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Abstract.  

In heterogeneous multi-core systems, such as the Cell/B.E. and certain 
embedded systems, the accelerator core has its own fast local memory without 
hardware supported coherence between the local and global memories. It is the 
software's responsibility to dynamically transfer in and out the working set to 
the local memory when the total data set is too large to fit in the local memory. 
Similar to the hardware cache approach, a software-controlled cache can be set 
up to automatically manage the local memory for data transfer and reuse. 
However, software cache may bring about extra overheads, such as cache 
lookup and cache directory maintenance. Usually, the regular references in the 
program can be optimized with direct buffering, which replaces the references 
with local buffers directly at compile time to minimize the runtime overhead. 
However, such optimization relies on the precise alias or dependence 
information generated by the compiler, or directives provided by users. In 
applications where such information is absent, the compiler may lose 
opportunities for direct buffering. In this work, we explore the runtime address 
disambiguation in the local memory management. We propose a framework in 
which the references from software cache and direct buffers are checked at 
runtime with an overlapping detection method optimized for our purpose and 
hardware. If the addresses overlap, one local copy is kept to solve the coherence 
problem. Two directories, one for direct buffers and one for software cache are 
used together with their interaction carefully devised. As a result, our solution 
keeps the advantages of both software cache and direct buffer, and is able to 
disambiguate memory accesses efficiently at runtime. We have implemented 
this method in the XL compiler for acceleration on Cell, and have conducted 
experiments with small kernels and the NAS OpenMP benchmarks. The results 
show that our method maintains correctness while increasing the opportunities 
for direct buffering optimization. The performance of some benchmarks can be 
improved up to a factor of 3 while no slowdown has been found on any 
benchmark. 
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1   Introduction 

In heterogeneous multi-core systems, reducing hardware complexity and minimizing 
power consumption are important design considerations [1, 2]. Providing each of the 
accelerator cores in such systems with its own fast local memory is one means of 
accomplishing this goal. Typically, such systems will not provide hardware supported 
coherence between these local memories and the global system memory. When an 
application (both code and data) fits in the local memory, performance can be 
predicted with high precision. Such a feature is critical for real time applications. 

The Cell Broadband Engine Architecture (Cell/B.E.) [3] is an example of such a 
system. It comprises 8 SPEs, each with a 256KB fast local memory, and a globally 
coherent DMA engine for transferring data between these local memories and the 
shared global memory. Scratchpad memory [4] in embedded systems is another 
example of this type of memory hierarchy. This memory design requires careful 
programming to use the fast local memory efficiently and reduce the long latency 
accesses to the global memory so as to obtain top performance. 

The local memory can be managed manually by programmers, or automatically by 
compilers, or some place between the two extremes. In the manual management 
approach, programmers develop or modify their applications customized for the fast 
local memory. They decide how to use the local memory and insert the necessary data 
transfer explicitly in the program. This approach gives the users full control of the 
program and is preferred by some experienced users who are seeking the peak 
performance. For example, many users in the Cell community pursue performance 
with the basic utilities provided in Cell software development toolkit (SDK) [5]. 
However, this approach requires lots of expertise and effort to actually get the optimal 
performance. To enhance the productivity of programmers, and the quality and 
portability of the programs, new programming models have been proposed. One 
example is the acceleration language framework (ALF) [6], which wraps the 
computation performed by accelerators with functions and specifies the input and 
output set of the functions, hiding the details of data transferring from users. StreamIt 
[7] is another example, which adopts streaming program model and relies on compiler 
to manage the local memory. SPMD programming model is used by CUDA [8] and 
RapidMind [9].These approaches can provide help for programmers. However, code 
modification or rewriting is still needed. 

To support the widely used conventional shared memory programming model, 
IBM developed XL compiler for acceleration [10]. This compiler manages the local 
memory automatically for the popular OpenMP programs[11]. The weak consistency 
memory model used by OpenMP can be efficiently supported on the Cell/B.E. To run 
a program with a large data set on accelerators with small local memory, a software 
controlled cache is the basic method used for data transfer and data reuse. The 
software controlled cache (or software cache in short) is a software implementation of 
a cache in the local memory. Every load/store instruction to global memory (also 
called EA space) is instrumented with cache related instructions by the compiler. At 
runtime, the added instructions perform software cache lookup with the EA address 
value, and invoke cache miss handling when the accessed location is not in the cache. 
The cache method is able to handle all kinds of data references uniformly and capture 
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data reuse that occurs on the run. However, it is typically an expensive approach, and 
in practice we need to complement it with additional techniques in order to provide 
better performance. In direct buffering, compiler allocates temporary buffers in the 
SPE local memory and inserts data transfer operation (DMA operation in Cell/B.E.) 
to move data between local buffer and global memory. Each load/store to global 
memory is then replaced with the direct load/store to the buffers at compile time. As a 
result, both the software cache lookup and miss handling cost can be completely 
eliminated. The size of DMA transfer chunk can be adapted to the application instead 
of being determined by the fixed cache line length so that the DMA operation can be 
optimized. However, since the mapping of references between global memory and 
local buffers is done at compile time, the application of direct buffering is limited by 
the accuracy of the alias and/or dependence analysis of the compiler. Applications 
often contain references that can not be analyzed at compile time. However such 
references do have opportunities for direct buffering. 

It is desirable to apply both software cache and direct buffering, especially on large 
complicated applications so that different types of references can be optimized 
appropriately. The integration of software cache and direct buffering may create data 
coherence problems among the local buffers created by direct buffering, or between 
the cache line and the local buffers, because one data item in the global memory may 
have more than one copy in the local memory. If one copy is modified, the other will 
have to be updated properly. Otherwise, incorrect result may be generated. This is the 
coherence problem tackled in the paper. We should note that this coherence problem 
is caused by the multiple copies of data in the local memory of a single thread, and is 
orthogonal to the coherence issues among different threads.  

One of the solutions to tackle this data coherence problem is, obviously, to 
improve the alias and dependence analysis in compilers. Another solution presented 
in [12] is to reduce the requirement for alias and dependence information. With some 
data synchronization, the alias query is limited to a local range, increasing the chances 
for direct buffering. These two approaches work for some cases but can not solve the 
problem when the alias information is actually unknown statically or is changing from 
time to time. Another approach [13] is to give up direct buffering optimization. 
Instead, varying length of cache line and inspector-and-executor model is used to get 
some benefits which usually are easily gained from direct buffering.  

In this paper, we explore the approach of runtime address disambiguation for local 
memory management. When the compiler can not guarantee that there is no overlap 
between references for different buffers in direct buffering, or between cache and a 
direct buffer, the direct buffering optimization is applied speculatively at compiler 
time and then at runtime, memory addresses are checked. If there are overlaps among 
these addresses, the coherence problem should be addressed at runtime. 

There are two major challenges in the runtime address disambiguation approach: 
how to check the addresses quickly and how to ensure the coherence at runtime 
without scarifying the performance of original software cache and direct buffering. 
For example, the direct buffers are accessed directly without any lookup for 
efficiency. It is undesirable to add any operation for the accesses to direct buffers.  

 In order to find a good solution for this problem, we need to look into the 
difficulties in space management. The length of local buffers in direct buffer varies 
according to the data type and subscript expressions, while the software cache uses 
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fixed length cache lines. When the space for software cache and direct buffer are 
mixed, we have to guarantee to allocate the contiguous space for direct buffer and 
avoid space segmentation problem. Since there is no further check when the direct 
buffers are references associativity conflict has to be avoided. The lookup for cache is 
instrumented in the code and should be kept intact without introducing extra overhead 
when runtime address disambiguation is not needed.  

Considering these unique requirements and the special features on Cell/B.E. 
processor, we propose a novel runtime address disambiguation method in this paper to 
tackle the ambiguous dependence problem. The proposed method maintains only one 
copy of global data in the local memory to solve the coherence problem. In order to 
overcome the difficulties in space management described above, a new buffer 
directory component is introduced to work along with software cache directory, and 
acts as the master copy when the same data is accessed both from software cache and 
direct buffer. With this, the software cache and the direct buffers are integrated 
together with efficiency and simplicity. There is not data fragmentation issue in our 
new design. Furthermore, we designed an efficient method for address 
disambiguation. We check the range of the direct buffers with the SIMD instructions 
on Cell/B.E. This method is much faster than using cache lookup hash function, 
which requires the varying length of direct buffers to be broken into multiple cache 
lines for check. 

Our major contributions in this paper include:  
1.  Explore the runtime address disambiguation approach for local memory 

management. At compile time, compiler can apply direct buffering optimizations 
speculatively and is never forced to give up direct buffer optimization due to the 
lack of precise alias and/or dependence information. 

2. Propose a new scheme that integrates direct buffering and software cache. The new 
scheme keeps the advantages from both software cache and direct buffering 
methods, and guarantees the coherence for them.  

3. Design an efficient method for address overlapping detection. The ranges of direct 
buffers are tested with SIMD instructions on Cell/B.E. It exploits the instruction 
level parallelism and reduces the execution time by factor of 4. 
We have implemented dynamic address disambiguation scheme within the XL 

compiler for acceleration framework [8]. Our experiments show that the proposed 
runtime coherence maintenance method accelerates execution up to 3-4 times on a set 
of representative benchmarks for high performance computing. The study in this 
paper also provided some insights on the dependence analysis in our compiler. In fact, 
the some improvements for static dependence analysis have been introduced. 

The rest of this paper is organized as follows: section 2 presents details of our 
runtime coherence maintenance scheme; the experimental results can be found in 
section 3; and we conclude this paper with section 4. 

2   Runtime Address disambiguation Method 

In this section, we present our runtime address disambiguation method for local 
memory management. The main ideas and overview of our method are introduced 
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first. Then we go into detail about our fast memory overlapping detection algorithm. 
Finally, we describe in details how to use these ideas to handle the two coherence 
problems in local memory management: the coherence between cache and a direct 
buffer, and the coherence between two direct buffers. 

2.1   Overview 

When a program containing references to global memory is run on the SPE of 
Cell/B.E., either software cache or direct buffering is used to transfer the data. Fig 1 
shows an example with three references to EA space through pointer p1, p2, and p3 in 
a loop. From the reference pattern, it is desirable to put the regular references, through 
p1 and p2, into direct buffers. As shown in fig 1(b), the direct buffer lp1 and lp2 are 
used and corresponding DMA operations are inserted. Usually, loop blocking (not 
shown in this example) has to be applied to control the direct buffer size. The 
reference through pointer p3 has a function call in its subscript expression and 
software cache is used for it. The illustrative code cache lookup and invocation to 
miss handler is inserted. 

Now we will illustrate the coherence problem with this example. Suppose that the 
compiler can not assert that pointer p1, p2 and p3 are not aliased, such optimization 
may introduce potential coherence problems: 

1. between software cache and direct buffer: the value read from software cache 
for temp may be obsolete because it has been modified though lp1. 

2. between the direct buffers. The value read from lp2 is obsolete because it has 
been modified through lp1. 

 

 

Fig. 1. Example of coherence problem from direct buffering optimization 

Our basic idea to solve this coherence problem is to check whether references from 
software cache and different direct buffers are overlapped in their EA addresses at 
runtime. If there is no overlap, they can be handled as they are in previous methods. If 

/* p1, p2 and p3 are pointers 
pointing to the EA space */ 

for(j=0; j<n;j++) { 
*p1 = *p2+*(p3+f(j)); 
} 
 
 
 
 
 
 

(a) original code 

/* allocate buffer, lp1 and lp2 in local 
space */ 

DMA p2[0:n] to lp2[0:n]; 
for (j=0; j<n; j++) { 
   look up*(p3+f(j)) in software cache; 
   if miss, call miss handler; 
   temp = value of *(p3+f(j)) in software 

cache; 
   *(lp1+j) = lp2[j]+temp; 
} 
DMA lp1[0:n] to p1[0:n]; 
 

(b) Optimized code 
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there is overlap, we have to modify the previous methods to allow only one copy of 
local data in the system. 

However, we can not simply merge the direct buffer and software cache into one 
structure because they have different requirement. For example, the direct buffers are 
accessed directly without further lookup. We have to guarantee that the space for the 
direct buffer remains unchanged all the time. On the other hand, the references to 
software cache have lookup code instructions inserted in binary. The focus for 
software cache is the efficiency for lookup. Consequently, cache line mapping has 
limited associativity and cache line eviction may occur at runtime. The local space 
allocation and de-allocation is also different in the direct buffers and software cache. 
The software cache requires fixed length cache line space, which is easy to manage. 
The direct buffers allocate and free continuous varying length space in a stack manner 
(corresponding to the loop nests structure in the program). Segmentation may be a 
problem if the space is simply mixed with software cache management.  

Another requirement for the design of the new runtime address disambiguation 
method is to avoid notable slowdown of software cache or direct buffer when the 
runtime address disambiguation is not needed. Those are the cases when the previous 
compile time method can handle. For example, the code instrumented into binary for 
cache lookup has been highly optimized for its execution time and space. It is 
undesirable to increase its size or execution time for runtime address disambiguation 
since such change will affect all cache references. For another example, the references 
of direct buffer are directly to the local buffers without any extra inserted code. We’d 
better not to insert any code for direct buffer references in the new method so that the 
performance benefit from direct buffers will not be lost for runtime address 
disambiguation.  

Our solution is to introduce a directory data structure for direct buffer and make it 
work along with the existing software cache directory. The directory for the direct 
buffers is a stack structure, which is pushed or popped when direct buffers are 
allocated or de-allocated respectively. Each entry of the direct buffer records the 
boundary of EA address and local address. At runtime, both software cache directory 
and direct buffer directory are checked for possible overlapping in their EA addresses. 
When the address overlap is detected, the two directories will be synchronized to 
make sure only one copy of local data is used. In order to manage the one copy, the 
boundaries of local space for direct buffers are extended to the cache line boundary. 
Such transformation can usually reduce the DMA time. Since there are more 
restrictions for direct buffer, we will use the direct buffer directory as the master copy 
and evict the cache line when needed. The two directories design allows us still to 
manage the two methods separately in logic. What we merge them is most in the 
space allocation and de-allocation. Such design philosophy greatly simplifies whole 
system implementation and preserves the performance of software cache and direct 
buffers.  

Our method focuses on optimizing the performance for the path when there is not 
overlap because that’s the common case in real application. It can still work correctly 
when the overlap does occur. In some sense, our runtime address disambiguation 
method is speculative in performance. 
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We will explain in details how to check the addresses efficiently and how to solve 
the two coherence problem in the following sections.   

2.2   Overlapping detection 

When buffers for direct buffer or a cache line for software cache is requested, their 
global memory addresses have to be checked. If their addresses are overlapped with 
other buffers or cache line, special care should taken to guarantee only one local copy 
is generated. We can still use the cache lookup to heck against the cache lines. The 
new issue is how to check against the buffers. 

 
In the direct buffer case, the number of buffers is usually quite small, averaging 8 

in our test cases. And the length of buffers is usually much longer than the cache line 
length and varies from loop to loop. The length of software cache line is 128 byte in 
our implementation. This length is optimized for the space usage and implementation 
on Cell. When a buffer, with 4k length for example, is checked with cache lookup, it 
has to be broken down into 32 cache lines and perform 32 cache lookup. It seems not 
an efficient approach. Considering the characteristics of our problem and the 
hardware platform, we reinvestigate the naive pair-wise range comparison method. In 
this method, each pair is comparison with the lower and upper bound. There is no 
need to break into multiple checks. Furthermore, we found that the comparison can be 
optimized with SIMD instructions on CELL. If the lower bound and the upper bound 
of all the buffers are stored properly in vector format, one address can be compared 
with the upper or lower boundary of four buffers in one cycle. This is because the 
address is 32-bit and the data length for SIMD instructions is 128-bit in Cell. The 
computation power provided by Cell can be exploited in this way. The illustrative 
code can be found in Fig2.  

2.3   Coherence between direct buffers and software cache 

In this section, we elaborate details on how we maintain coherence between direct 
buffers and software cache dynamically. Software cache manages data in the unit of a 
cache line. So first of all, we extend all direct buffer allocation requests to cache line 

Assume v_l is the lower bound vector for all the buffers; 
Assume v_u is the upper bound vector for all the buffers; 
Assume the number of buffers is n. 
for (i = 0; i< n; i++) { 
 current_u = spu_splats(v_u[i]); 
 current_l = spu_splats(v_l[i]); 
 for(j=(i+1)/4*4; j < n; j+= 4) { 
  result = spu_or(spu_and(spu_cmpgt(c_u, v_l[j]), spu_cmpgt(u_l[j], 

c_l), result); 
 } 
} 
if (spu__extract(spu_gather(result, 0)), there is overlap. Otherwise no 

Fig. 2.  Code illustration for overlap check with SIMD intrinsic 
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aligned in terms of both starting address and length. Thus, there will be no partial 
cache line residing in local buffers created by direct buffer. 

We tackle the problems by three steps. First, we need to make sure when direct 
buffers are allocated and initialized, the coherence requirement is satisfied, i.e., any 
global data has only one copy in local memory. Second, during the execution of the 
loop body, we need to properly maintain this property. Finally, some work needs to be 
done when direct buffers are freed,  

In our previous scheme in which compiler guarantees that there is no coherence 
problem inside the loop body, we only need to maintain coherence between direct 
buffers and software cache at the boundaries of the live ranges of the direct buffers. In 
our previous scheme, after a direct buffer is initialized using a DMA read operation 
we check whether software cache contains a newer copy and update the direct buffer 
if necessary. Under our new runtime coherence maintenance scheme, when a direct 
buffer is allocated and initialized, we not only update direct buffer with latest value in 
software cache as in our previous scheme, we also modify the data pointer of the 
software cache line to pointing to the proper location in the newly allocated direct 
buffer so that there is only one copy of the global data in local memory.  

During the execution of the loop body, to make sure there is only one copy of 
global data in local memory, whenever there is a software cache miss, the runtime 
library needs to check whether the missing global memory address hits in the buffer 
directory. The code to do that is essentially same as the buffer overlapping detection 
code detailed previously.  

If the missing global data line is not in local direct buffers, the software cache miss 
handler works normally. If the missing line currently resides in local buffers, the miss 
handler does not need to do a DMA transfer to get the missing data line since the up-
to-date data line is already in local memory. The miss handler just needs to maintain 
the software cache directory properly. It updates cache tag for the cache line then 
modifies the data pointer of the cache line to make it point to the location of the data 
line in the local direct buffer. As a result, software cache and direct buffers will use 
the same local space for the global data accessed by both methods. 

Now that some local space could be shared by direct buffer and software data 
cache, we need to pay special attention when direct buffer or software cache tries to 
release the space it uses. As described in section 3.1, in our scheme both direct buffer 
and software data cache obtain space from a local memory pool. When software data 
cache has to evict an existing cache line for an incoming cache line, it normally uses 
the data line previously used by the evicted cache line for the incoming cache line. 
However, with our runtime coherence maintenance scheme, the miss handler cannot 
simply reuse the data line. It has to check whether the data line is actually shared with 
direct buffer. If that is the case, reusing the data line can corrupt the data in direct 
buffers thus the miss handler has to get a new unused data line. Similarly, special 
attention is required when direct buffers are released. Direct buffers are released 
together after the execution of the optimized loop. However, some data lines in direct 
buffers may be shared by software data cache. To release the local memory safely, the 
runtime library needs to call cache eviction function of software cache for each of the 
data lines shared by software cache and direct buffers.  
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To quickly check whether a data line is shared by direct buffer and software data 
cache, we add a flag in the tag for a cache line. The flag is maintained by cache miss 
handler.  

2.4 Coherence among direct buffers 

After we release the burden of the compiler to guarantee there is no coherence 
problem between direct buffers for a loop nest, different buffers allocated in direct 
buffer for a loop nest could have overlapped EA addresses. To eliminate the 
coherence problem, the basic idea is to make sure for any global memory data there is 
only one copy of the data in local memory. The fundamental problem in previous 
approach is that the buffers are statically allocated by the compiler at compile time. 
But at compile time, we may not know whether those direct buffers allocated overlap 
in terms of global memory address space. To solve this coherence problem, we need 
to conduct overlap check for the EA addresses of buffers and allocate buffers properly 
so that there is only one copy of any global data among all local buffers used by direct 
buffer. To achieve that, we need to postpone buffer allocation to runtime and allocate 
local buffers properly. In particular, we do the following in the runtime library: 

1) For each direct buffer transformation, we delay the actual allocation for the 
local buffer from compile time static allocation to runtime dynamic allocation. Instead 
of creating a static buffer during compilation, compiler generates a buffer allocation 
request with proper information to the runtime library. At runtime, local buffer 
allocation is only done after the runtime library collects all buffer allocation requests 
for this loop nest. 

2) After runtime library gathers access ranges of all direct buffers for the loop 
nest, it does a fast check to see whether any of the access ranges overlap with each 
other, which is the rare case. The overlapping detection step always incurs whenever 
compiler cannot guarantee there is no coherence problem between buffers at com-pile 
time, so it should be implemented very efficiently to reduce runtime overhead. 

3) If some of the access ranges do overlap, the runtime library groups the 
overlapping ranges into an access group. It keeps grouping until none of the access 
groups overlaps with each other. 

4) Finally, the runtime library allocates contiguous local memory space for each 
access group. 

Using this method, whenever two direct buffers overlap a portion of their access 
ranges, they will share same local buffer space for the overlapped portion, so there 
will be no coherence problems between different direct buffers. Next, we give more 
details on our scheme. 

3.   Performance Evaluation 

We implement this method in our Single Source Compiler on Cell/B.E. and 
conduct experiments with hundreds of small functional test cases, and large OpenMP 
programs from NAS [14] and SPEC2006 [15]. The small test cases help us in 
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demonstrating the correctness of our algorithm. We will focus on the performance 
large OpenMP programs.  

3.1   Performance of overlapping detection 

The proposed overlapping detection method is the corner stone of our system. We 
first compare our simdized pair-wise method with the cache lookup methods. As 
stated in our analysis, these two methods perform differently to the number and the 
length of the buffers to be checked. In the experiment, we choose the parameters in 
the common range seen in benchmarks. The execution time of cache lookup is 
normalized to that of the simdized pair-wise. The result is shown in Fig 3.  

It can be seen from Fig 2 that our simdized range check method for overlapping 
detection is much faster than cache lookup when the number of buffer is small. For 
example, when there are only 4 buffers with size 4k, our overlap diction method is 
almost 15 times faster. The cache lookup method catches up when the number of 
buffers increases, and even 2 times faster when there are 64 1k buffers. However, in 
the common cases found in real benchmarks, our overlap check method is much faster 
because the number of buffers is usually no more than 16 and the buffer size is more 
than 2k. Furthermore, the overhead to handle the possible overflow of cache 
associativity has not even been considered yet in this experiment. When the number 
of buffers is extremely large and consequently the buffer size is quite small, we can 
give up direct buffering optimization to avoid possible slowdown. We can define the 
thresholds based on this experiment. 

Performance Comparison

0.1

1

10

100

4 8 16 32 64

number of buffers

1k buffer
2k buffer
4k buffer

 

Fig. 3. Performance comparison of simdized range check and cache lookup 

3.2   Performance on benchmarks 

The runtime address disambiguation method, on one hand, allows the compiler to 
perform more aggressive direct buffer optimization, but on the other hand, brings 
about extra maintenance overhead. The overall impact on performance is measured 
with large benchmarks. The improvement by runtime address disambiguation is 
reported in Figure 4. 
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Improvement from Runtime Disambuigation

0%

100%

200%

300%

400%

IS LU MG SP LBM

 

Fig.4. Performance improvement from runtime address disambiguation 

Totally 10 benchmarks are tested and the runtime address disambiguation method 
is invoked in five of them. The improvement is quite significant for IS, MG, LU, MG 
and LBM because some critical loops in them require runtime address disambiguation 
so that references can be optimized with direct buffer.  

4.   Conclusions 

In this paper, we have presented our method of runtime address disambiguation for 
local memory management on accelerator architectures. The precise alias information 
is no longer a prerequisite for direct buffering optimization. The addresses for 
software cache and direct buffers are checked at runtime, when compiler can not 
guarantee that they are not aliased. An efficient overlapping detection method has 
been optimized with the SIMD instructions on the Cell/B.E. To overcome the 
coherence problem when the addresses are overlapped, we proposed a new software 
cache and direct buffering scheme. In this scheme, only one local copy of data is used 
even if the global memory location is accessed through cache or different direct 
buffers. In the meanwhile, our integration of software cache and direct buffering 
preserved the advantages of software cache and direct buffering. 

 We have implemented this method in the XL compiler for acceleration, and have 
conducted experiments with the selected NAS OpenMP benchmarks. The results 
show that our method maintains correctness while keeping most of the opportunities 
for direct buffer. The execution performance can improve by more than 3 times 
compared to a static disambiguation method. 
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