
RC24750 (W0902-083) February 19, 2009
Computer Science

IBM Research Report

Runtime Address Disambiguation for
Local Memory Management

Tong Chen1, Tao Zhang1, Haibo Lin2, Tao Liu2, Kevin O'Brien1,
Marc Gonzalez Tallada3

1IBM Research Division
Thomas J. Watson Research Center

P.O. Box 218
Yorktown Heights, NY 10598

2IBM China Research Lab

3Department of Computer Architecture
Barcelona Tech

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Runtime Address Disambiguation for Local Memory
Management

Tong Chen1, Tao Zhang1, Haibo Lin2, Tao Liu2, Kevin O’Brien1, Marc Gonzalez
Tallada3

1IBM Waston Research
{chentong, taozhang,

caomhin@us.ibm.com}

2IBM China Research Lab
{linhb,

liuttao@cn.ibm.com}

3Department of
Computer Architecture,

Barcelona Tech
{marc@ac.upc.edu}

Abstract.

In heterogeneous multi-core systems, such as the Cell/B.E. and certain
embedded systems, the accelerator core has its own fast local memory without
hardware supported coherence between the local and global memories. It is the
software's responsibility to dynamically transfer in and out the working set to
the local memory when the total data set is too large to fit in the local memory.
Similar to the hardware cache approach, a software-controlled cache can be set
up to automatically manage the local memory for data transfer and reuse.
However, software cache may bring about extra overheads, such as cache
lookup and cache directory maintenance. Usually, the regular references in the
program can be optimized with direct buffering, which replaces the references
with local buffers directly at compile time to minimize the runtime overhead.
However, such optimization relies on the precise alias or dependence
information generated by the compiler, or directives provided by users. In
applications where such information is absent, the compiler may lose
opportunities for direct buffering. In this work, we explore the runtime address
disambiguation in the local memory management. We propose a framework in
which the references from software cache and direct buffers are checked at
runtime with an overlapping detection method optimized for our purpose and
hardware. If the addresses overlap, one local copy is kept to solve the coherence
problem. Two directories, one for direct buffers and one for software cache are
used together with their interaction carefully devised. As a result, our solution
keeps the advantages of both software cache and direct buffer, and is able to
disambiguate memory accesses efficiently at runtime. We have implemented
this method in the XL compiler for acceleration on Cell, and have conducted
experiments with small kernels and the NAS OpenMP benchmarks. The results
show that our method maintains correctness while increasing the opportunities
for direct buffering optimization. The performance of some benchmarks can be
improved up to a factor of 3 while no slowdown has been found on any
benchmark.

2 Tong Chen1, Tao Zhang1, Haibo Lin2, Tao Liu2, Kevin O’Brien1, Marc Gonzalez
Tallada3

1 Introduction

In heterogeneous multi-core systems, reducing hardware complexity and minimizing
power consumption are important design considerations [1, 2]. Providing each of the
accelerator cores in such systems with its own fast local memory is one means of
accomplishing this goal. Typically, such systems will not provide hardware supported
coherence between these local memories and the global system memory. When an
application (both code and data) fits in the local memory, performance can be
predicted with high precision. Such a feature is critical for real time applications.

The Cell Broadband Engine Architecture (Cell/B.E.) [3] is an example of such a
system. It comprises 8 SPEs, each with a 256KB fast local memory, and a globally
coherent DMA engine for transferring data between these local memories and the
shared global memory. Scratchpad memory [4] in embedded systems is another
example of this type of memory hierarchy. This memory design requires careful
programming to use the fast local memory efficiently and reduce the long latency
accesses to the global memory so as to obtain top performance.

The local memory can be managed manually by programmers, or automatically by
compilers, or some place between the two extremes. In the manual management
approach, programmers develop or modify their applications customized for the fast
local memory. They decide how to use the local memory and insert the necessary data
transfer explicitly in the program. This approach gives the users full control of the
program and is preferred by some experienced users who are seeking the peak
performance. For example, many users in the Cell community pursue performance
with the basic utilities provided in Cell software development toolkit (SDK) [5].
However, this approach requires lots of expertise and effort to actually get the optimal
performance. To enhance the productivity of programmers, and the quality and
portability of the programs, new programming models have been proposed. One
example is the acceleration language framework (ALF) [6], which wraps the
computation performed by accelerators with functions and specifies the input and
output set of the functions, hiding the details of data transferring from users. StreamIt
[7] is another example, which adopts streaming program model and relies on compiler
to manage the local memory. SPMD programming model is used by CUDA [8] and
RapidMind [9].These approaches can provide help for programmers. However, code
modification or rewriting is still needed.

To support the widely used conventional shared memory programming model,
IBM developed XL compiler for acceleration [10]. This compiler manages the local
memory automatically for the popular OpenMP programs[11]. The weak consistency
memory model used by OpenMP can be efficiently supported on the Cell/B.E. To run
a program with a large data set on accelerators with small local memory, a software
controlled cache is the basic method used for data transfer and data reuse. The
software controlled cache (or software cache in short) is a software implementation of
a cache in the local memory. Every load/store instruction to global memory (also
called EA space) is instrumented with cache related instructions by the compiler. At
runtime, the added instructions perform software cache lookup with the EA address
value, and invoke cache miss handling when the accessed location is not in the cache.
The cache method is able to handle all kinds of data references uniformly and capture

Runtime Address Disambiguation for Local Memory Management 3

data reuse that occurs on the run. However, it is typically an expensive approach, and
in practice we need to complement it with additional techniques in order to provide
better performance. In direct buffering, compiler allocates temporary buffers in the
SPE local memory and inserts data transfer operation (DMA operation in Cell/B.E.)
to move data between local buffer and global memory. Each load/store to global
memory is then replaced with the direct load/store to the buffers at compile time. As a
result, both the software cache lookup and miss handling cost can be completely
eliminated. The size of DMA transfer chunk can be adapted to the application instead
of being determined by the fixed cache line length so that the DMA operation can be
optimized. However, since the mapping of references between global memory and
local buffers is done at compile time, the application of direct buffering is limited by
the accuracy of the alias and/or dependence analysis of the compiler. Applications
often contain references that can not be analyzed at compile time. However such
references do have opportunities for direct buffering.

It is desirable to apply both software cache and direct buffering, especially on large
complicated applications so that different types of references can be optimized
appropriately. The integration of software cache and direct buffering may create data
coherence problems among the local buffers created by direct buffering, or between
the cache line and the local buffers, because one data item in the global memory may
have more than one copy in the local memory. If one copy is modified, the other will
have to be updated properly. Otherwise, incorrect result may be generated. This is the
coherence problem tackled in the paper. We should note that this coherence problem
is caused by the multiple copies of data in the local memory of a single thread, and is
orthogonal to the coherence issues among different threads.

One of the solutions to tackle this data coherence problem is, obviously, to
improve the alias and dependence analysis in compilers. Another solution presented
in [12] is to reduce the requirement for alias and dependence information. With some
data synchronization, the alias query is limited to a local range, increasing the chances
for direct buffering. These two approaches work for some cases but can not solve the
problem when the alias information is actually unknown statically or is changing from
time to time. Another approach [13] is to give up direct buffering optimization.
Instead, varying length of cache line and inspector-and-executor model is used to get
some benefits which usually are easily gained from direct buffering.

In this paper, we explore the approach of runtime address disambiguation for local
memory management. When the compiler can not guarantee that there is no overlap
between references for different buffers in direct buffering, or between cache and a
direct buffer, the direct buffering optimization is applied speculatively at compiler
time and then at runtime, memory addresses are checked. If there are overlaps among
these addresses, the coherence problem should be addressed at runtime.

There are two major challenges in the runtime address disambiguation approach:
how to check the addresses quickly and how to ensure the coherence at runtime
without scarifying the performance of original software cache and direct buffering.
For example, the direct buffers are accessed directly without any lookup for
efficiency. It is undesirable to add any operation for the accesses to direct buffers.

 In order to find a good solution for this problem, we need to look into the
difficulties in space management. The length of local buffers in direct buffer varies
according to the data type and subscript expressions, while the software cache uses

4 Tong Chen1, Tao Zhang1, Haibo Lin2, Tao Liu2, Kevin O’Brien1, Marc Gonzalez
Tallada3

fixed length cache lines. When the space for software cache and direct buffer are
mixed, we have to guarantee to allocate the contiguous space for direct buffer and
avoid space segmentation problem. Since there is no further check when the direct
buffers are references associativity conflict has to be avoided. The lookup for cache is
instrumented in the code and should be kept intact without introducing extra overhead
when runtime address disambiguation is not needed.

Considering these unique requirements and the special features on Cell/B.E.
processor, we propose a novel runtime address disambiguation method in this paper to
tackle the ambiguous dependence problem. The proposed method maintains only one
copy of global data in the local memory to solve the coherence problem. In order to
overcome the difficulties in space management described above, a new buffer
directory component is introduced to work along with software cache directory, and
acts as the master copy when the same data is accessed both from software cache and
direct buffer. With this, the software cache and the direct buffers are integrated
together with efficiency and simplicity. There is not data fragmentation issue in our
new design. Furthermore, we designed an efficient method for address
disambiguation. We check the range of the direct buffers with the SIMD instructions
on Cell/B.E. This method is much faster than using cache lookup hash function,
which requires the varying length of direct buffers to be broken into multiple cache
lines for check.

Our major contributions in this paper include:
1. Explore the runtime address disambiguation approach for local memory

management. At compile time, compiler can apply direct buffering optimizations
speculatively and is never forced to give up direct buffer optimization due to the
lack of precise alias and/or dependence information.

2. Propose a new scheme that integrates direct buffering and software cache. The new
scheme keeps the advantages from both software cache and direct buffering
methods, and guarantees the coherence for them.

3. Design an efficient method for address overlapping detection. The ranges of direct
buffers are tested with SIMD instructions on Cell/B.E. It exploits the instruction
level parallelism and reduces the execution time by factor of 4.
We have implemented dynamic address disambiguation scheme within the XL

compiler for acceleration framework [8]. Our experiments show that the proposed
runtime coherence maintenance method accelerates execution up to 3-4 times on a set
of representative benchmarks for high performance computing. The study in this
paper also provided some insights on the dependence analysis in our compiler. In fact,
the some improvements for static dependence analysis have been introduced.

The rest of this paper is organized as follows: section 2 presents details of our
runtime coherence maintenance scheme; the experimental results can be found in
section 3; and we conclude this paper with section 4.

2 Runtime Address disambiguation Method

In this section, we present our runtime address disambiguation method for local
memory management. The main ideas and overview of our method are introduced

Runtime Address Disambiguation for Local Memory Management 5

first. Then we go into detail about our fast memory overlapping detection algorithm.
Finally, we describe in details how to use these ideas to handle the two coherence
problems in local memory management: the coherence between cache and a direct
buffer, and the coherence between two direct buffers.

2.1 Overview

When a program containing references to global memory is run on the SPE of
Cell/B.E., either software cache or direct buffering is used to transfer the data. Fig 1
shows an example with three references to EA space through pointer p1, p2, and p3 in
a loop. From the reference pattern, it is desirable to put the regular references, through
p1 and p2, into direct buffers. As shown in fig 1(b), the direct buffer lp1 and lp2 are
used and corresponding DMA operations are inserted. Usually, loop blocking (not
shown in this example) has to be applied to control the direct buffer size. The
reference through pointer p3 has a function call in its subscript expression and
software cache is used for it. The illustrative code cache lookup and invocation to
miss handler is inserted.

Now we will illustrate the coherence problem with this example. Suppose that the
compiler can not assert that pointer p1, p2 and p3 are not aliased, such optimization
may introduce potential coherence problems:

1. between software cache and direct buffer: the value read from software cache
for temp may be obsolete because it has been modified though lp1.

2. between the direct buffers. The value read from lp2 is obsolete because it has
been modified through lp1.

Fig. 1. Example of coherence problem from direct buffering optimization

Our basic idea to solve this coherence problem is to check whether references from
software cache and different direct buffers are overlapped in their EA addresses at
runtime. If there is no overlap, they can be handled as they are in previous methods. If

/* p1, p2 and p3 are pointers
pointing to the EA space */

for(j=0; j<n;j++) {
*p1 = *p2+*(p3+f(j));
}

(a) original code

/* allocate buffer, lp1 and lp2 in local
space */

DMA p2[0:n] to lp2[0:n];
for (j=0; j<n; j++) {
 look up*(p3+f(j)) in software cache;
 if miss, call miss handler;
 temp = value of *(p3+f(j)) in software

cache;
 *(lp1+j) = lp2[j]+temp;
}
DMA lp1[0:n] to p1[0:n];

(b) Optimized code

6 Tong Chen1, Tao Zhang1, Haibo Lin2, Tao Liu2, Kevin O’Brien1, Marc Gonzalez
Tallada3

there is overlap, we have to modify the previous methods to allow only one copy of
local data in the system.

However, we can not simply merge the direct buffer and software cache into one
structure because they have different requirement. For example, the direct buffers are
accessed directly without further lookup. We have to guarantee that the space for the
direct buffer remains unchanged all the time. On the other hand, the references to
software cache have lookup code instructions inserted in binary. The focus for
software cache is the efficiency for lookup. Consequently, cache line mapping has
limited associativity and cache line eviction may occur at runtime. The local space
allocation and de-allocation is also different in the direct buffers and software cache.
The software cache requires fixed length cache line space, which is easy to manage.
The direct buffers allocate and free continuous varying length space in a stack manner
(corresponding to the loop nests structure in the program). Segmentation may be a
problem if the space is simply mixed with software cache management.

Another requirement for the design of the new runtime address disambiguation
method is to avoid notable slowdown of software cache or direct buffer when the
runtime address disambiguation is not needed. Those are the cases when the previous
compile time method can handle. For example, the code instrumented into binary for
cache lookup has been highly optimized for its execution time and space. It is
undesirable to increase its size or execution time for runtime address disambiguation
since such change will affect all cache references. For another example, the references
of direct buffer are directly to the local buffers without any extra inserted code. We’d
better not to insert any code for direct buffer references in the new method so that the
performance benefit from direct buffers will not be lost for runtime address
disambiguation.

Our solution is to introduce a directory data structure for direct buffer and make it
work along with the existing software cache directory. The directory for the direct
buffers is a stack structure, which is pushed or popped when direct buffers are
allocated or de-allocated respectively. Each entry of the direct buffer records the
boundary of EA address and local address. At runtime, both software cache directory
and direct buffer directory are checked for possible overlapping in their EA addresses.
When the address overlap is detected, the two directories will be synchronized to
make sure only one copy of local data is used. In order to manage the one copy, the
boundaries of local space for direct buffers are extended to the cache line boundary.
Such transformation can usually reduce the DMA time. Since there are more
restrictions for direct buffer, we will use the direct buffer directory as the master copy
and evict the cache line when needed. The two directories design allows us still to
manage the two methods separately in logic. What we merge them is most in the
space allocation and de-allocation. Such design philosophy greatly simplifies whole
system implementation and preserves the performance of software cache and direct
buffers.

Our method focuses on optimizing the performance for the path when there is not
overlap because that’s the common case in real application. It can still work correctly
when the overlap does occur. In some sense, our runtime address disambiguation
method is speculative in performance.

Runtime Address Disambiguation for Local Memory Management 7

We will explain in details how to check the addresses efficiently and how to solve
the two coherence problem in the following sections.

2.2 Overlapping detection

When buffers for direct buffer or a cache line for software cache is requested, their
global memory addresses have to be checked. If their addresses are overlapped with
other buffers or cache line, special care should taken to guarantee only one local copy
is generated. We can still use the cache lookup to heck against the cache lines. The
new issue is how to check against the buffers.

In the direct buffer case, the number of buffers is usually quite small, averaging 8

in our test cases. And the length of buffers is usually much longer than the cache line
length and varies from loop to loop. The length of software cache line is 128 byte in
our implementation. This length is optimized for the space usage and implementation
on Cell. When a buffer, with 4k length for example, is checked with cache lookup, it
has to be broken down into 32 cache lines and perform 32 cache lookup. It seems not
an efficient approach. Considering the characteristics of our problem and the
hardware platform, we reinvestigate the naive pair-wise range comparison method. In
this method, each pair is comparison with the lower and upper bound. There is no
need to break into multiple checks. Furthermore, we found that the comparison can be
optimized with SIMD instructions on CELL. If the lower bound and the upper bound
of all the buffers are stored properly in vector format, one address can be compared
with the upper or lower boundary of four buffers in one cycle. This is because the
address is 32-bit and the data length for SIMD instructions is 128-bit in Cell. The
computation power provided by Cell can be exploited in this way. The illustrative
code can be found in Fig2.

2.3 Coherence between direct buffers and software cache

In this section, we elaborate details on how we maintain coherence between direct
buffers and software cache dynamically. Software cache manages data in the unit of a
cache line. So first of all, we extend all direct buffer allocation requests to cache line

Assume v_l is the lower bound vector for all the buffers;
Assume v_u is the upper bound vector for all the buffers;
Assume the number of buffers is n.
for (i = 0; i< n; i++) {
 current_u = spu_splats(v_u[i]);
 current_l = spu_splats(v_l[i]);
 for(j=(i+1)/4*4; j < n; j+= 4) {
 result = spu_or(spu_and(spu_cmpgt(c_u, v_l[j]), spu_cmpgt(u_l[j],

c_l), result);
 }
}
if (spu__extract(spu_gather(result, 0)), there is overlap. Otherwise no

Fig. 2. Code illustration for overlap check with SIMD intrinsic

8 Tong Chen1, Tao Zhang1, Haibo Lin2, Tao Liu2, Kevin O’Brien1, Marc Gonzalez
Tallada3

aligned in terms of both starting address and length. Thus, there will be no partial
cache line residing in local buffers created by direct buffer.

We tackle the problems by three steps. First, we need to make sure when direct
buffers are allocated and initialized, the coherence requirement is satisfied, i.e., any
global data has only one copy in local memory. Second, during the execution of the
loop body, we need to properly maintain this property. Finally, some work needs to be
done when direct buffers are freed,

In our previous scheme in which compiler guarantees that there is no coherence
problem inside the loop body, we only need to maintain coherence between direct
buffers and software cache at the boundaries of the live ranges of the direct buffers. In
our previous scheme, after a direct buffer is initialized using a DMA read operation
we check whether software cache contains a newer copy and update the direct buffer
if necessary. Under our new runtime coherence maintenance scheme, when a direct
buffer is allocated and initialized, we not only update direct buffer with latest value in
software cache as in our previous scheme, we also modify the data pointer of the
software cache line to pointing to the proper location in the newly allocated direct
buffer so that there is only one copy of the global data in local memory.

During the execution of the loop body, to make sure there is only one copy of
global data in local memory, whenever there is a software cache miss, the runtime
library needs to check whether the missing global memory address hits in the buffer
directory. The code to do that is essentially same as the buffer overlapping detection
code detailed previously.

If the missing global data line is not in local direct buffers, the software cache miss
handler works normally. If the missing line currently resides in local buffers, the miss
handler does not need to do a DMA transfer to get the missing data line since the up-
to-date data line is already in local memory. The miss handler just needs to maintain
the software cache directory properly. It updates cache tag for the cache line then
modifies the data pointer of the cache line to make it point to the location of the data
line in the local direct buffer. As a result, software cache and direct buffers will use
the same local space for the global data accessed by both methods.

Now that some local space could be shared by direct buffer and software data
cache, we need to pay special attention when direct buffer or software cache tries to
release the space it uses. As described in section 3.1, in our scheme both direct buffer
and software data cache obtain space from a local memory pool. When software data
cache has to evict an existing cache line for an incoming cache line, it normally uses
the data line previously used by the evicted cache line for the incoming cache line.
However, with our runtime coherence maintenance scheme, the miss handler cannot
simply reuse the data line. It has to check whether the data line is actually shared with
direct buffer. If that is the case, reusing the data line can corrupt the data in direct
buffers thus the miss handler has to get a new unused data line. Similarly, special
attention is required when direct buffers are released. Direct buffers are released
together after the execution of the optimized loop. However, some data lines in direct
buffers may be shared by software data cache. To release the local memory safely, the
runtime library needs to call cache eviction function of software cache for each of the
data lines shared by software cache and direct buffers.

Runtime Address Disambiguation for Local Memory Management 9

To quickly check whether a data line is shared by direct buffer and software data
cache, we add a flag in the tag for a cache line. The flag is maintained by cache miss
handler.

2.4 Coherence among direct buffers

After we release the burden of the compiler to guarantee there is no coherence
problem between direct buffers for a loop nest, different buffers allocated in direct
buffer for a loop nest could have overlapped EA addresses. To eliminate the
coherence problem, the basic idea is to make sure for any global memory data there is
only one copy of the data in local memory. The fundamental problem in previous
approach is that the buffers are statically allocated by the compiler at compile time.
But at compile time, we may not know whether those direct buffers allocated overlap
in terms of global memory address space. To solve this coherence problem, we need
to conduct overlap check for the EA addresses of buffers and allocate buffers properly
so that there is only one copy of any global data among all local buffers used by direct
buffer. To achieve that, we need to postpone buffer allocation to runtime and allocate
local buffers properly. In particular, we do the following in the runtime library:

1) For each direct buffer transformation, we delay the actual allocation for the
local buffer from compile time static allocation to runtime dynamic allocation. Instead
of creating a static buffer during compilation, compiler generates a buffer allocation
request with proper information to the runtime library. At runtime, local buffer
allocation is only done after the runtime library collects all buffer allocation requests
for this loop nest.

2) After runtime library gathers access ranges of all direct buffers for the loop
nest, it does a fast check to see whether any of the access ranges overlap with each
other, which is the rare case. The overlapping detection step always incurs whenever
compiler cannot guarantee there is no coherence problem between buffers at com-pile
time, so it should be implemented very efficiently to reduce runtime overhead.

3) If some of the access ranges do overlap, the runtime library groups the
overlapping ranges into an access group. It keeps grouping until none of the access
groups overlaps with each other.

4) Finally, the runtime library allocates contiguous local memory space for each
access group.

Using this method, whenever two direct buffers overlap a portion of their access
ranges, they will share same local buffer space for the overlapped portion, so there
will be no coherence problems between different direct buffers. Next, we give more
details on our scheme.

3. Performance Evaluation

We implement this method in our Single Source Compiler on Cell/B.E. and
conduct experiments with hundreds of small functional test cases, and large OpenMP
programs from NAS [14] and SPEC2006 [15]. The small test cases help us in

10 Tong Chen1, Tao Zhang1, Haibo Lin2, Tao Liu2, Kevin O’Brien1, Marc Gonzalez
Tallada3

demonstrating the correctness of our algorithm. We will focus on the performance
large OpenMP programs.

3.1 Performance of overlapping detection

The proposed overlapping detection method is the corner stone of our system. We
first compare our simdized pair-wise method with the cache lookup methods. As
stated in our analysis, these two methods perform differently to the number and the
length of the buffers to be checked. In the experiment, we choose the parameters in
the common range seen in benchmarks. The execution time of cache lookup is
normalized to that of the simdized pair-wise. The result is shown in Fig 3.

It can be seen from Fig 2 that our simdized range check method for overlapping
detection is much faster than cache lookup when the number of buffer is small. For
example, when there are only 4 buffers with size 4k, our overlap diction method is
almost 15 times faster. The cache lookup method catches up when the number of
buffers increases, and even 2 times faster when there are 64 1k buffers. However, in
the common cases found in real benchmarks, our overlap check method is much faster
because the number of buffers is usually no more than 16 and the buffer size is more
than 2k. Furthermore, the overhead to handle the possible overflow of cache
associativity has not even been considered yet in this experiment. When the number
of buffers is extremely large and consequently the buffer size is quite small, we can
give up direct buffering optimization to avoid possible slowdown. We can define the
thresholds based on this experiment.

Performance Comparison

0.1

1

10

100

4 8 16 32 64

number of buffers

1k buffer
2k buffer
4k buffer

Fig. 3. Performance comparison of simdized range check and cache lookup

3.2 Performance on benchmarks

The runtime address disambiguation method, on one hand, allows the compiler to
perform more aggressive direct buffer optimization, but on the other hand, brings
about extra maintenance overhead. The overall impact on performance is measured
with large benchmarks. The improvement by runtime address disambiguation is
reported in Figure 4.

Runtime Address Disambiguation for Local Memory Management 11

Improvement from Runtime Disambuigation

0%

100%

200%

300%

400%

IS LU MG SP LBM

Fig.4. Performance improvement from runtime address disambiguation

Totally 10 benchmarks are tested and the runtime address disambiguation method
is invoked in five of them. The improvement is quite significant for IS, MG, LU, MG
and LBM because some critical loops in them require runtime address disambiguation
so that references can be optimized with direct buffer.

4. Conclusions

In this paper, we have presented our method of runtime address disambiguation for
local memory management on accelerator architectures. The precise alias information
is no longer a prerequisite for direct buffering optimization. The addresses for
software cache and direct buffers are checked at runtime, when compiler can not
guarantee that they are not aliased. An efficient overlapping detection method has
been optimized with the SIMD instructions on the Cell/B.E. To overcome the
coherence problem when the addresses are overlapped, we proposed a new software
cache and direct buffering scheme. In this scheme, only one local copy of data is used
even if the global memory location is accessed through cache or different direct
buffers. In the meanwhile, our integration of software cache and direct buffering
preserved the advantages of software cache and direct buffering.

 We have implemented this method in the XL compiler for acceleration, and have
conducted experiments with the selected NAS OpenMP benchmarks. The results
show that our method maintains correctness while keeping most of the opportunities
for direct buffer. The execution performance can improve by more than 3 times
compared to a static disambiguation method.

Acknowledgement

The researchers at BSC-UPC were supported by the Spanish Ministry of Science and
Innovation (contract no. TIN2007-60625), the European Commission in the context of the

12 Tong Chen1, Tao Zhang1, Haibo Lin2, Tao Liu2, Kevin O’Brien1, Marc Gonzalez
Tallada3

HiPEAC Network of Excellence (contract no. IST-004408), and the MareIncognito project was
under the BSC-IBM collaboration agreement.

Reference
[1] Rakesh Kumar , Keith I. Farkas , Norman P. Jouppi , Parthasarathy Ranganathan , Dean

M. Tullsen, Single-ISA Heterogeneous Multi-Core Architectures: The Potential for
Processor Power Reduction, Proceedings of the 36th annual IEEE/ACM International
Symposium on Microarchitecture, p.81, December 03-05, 2003

[2] Canturk Isci , Alper Buyuktosunoglu , Chen-Yong Cher , Pradip Bose , Margaret
Martonosi, An Analysis of Efficient Multi-Core Global Power Management Policies:
Maximizing Performance for a Given Power Budget, Proceedings of the 39th Annual
IEEE/ACM International Symposium on Microarchitecture, p.347-358, December 09-13,
2006

[3] Brian Flachs et al. The Microarchitecture of the Streaming Processor for a CELL
Processor. In Proceedings of the IEEE International Solid-State Circuits Conference,
2005.

[4] Rajeshwari Banakar, Stefan Steinke, Bo-Sik Lee, M. Balakrishnan and Peter Marwedel.
Scratchpad memory: design alternative for cache on-chip memory in embedded systems.
In Proceedings of the tenth international symposium on Hardware/software Co-design
(CODES), 2002

[5] Cell SDK: http://www.ibm.com/developerworks/power/cell/

[6] ALF: http://www-
01.ibm.com/chips/techlib/techlib.nsf/techdocs/41838EDB5A15CCCD002573530063D465

[7] Ujval Kapasi, Peter Mattson, William J. Dally, John D. Owens and Brian Towles. Stream
scheduling. In Proceedings of the 3rd Workshop on Media and Streaming Processors,
2001.

[8] CUDA: www.nvidia.com/cuda

[9] RapidMind Multi-core Development Platform:
http://www.rapidmind.net/pdfs/WP_RapidMindPlatform.pdf

[10] Alexandre E. Eichenberger et al. Optimizing Compiler for the CELL Processor. In
Proceedings of International Conference on Parallel Architecture and Compilation
Techniques, 2005.

[11] Official OpenMP specifications. http://www.openmp.org/drupal/mp-
documents/spec25.pdf.

[12] Tong Chen, Haibo Lin, Tao Zhang, Kathryn O’Brien, Kevin O’Brien. Orchestrating Data
Transfer on Cell Processor. International Conference on Supercomputing (ICS) 2008

[13] Marc Gonzalez and et al. Hybrid Access-Specific Software Cache Techniques for the Cell
BE Architecture. PACT 2008 .

[14] H. Jin, M. Frumkin, and J. Yan. The OpenMP Implementation of NAS Parallel
Benchmarks and Its Performance. NAS Technical Report NAS99-011, NASA Ames
Research Center, 1999.

[15] www.spec.org/cpu2006/

