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Neural Learning of Kalman Filtering, Kalman Control, and System
Identification

Ralph Linsker

Abstract— Kalman filtering and control methods have been
important in engineering since they were introduced in 1960.
Recent theoretical work on principles that may describe core
computations of cerebral cortex has focussed on the possible
role of Kalman filtering and its nonlinear extensions, and of
Bayesian inference more generally. However, no neural network
(NN) method for learning either the optimal Kalman filter or
the optimal Kalman control matrix (for nonstationary control
problems) has to my knowledge been described.

Here we show that Kalman estimation (including filtering
and prediction) and control, and system identification, can
be fully implemented within an NN whose only input is a
stream of noisy measurement data. The operation of the fully-
integrated algorithm is illustrated by a numerical example. The
resulting network is a multilayer recurrent NN that may be
useful for engineering applications, and that also bears certain
resemblances to the putative ‘local circuit’ of mammalian
cerebral cortex.

I. INTRODUCTION

This work is motivated primarily by a fundamental ques-
tion in neuroscience: Do the regularities observed in the
architecture of mammalian cerebral cortex[1] point to the
existence of certain core functions that underlie the variety
of sensory, motor, and other processing performed by cortex,
and if so, what might these core functions be?

The main mathematical result presented here is a novel
recurrent neural net (NN) architecture and algorithm that both
learns and executes Kalman estimation (including prediction
and filtering) and control[2], as well as performing system
identification. This result is of interest for several reasons,
both engineering and neurobiological:

1) It has been proposed that the core functions of cere-
bral cortex may relate to the operation of a Kalman
filter (KF) or more generally to Bayesian inference
(see Section VII for discussion). For example, Rao
and Ballard[3,4] have shown that a simplified KF-
like algorithm can be used in a hierarchical generative
model for visual recognition. However, ref. [3] [see,
e.g., Eqs. (5.5) and (6.5)] does not use a NN to learn
a KF; and ref. [4] (Sec. 4.3) uses a ‘constant fixed and
possibly scalar’ value for the KF matrix, in lieu of any
KF learning. Other workers have also described the use
of a Kalman filter by a NN where, however, the KF is
learned by non-NN means (see [5] for references). The
difficulties that have limited prior efforts to perform
KF learning in a NN include the fact that Kalman’s
algorithm requires updating the KF matrix by using
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multiple matrix inversions and matrix-times-matrix (as
opposed to matrix-times-vector) computations, which
are not ‘natural’ NN operations.

Such proposals relating KF operation to cortical
functions motivate the question of how (and whether)
the learning of an optimal KF can be performed by a
NN. Despite these proposals, no NN implementation
of KF learning has to my knowledge been previously
described.1

2) NN learning of Kalman control (KC) has also not been
previously described, apart from the special case of
stationary control[7].

3) The present algorithm is unsupervised and, unlike the
classical Kalman methods, requires no side information
describing the measurement process or the dynamics
of the external system (the ‘plant’). This is appealing
because biological systems must generally learn with-
out such side information. The algorithm learns the re-
quired properties of the combined plant+measurement
process using only a stream of noisy measurement data.

4) To the extent that the algorithm is based on local
computations, it may be of value for hardware imple-
mentation.

5) The present algorithm appears to impose substantial
constraints on the network architecture required to
support it. Interestingly, the resulting NN architecture
bears several similarities to that found in cerebral
cortex at the level of the ‘local circuit’ (LCC) (see
Sections VI and VII).

In this paper we show how optimal Kalman prediction
and control (KPC), as well as system identification, can
be learned and executed by a recurrent neural network
composed of linear-response nodes, using as input only a
stream of noisy measurement data. We then identify the
constraints on the resulting NN architecture, and compare
this architecture with that of the LCC. Further details and
derivations are given in [5]. New simulation results illustrate
the operation of the fully-integrated NN algorithm.

II. TRANSFORMING THE KALMAN ALGORITHMS FOR NN
IMPLEMENTATION

We start with the classical KPC algorithms of Kalman[2].
The main equations are summarized in Table I (left column).
In essence, Kalman filtering (resp., one-step-ahead predic-
tion) optimally blends a noisy measurement yt at time t

1A recent paper[6] is motivated by the goal of a KF-learning NN;
however, its algorithm does not learn a KF even approximately (see [5],
App. C).



with a prediction based on an internal model (learned from
prior data), to generate an improved estimate of the ‘plant’
(external system) state x at time t (resp., t + 1). Kalman’s
algorithm for linear quadratic control learns a sequence of
matrices {Sτ , τ = N − 1, N − 2, . . . , t0}, which is used
to generate control signals {ut, t = t0, t0 + 1, . . . , N − 1}
that minimize a ‘cost-to-go’ function J . J contains quadratic
terms that penalize both large ut and large deviations xt
from the intended target xtarg = 0 that is to be reached or
approached at time N > t0.

We now make the problem more difficult, but also more
biologically relevant, by insisting that only a noisy stream of
input data is available – and not the matrices that define the
plant dynamics and measurement processes (side informa-
tion that is assumed known when using Kalman’s classical
methods). Thus the NN must learn system identification as
well as estimation and control.

Since the plant-to-measurement transformation matrix can-
not, in principle, be discovered by the NN in the absence
of side information,2 we transform the classical Kalman
equations into a mathematically equivalent form that depends
only on values obtainable from the measurement stream. See
Table I, right column, for the definitions of the new variables,
and the resulting transformed equations. Thus all variables
referring to the plant state x are replaced by variables
referring to the measurement space.

III. DERIVATION OF THE NN ACTIVATION DYNAMICS
AND HEBBIAN LEARNING RULES FOR KALMAN

PREDICTION AND CONTROL (TABLE II)

To embody the transformed equations in an NN, we
approximate the various expectation values E[· · ·] by finite-
sample3 averages 〈· · ·〉. The validity of this approximation
depends on the sample items being sufficiently independent
of one another (which we assume here) and on the size of
the sample being sufficiently large (see [5] for discussion).

The KF matrix to be learned is Kt in the classical
formulation, and Zt in our transformed version; they are
related via I −HKt = RZ−1

t (Table I).4

A crucial fact we use in deriving the NN algorithm for
KF is this: If Z0 = E[η0η′0] and ηt+1 evolves as in the first
equation of Table II, then Zt = E[ηtη′t] (see [5] for proof).
By evolving (over time) a representative sample {ηpt } of ηt
values such that 〈ηpt (ηpt )′〉p ≈ E[ηtη′t] at each t, the NN
evolves Zt as required by the transformed equation for Z
(within the limits of the finite-sample approximation).

The corresponding key to our KC learning algorithm is the
‘evolution’ (in decreasing time-index) of a vector wτ in such
a way that if Tτ = E[wτw′τ ], then (up to the finite-sample

2We therefore use the term ‘system identification’ to mean the determina-
tion of the plant dynamics as these dynamics are reflected in the measured
quantities y – e.g., the determination of the matrix F̃ rather than F .

3We use ‘sample’ in its statistical sense, to mean a subset of a population
(ensemble) that is defined by a distribution.

4Notation: Prime denotes transpose, I is the identity matrix, and super-
script ‘+’ denotes a matrix pseudoinverse. Also, a hatted variable is an
estimate, a superscript ’-’ denotes a predicted value, and a tilde denotes a
transformed variable.

approximation) Tτ−1 = E[wτ−1w
′
τ−1] (derived in [5]). Note

that in KF, ηt has a physical meaning (i.e., the predicted
minus actual value of yt) and the same η is used for learning
the KF matrix Z and for executing KF (i.e., computing the
next prediction ŷ−t+1). By contrast, in KC, wτ is computed
using internal noise generators (having covariances as in
Table II), and wτ is used only for learning the KC matrix T ,
and not for KC execution (i.e., the computation of ut using
Tt).

Our NN algorithm for KF remains approximately valid
even if the matrices describing the plant and measurement
matrices change slowly with time, or change abruptly (in
which case the algorithm yields a valid KF apart from a tran-
sient period following the change). The algorithm in effect
performs ‘extended Kalman filtering’ (EKF) by linearizing
the dynamics in the vicinity of the current operating point.

A. Technical issues

(a) The sample average: To obtain a set of measurement
vectors at each time step of the Kalman algorithm, rather
than a single vector, we assume either (i) that multiple input
vectors – all obeying the same dynamics but with indepen-
dent noise – are being measured at each time step,5 and/or
(ii) that each ‘Kalman time step’ (t in Table I, left column) is
being performed by the NN using many successive (in time)
observations of a plant variable (in which case the sample
items may or may not be sufficiently independent to ensure
E[· · ·] ≈ 〈· · ·〉). Both (i) and (ii), and their combination, are
treated in [5].

(b) Learning or computing the inverse of a covariance
matrix: The inverses of two covariance matrices, Z−1

t for
Kalman estimation and T−1

t for Kalman control (see Table I),
are required by the NN learning algorithms. We have the
option of learning either Z or Z−1 as a weight matrix (simi-
larly for T ). But neither the computation of M−1v (where M
is a connection weight matrix and v is an activity vector),
nor the learning of a weight matrix M−1 (where M is a
covariance matrix), is a ‘standard’ or familiar NN operation.
However, methods for performing these computations have
been given in [8] and [9], respectively, and their use in the
present context is detailed in [5].

To save space here, we simply write the Z and T update
rules as ‘≈ E[· · ·]’ in Table II (along with an explicit example
of a Hebbian update rule for Z), and refer to Z−1 and T−1

in the NN activity calculations.
(c) Kalman’s classical control algorithm requires learning

a sequence of matrices ‘backwards in time’; that is, a matrix
SN is defined at the future endpoint τ = N in time of the
control operation to be generated, and Sτ−1 is computed
from Sτ for each τ = N − 1, . . . , t0 where t0 is the current
time. The NN algorithm and circuit must operate in real
(forward-moving) time. This is accomplished by running the
control matrix learning algorithm (through a set of decreasing

5Each such measurement vector yp
t could describe, e.g., the coordinates of

an identified and tracked feature p of an input ‘scene’ (which would require
preprocessing to perform this tracking), or a patch p of pixel values, sound
spectrogram intensities, etc. (which would require no such preprocessing).



TABLE I
SUMMARY OF CLASSICAL KALMAN SOLUTION, AND THE MATHEMATICALLY EQUIVALENT FORM USED TO GENERATE THE NN ALGORITHM

CLASSICAL KALMAN TRANSFORMED

Plant & measurement models:
xt+1 = Fxt +But +mt , Q ≡ E[mtm

′
t] Yt+1 = F̃ Yt + ũt + m̃t , where Yt ≡ Hxt ,

(Vectors are column vectors throughout.) F̃ ≡ HFH+ , ũt ≡ HBut , m̃t ≡ Hmt

yt = Hxt + nt , R ≡ E[ntn′t] yt = Yt + nt

Optimal filtering: Minimize
E[(xt − x̂t)′C(xt − x̂t)] w.r.t. {x̂t} E[(Yt − ŷt)′C̃(Yt − ŷt)] , where

ŷt ≡ Hx̂t , ŷ−t ≡ Hx̂−t , C̃ ≡ H ′+CH+

Optimal (one-step) prediction: Minimize
E[(xt+1 − x̂−t+1)′C(xt+1 − x̂−t+1)] w.r.t. {x̂−t+1} E[(Yt+1 − ŷ−t+1)′C̃(Yt+1 − ŷ−t+1)]

Optimal linear quadratic control: Minimize
J ≡ E[ΣNt=t0(u′tgut + x′trxt)] w.r.t. {ut} J ≡ E[ΣNt=t0(ũ′tg̃ũt + Y ′t r̃Yt)] , where

g̃ ≡ H ′+B′+gB+H+ and r̃ ≡ H ′+rH+

Kalman estimation solution:
Execution step:

x̂t = x̂−t +Kt(yt −Hx̂−t ) ŷt = yt +RZ−1
t (yt − ŷ−t ) ,

where Zt ≡ HP−t H ′ +R

x̂−t+1 = Fx̂t +But ŷ−t+1 = F̃ ŷt + ũt
Learning step:

P−t+1 = F (I −KtH)P−t F ′ +Q Zt+1 = F̃ (I −RZ−1
t )RF̃ ′ +HQH ′ +R

Kt = P−t H
′(HP−t H ′ +R)−1 [Kt eqn. & Zt dfn. ⇒ I −HKt = RZ−1

t ]

Kalman control solution:
Execution step:

ut = −Ltx̂t ũt = (−I + T−1
t g̃)F̃ ŷt ,

where Tt ≡ H ′+StH+ + g̃
Learning step:

Sτ−1 = (F ′ − L′τB′)SτF + r Tτ−1 = F̃ ′g̃(I − T−1
τ g̃)F̃ + r̃ + g̃

Lτ = (B′SτB + g)−1B′SτF

values of the time-index τ ) at each of a subset of ‘real’ times
t [5].

(d) When the measurement (y) space is of lower dimension
than the state (x) space, a first order system in x may
correspond to a higher-order system in y. In this case, the
algorithm remains unchanged, but the measurement vector
is augmented as needed by including computed difference
terms y(t) − y(t − 1), etc. (or derivatives dy/dt etc. in a
continuous-time implementation) as additional components,
in the standard way that a general nth-order differential
equation is transformed into a system of n first-order equa-
tions. With this augmentation, the equations for the y dy-
namics and for predicting ŷ− remain of first order. (In the
absence of knowledge of the x-to-y transformation, such
difference term(s) can be included provisionally to improve
y-prediction, if prediction is found to fail in the absence of
these terms.)

(e) Generalization: Our derivation of the NN learning
algorithms for KF and KC has used the fact that we can
define a vector v (which = η for KF, w̃ for KC) and its
evolution equation in such a way that the required Kalman
matrix M (which = Z or T ) satisfies Mt = E[vtv′t] for all
t. This method can be generalized and used to implement,
in a NN, certain classes of matrix computations that are
difficult or impossible for a NN to perform directly. Suppose
we want to implement Mt+1 = h(Mt) where M is a
time-varying matrix and h is such a matrix computation.
Our approach consists of constructing – when possible –
NN-implementable functions f and g, and a set of vectors
{vt(k)|k = 1, . . . ,K} at each time step t, such that Mt+1 ≈
f({vt(k)},Mt) and (for each k) vt+1(k) ≈ g(vt(k),Mt),
where the approximations become exact in the limit K →∞.
Thus, for example, matrix-times-matrix computations in h
may be replaced by matrix-times-vector computations in f



TABLE II
SUMMARY OF THE NN ALGORITHM’S ACTIVITY DYNAMICS AND LEARNING RULES

Function Equations

Estimation:
Execution: (activity dynamics; ηt+1 = −yt+1 + F̃ (yt +RZ−1

t ηt) + ũt
η used also for learning) where ηt ≡ ŷ−t − yt ;

Learning (weight update): Zt ≈ E[ηtη′t] ;
e.g., Zt = (1− γZ)Zt−1 + γZ〈ηpt (ηpt )′〉p .

System identification: To minimize E[(Y pred
t − Yt)′(Y pred

t − Yt)] with respect to F̃ ,
where Y pred

t = F̃ Yt−1 + ũt−1 :
perform gradient descent

using for Y either raw data y: F̃t = F̃t−1 − γFE[εty′t−1] , εt ≡ F̃t−1yt−1 + ũt−1 − yt ;
or Kalman-estimated values ŷ: F̃t = F̃t−1 − γFE[ηtŷ′t−1] .

Control:
Execution (activity dynamics): ũt = (−I + T−1

t g̃)F̃ ŷt (as in Table I);
Learning (activity dynamics): wτ−1 = −νgτ−1 + νrτ + F̃ ′(νgτ + g̃T−1

τ wτ ) ,
where νrτ , νgτ are r.v.’s having
zero mean and covariances r̃ and g̃ resp.;

Learning (weight update): Tτ ≈ E[wτw′τ ] .

and/or g.
We have shown[10, cols. 17-18] that this construction can

be performed for the algebraic Riccati equation, Xt+1 =
A′XtA − A′XtB(B′XtB + R)−1B′XtA, with Mt+1 ≡
B′XtB+R. Both the KF and KC problems are described by
equations of this form, leading to the NN algorithm described
here. How applicable this generalized approach is to other
classes of computations is an open question.

IV. THE DERIVED MULTILAYER RECURRENT NN, ITS
SIGNAL FLOWS, AND ITS CIRCUIT ARCHITECTURE

The NN algorithms for Kalman estimation and control, and
system identification, are realized by a physical NN having
four layers of nodes (Dy nodes per layer where Dy is the
dimensionality of the measurement vector y), and wherein
a set of operations is performed in a prescribed sequence
during each time step t (or τ ) of the algorithm. For each
‘macro’ time step t, the sequence of ‘micro time steps’ or
‘time ticks’ is denoted by the letters (a, b, . . . , n) in Figure 1.
For clarity the set of four layers is depicted twice.

The upper set of four layers shows the signal flows as solid
lines for the learning and execution of Kalman estimation
(the learning of Z and R, and the computation of ŷt and
ŷ−t+1) and for the learning of the system identification matrix
F̃ , and shows the signal flows as dashed lines for the
execution (but not learning) of Kalman control (i.e., the
computation of the control signals ũ given matrices T and
g̃). During each ‘macro’ time step t, the flow is from left
to right; the signal output from time tick n of time step t is
‘wrapped around’ to become the input at tick a of the next

time step (incremented by one). (Thus, e.g., ŷt at time step
t = 3 is the same activity vector as ŷt−1 at the incremented
time step t = 4.)

The lower set of four layers (all dashed lines) shows the
signal flows for the learning of the Kalman control matrix
T and the auxiliary matrix g̃. Again the flow is from left to
right, for a given value of the time-index τ ; now the signal
at tick n of time-index τ is wrapped to become the input at
tick a of the next time-index value (decremented by one).

The four layers are required in order to store five weight
matrices and the activity values required for updating them.
Four of these matrices are: Z (or Z−1); T (or T−1); R, the
covariance of the measurement noise vector; and g̃, a matrix
in the J function of KC. (Although g̃ is prescribed by the
KC problem, we think of it as being represented indirectly
in the NN by an internal random-noise generator of vectors
νgt such that g̃ = E[νgt (νgt )′] and E[νgt ] = 0.) Each of these
four matrices is learned by a Hebbian rule of the form Mt =
(1−γM )Mt−1+γM 〈vtz′t〉 (or a Hebbian variant of this when
it is the matrix M−1 that is being learned[7,3]), where v ≡ z.
Because the activity vector v = z is the same at both ends
of the connection matrix whose weights are being updated,
it is ‘natural’ to implement these matrices as sets of lateral
connections, each within its own layer.

The fifth matrix to be learned (also by a Hebbian rule)
is F̃ . This matrix and its transpose (needed for KC) are
stored as feedback and feedforward weights between a pair
of layers.

If Kalman control is not needed, two layers (to store the
matrices Z and R) suffice instead of four. The signal flow
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Fig. 1. Layered organization of signal flow required by full NN algorithm for Kalman estimation, system identification, and Kalman control (figure
originally published in [5]). (a) Signal flow for system identification and for learning and execution of Kalman estimation (solid links), and for execution of
Kalman control (dashed links), shown in a four-layer recurrent NN, all at time t. Notation: All unfilled circles within a single layer denote the same set of
Dy nodes in that layer, at each time tick a, b, . . ., n. Where two inputs enter an unfilled circle, the input activity vectors are combined; arrowhead inputs
are added and filled-circuit inputs are subtracted. (b) Signal flow for learning of Kalman control (dashed links), shown separately in the same four-layer
NN, all at time index τ of the KC learning process.

then consists only of the bold solid lines in Fig. 1, with
minor changes: The layer-Z link between time ticks a and b
is labeled ‘LF2’ (see meaning below), the layer-Z to layer-g
links at ticks b-d are removed, F̃ runs from layer R to Z,
and ũ (if any) is provided as external input at tick n, rather
than coming from layer T.

We find empirically that, apart from a few minor varia-
tions, the NN algorithm (summarized in Table II) appears to
require the specific multi-layer signal flow shown in Fig. 1,
once we have defined ‘layer’ as above (i.e., such that when
a Hebbian rule has v ≡ z, we choose to embody the
connection matrix being learned as a set of intra-layer or
lateral connections). (See also section VI.)

A. Technical issues

In Figure 1, many links of the signal paths are labeled
either by the activity vector they carry at a given time ‘tick,’
by the matrix that multiplies the activity vector at a given
link, or by a label starting with ‘L’ (for ‘learning’) or ‘C’
(for ‘cut-point’). Hebbian learning of F̃ (and its transpose)
uses the product of the activities at links LF1 and LF2; R
learning uses the activity at LR (similarly for g̃ and Lg); Z
learning uses the activity at LZ1; and Z−1 learning (for the
option in which the weight matrix is Z−1 rather than Z[9])
uses the activity at LZ2. LT1 and LT2 have the corresponding
meanings for T and T−1 learning.

The labeled cut-points indicate that, for different phases
of operation of the algorithm, the signal flow may start, or
be cut off, at different time ticks. Thus, R = E[ntn′t] is
learned by cutting off the signal flow at link CR and shutting
off external input, so that yt ≡ nt (sensor noise) while in
this learning mode. Before KF learning starts, F̃ must be
approximately learned using the raw measurements y; this
is done by cutting signal flow at CF (the same link as CR),

so that the ‘estimated’ value ŷt between ticks is equal to
the raw yt in this learning mode. After F̃ has been learned
sufficiently well, the full circuit is active (no signal cutoff
points). During this phase Z is learned, and the learning of
F̃ is continued using the estimate ŷt rather than the raw
measurement yt.

If Kalman control (KC) is to be performed, the KC vector
T is learned by performing, at a given time step t = t0, a
sequence of steps in which τ is decremented from N to t0,
and in which the signal flow proceeds as in the lower panel of
Fig. 1 for each decremented τ in turn. Before any T learning
is done, however, the matrix g̃ is learned by cutting off the
signal flow at link Cg, so that g̃ learns an approximation of
E[νgt (νgt )′] by Hebbian learning at link Lg.

B. The derived neural circuit

For each link in the signal flow Fig. 1, we provide a
directed link joining the corresponding layers in the circuit
diagram of Fig. 2. Intra-layer processing (multiplication by a
matrix of lateral connections) is indicated by the undirected
horizontal link within each layer. The result is a four-layer
recurrent NN having certain distinctive features, discussed in
Section VI.

V. NUMERICAL SIMULATION OF KALMAN FILTERING

We illustrate the NN algorithm’s results for KF and KC
in Figure 3. Here we assume that R has already been
learned, and that Np = 300 independently evolving input
vectors are being measured at each time step. The plant
and measurement spaces are two-dimensional, and the plant,
measurement, and control processes are defined as follows
(refer to Table I, left column): F , H , and B are 2-d
counterclockwise rotations about the coordinate origin by
15o, 50o, and 20o respectively; the plant and measurement
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Fig. 2. NN circuitry required to enable the signal flow of Fig. 1 (figure
originally published in [5]). Within each layer, the pair of circles denotes the
set of Dy nodes, and the labeled line joining them denotes the weight matrix
(or its inverse) of its lateral connections. Dashed lines denote connections
that are only involved in KC learning.

noise covariance matrices are Q = 10−5I and R = 10−4I;
and the control matrices are g̃ = r̃ = I .

At each time step, Zt is (for more efficient learning)
incrementally updated using each of the Np vectors in
turn, instead of being batch-updated as the example in
Table II would imply. That is, for each t = 1, · · ·, given
Zt−1, set Z0

t ≡ Zt−1; then, for p = 1, · · · , Np, update6

Zpt = (1 − γZ)Zp−1
t + γZη

p
t (ηpt )′; then set Zt ≡ Z

Np
t .

The (1,1) component of (I − HKt) ≡ R(Zpt )−1 is plotted
vs. (t − 1 + p/Np), as the jagged line in Fig. 3, top panel.
The same component of (I − HKt) for the classical KF
solution are plotted for comparison as circles (connected by
line segments) at integer values of t.

The (1,1) component of the learned F̃ matrix is similarly
incrementally updated and plotted in Fig. 3, middle panel,
for t ≤ 8. The horizontal line denotes the true value of
F̃11. In this example, F̃ is updated from the outset using
the ŷ− value predicted using the current Z, and Z is updated
using the current F̃ , even though both matrices are arbitrarily
initialized and therefore do not at first approximate the true F̃
and optimal Z. Thus the two learning processes ‘bootstrap’
each other. Note that I − HK decreases from 0.1 at (t =
1, p = 1) to ≈ 0.003 at (t = 1, p = 10) (not readily seen
in the figure), automatically responding to the fact that the
initially inaccurate model should be ignored (corresponding
to I − HK = 0), and the y measurement used instead, to
estimate ŷ. As the learned F̃ converges to its true value, the
optimal model contribution to the estimate increases, and the

6The learning rates for Z and F̃ are preferably allowed to be time-varying
for efficient learning, using the adaptive method of [11]. In that reference’s
notation, the values of the rate control parameters, which we have made
no attempt to optimize, are {α, β, γ, δ} = {0.5, 30, 0.05, 0.1} for Z, and
{0.1, 3, 0.05, 0.04} for F̃ .
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Fig. 3. Example of classical and neural Kalman filter and control learning,
and neural system identification. See text.

learned I −HK thereby starts to converge to its asymptotic
value.

In this example, the control process is turned on at t = 8,
after the F̃ and Z values have reached their asymptotic values
(apart from random fluctuations). At that point (refer to
Fig. 3, bottom panel), the KC time variable τ is decremented
for each of Np vectors wpτ (see Table II), implementing the
NN learning of the matrix T̃τ for τ = 14, 13, . . . , 8. Here T̃
is learned incrementally using the procedure described above
for Z, but with a constant learning rate γT = 1/Np. The
values of F̃ and Z at t = 8 are used for the KC calculation.
The T̃τ matrices that are learned after incrementing through
all p at each τ are stored. Then, for t = 8, 9, . . . , 14, the
stored T̃t is used (for all p) to compute upt and thus drive
the execution of the control process, while F̃ and Z learning
continue. Figure 3 (bottom panel) shows the (1,1) component
of the incrementally learned T̃ pτ plotted vs. (τ + 1− p/Np)
(jagged line), and for comparison the classical KC result
(denoted by circles at integer τ connected by line segments).

VI. CONSTRAINTS ON THE CHOICE OF SIGNAL FLOWS
AND NN CIRCUITRY

Both the signal flows and the NN architecture and circuitry
appear to be constrained (apart from small variations) by the
requirements of the Kalman neural algorithm and of local (in
our case, Hebbian) learning rules; that is, they do not appear
to represent merely one among a large number of disparate
possible choices of architecture or signal flow. Among the
constraints are the following:

(a) Each of the matrices R, g̃, Z (or Z−1), and T (or
T−1) is learned by a Hebb rule that contains a product of
the form vz′ where the source and target activity vectors v
and z are equal; each matrix is thus represented by a set of
lateral connections within a distinct layer.



(b) For local (Hebbian) learning, each activity vector must
be present at the input to the connection matrix that is learned
using that vector; thus η must be present at the input to the Z
(or Z−1) connections, and similarly for the (vector; matrix)
pairs (w;T or T−1), (y ≡ n;R) during R learning mode,
and (νg; g̃) during g̃ learning mode.

(c) For Hebbian learning of F̃ , activities ŷt−1 and ηt must
be present simultaneously at the two ends of the F̃ matrix.
Thus ŷt−1 must be held as the activity of one set of nodes in
layer R until ηt has been computed at layer Z. F̃ is updated
at the time indicated by links LF1 and LF2, but is used later
in the signal flow, at the link labeled F̃ (Fig. 1).

(d) Matrix F̃ and its transpose F̃ ′, required for Kalman
control, are learned using the same Hebbian rule, and thus
must connect the same two layers (in opposite directions).

(e) The measurement vector yt is required twice as input:
to layer Z, where it contributes to ηt, and to layer R, where
it combines with RZ−1ηt to yield ŷt.

Thus the arrangement shown in Figs. 1 and 2 is not an
arbitrary way of laying out the NN algorithms we have
derived; rather, the four-layer organization and its signal
flows appear to be substantially determined (apart from small
variations) by the algorithms and the requirements of a NN
implementation.

VII. COMPARISON WITH BIOLOGY

A. Background

It has been proposed by many workers[1,12-14] that
mammalian cerebral cortex is characterized, at the 50 ∼
100µ horizontal scale, by an arrangement of cells and local
interconnections – sometimes called the minicolumn, or
local cortical circuit (LCC), or canonical microcircuit –
that is substantially similar (although with significant and
well-known variations) across a variety of cortical areas
subserving vision, hearing, motor control, and other func-
tions. These findings have suggested that the LCC might
perform a set of core functions, as yet unknown, that underlie
the variety of observed higher-level area-specific functions.
Various proposals have explored possible connections among
visual processing, learning, and development[15]; between
sensory and motor function[16]; and especially between the
processing of ‘bottom-up’ sensory input and ‘top-down’
model-driven expectations. The latter approach has made use
of Bayesian inference and generative models, and various NN
methods are motivated by, approximate, or perform a portion
of the Bayesian inference process[17-27]. Kalman filtering is,
given certain assumptions, an exactly solvable special linear
case of Bayesian inference.

In particular, I consider it a plausible and attractive hypoth-
esis to think of the LCC’s functions as including prediction,
the estimation or inference of missing or noisy sensory
data, and the goal-driven generation of control signals, al-
beit using nonlinear methods that enable the discovery of
higher-level sensory and motor-control features, and that go
beyond (linear) Kalman estimation and control, and also
beyond (nonlinear) ‘extended Kalman filtering.’ In view of

the constraints that our algorithm places on the NN’s design
(previous section), this hypothesis motivates a comparison
between the derived NN architecture and that of the LCC.

B. Resemblances to the biological LCC, and caveats

We compare diagrammatically the interlaminar signal flow
of the KPC NN with the putative principal signal flows[14]
of the LCC. The signal flow for Kalman estimation (learning
and execution) and Kalman control (execution only) (Fig. 1a)
may be schematized, considering layers g and T as a unit,
as Dgm. D1:

{ R } → (g,T) → Z → R
↑ ↓ ↓ ↑
y ŷ ũ y [D1]

4 → 2/3 → 5 → 6 → 4
↑ ↓ ↓ ↑
in outS outM in [D2]

(The KC learning of Fig. 3b adds a g → R path.) By
comparison, Gilbert’s proposal[14] for the principal LCC
signal flow among the layers 6, 5, 4, and 2/3 is shown in
Dgm. D2 (above). More recent work is consistent with, and
expands upon, this basic flow[12,13,28]. The similarities are
consistent with a rough correspondence between NN layer
R and LCC layers 4 and 2/3, between NN layer Z and
LCC layer 6, and between NN layers (g,T) and LCC layer
5 (important in motor processing).

These and other resemblances are consistent with the view
– although they do not imply – that the LCC may be
performing prediction, filtering, and control functions (albeit
involving nonlinear operations including the discovery of
higher-level features, use of context, etc.). There are several
important caveats that prevent one from making any stronger
claim than that of consistency, and from expecting any
highly-detailed correspondence. For example: (a) We have
considered only one type of NN representation – real-valued
activities with linear-combination processing units7 – rather
than other coding schemes and neuronal dynamics (e.g.,
population codes, spike codes, sparse codes, phase-locking
schemes, etc.). (b) Biological prediction and control are more
sophisticated than KF or EKF, e.g., involving Bayesian infer-
ence or some approximation thereof. (c) Current knowledge
of detailed LCC connectivity and of signal flows (and their
sequencing) within the circuit remains incomplete. Owing to
space limitations, we must refer the interested reader to [5]
for a more extensive discussion of both the resemblances and
caveats.

7We could have used units having sigmoid nonlinearities, but the non-
linearity appears to offer no advantage for implementing (linear) KF and
KC. Also, the fact that the ‘activities’ in our artificial NN can be of either
sign, and that weights can change sign, is inessential; the units and weights
can be replaced by more biologically plausible ones without affecting the
results.



VIII. CONCLUSION

We have shown that Kalman estimation (including predic-
tion), Kalman control, and system identification can be fully
implemented within an artificial neural network. The NN’s
simultaneous learning of KF, KC, and system identification is
illustrated by a numerical example. The resulting network is
a multilayer recurrent NN that may be useful for engineering
applications, and that also bears certain resemblances to the
putative ‘local circuit’ of mammalian cerebral cortex. The
possible connection with neuroscience fits into a broader
context of ongoing NN research by many workers, exploring
a range of neural coding strategies and a range of com-
putational tasks in prediction and control (e.g., Bayesian
inference and generative models), as well as experimental
work to elucidate both the functional connectivity and signal
flows in the LCC. It will be important to discover which
types of computational tasks are associated with specific ar-
chitectural features in NNs and, if so, whether such mappings
have useful implications for understanding biological neural
function.

Such continuing interaction between theory and experi-
ment may not only contribute to elucidating core aspects
of cortical function, but may also lead to insights into new
methods for nonlinear estimation and control.

REFERENCES

[1] Mountcastle, V. B. (1998). Perceptual neuroscience: the cere-
bral cortex (Harvard Univ. Press).

[2] Kalman, R. E. (1960). A new approach to linear filtering and
prediction problems. Trans. ASME – J. Basic Eng., 82, 35-45.

[3] Rao, R. P. N. & Ballard, D. H. (1997) Dynamic model of
visual recognition predicts neural response properties in the
visual cortex. Neural Computation, 9, 721-763.

[4] Rao, R. P. N. (1999). An optimal estimation approach to visual
perception and learning. Vision Res., 39, 1963-89.

[5] Linsker, R. (2008). Neural network learning of optimal Kalman
prediction and control. Neural Networks, 21, 1328-1343.
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