xi | I(Xi, Y ) ≥ ITh} (A.12)

where ITh > 0 is some predetermined threshold value.

A.3 Convergence Aspects

A.3.1 Ergodic Sums

If the following conditions hold

• The uncertainty random variables Wi, ∀i are independent and identically distributed (iid).

• The Jacobian ∇Xi
ϕ−1

θ (Xi, Gi) is independent of θ.

then

l =

n
∏

i=1

pW (ϕ−1
θ=0(Xi, Gi))

pW (ϕ−1
θ=1(Xi, Gi))

>
< exp{c} (A.13)

can be interpreted as a likelihood ratio test where nodes act as samples. It can be shown (using the
strong ergodic theorem or the strong law of large numbers) that in this case

lim
n→∞

l =

{

+∞, if θ = 0 is the true class
0, if θ = 1 is the true class

(A.14)

The above argumentation implies that regardless of the value of c the test yields the correct class for
some n > n′, the number of nodes in the RF model.

12



A.3.2 Convergence to a True Class

It has been pointed out that the accuracy (i.e., convergence to the correct class) depends on the value
of c and the number of nodes n. Under the conditions previously mentioned the strong law of large
numbers (SLLN) yields

lim
n→∞

1

n
log l = lim

n→∞

1

n

n
∑

i=1

log
p(Xi | Gi, θ = 0)

p(Xi | Gi, θ = 1)
= α (A.15)

where

α :=

{

−KL {p(· | ·, θ = 0) ‖ (p(· | ·, θ = 1)} , if θ = 0 is the true class
KL {p(· | ·, θ = 1) ‖ (p(· | ·, θ = 0)} , if θ = 1 is the true class

(A.16)

and KL{p1 ‖ p2} denotes the Kullback-Leibler divergence between the pdfs p1 and p2. Note that
the definition (A.16) implies α < 0 if the true class is θ = 0 and α > 0 if the true class is θ = 1.
According to the central limit theorem

ζ = (
1

n
log l − α) ∼ N (0, O(1/n)) (A.17)

assuming large enough n. Thus,

1

n
log l = α+ ζ, ζ = O(1/n1/2) (A.18)

or, equivalently
l = exp{nα} exp{O(1/n1/2)} (A.19)

Eqs. (A.13) and (A.19) imply

exp(nα) exp(O(1/n1/2)) >
< exp(c) (A.20)

yielding
exp(nα)>

< exp(c−O(1/n1/2) (A.21)

and
α>

<

c

n
−O(1/n3/2) (A.22)

The above clearly shows that the effect of c diminishes as n→ ∞. Moreover, the accuracy depends
on c, n and α, the expected discrimination information of one class over the other.
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