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Manu Sridharan and Stephen J. Fink
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Abstract. While the tightest proven worst-case complexity for Ander-
sen’s points-to analysis is nearly cubic, the analysis seems to scale better
in practice when applied to real-world codes. We examine algorithmic fac-
tors that help account for this gap. In particular, we show that a simple
algorithm can compute Andersen’s analysis in worst-case quadratic time
as long as the input program is k-sparse, i.e., it has at most k statements
dereferencing each variable and a sparse flow graph. We then argue that
for strongly-typed languages like Java, typical structure makes programs
likely to be k-sparse, and we give empirical measurements across a suite
of Java programs that confirm this hypothesis. We also discuss how var-
ious standard implementation techniques yield further constant-factor
speedups.

1 Introduction

The scalability of Andersen’s points-to analysis [1] has received much attention,
as scalable points-to analysis lies on the critical path for many static analy-
ses. Andersen’s analysis implementations have scaled to increasingly large pro-
grams [6, 9, 14, 17, 21, 24, 29, 31], through clever algorithms and careful engi-
neering. Despite this progress, the best known worst-case complexity bound for
Andersen’s analysis remains (nearly) cubic.1

If Andersen’s analysis required time cubic in program size for typical inputs,
implementations would not scale as well as the literature reports. On the con-
trary, experiences from real implementations suggest that the worst-case bound
rarely governs performance in practice. For example, Heintze and McAllester sug-
gested that a standard algorithm for 0-CFA [25], similar to Andersen’s analysis,
“rarely exhibit[s] cubic behavior” [11]. Similarly, Goldsmith et al. [8] observed
no worse than quadratic scaling for an implementation of Andersen’s analysis
for C [15].

In this paper, we show that (1) Andersen’s analysis can be computed in
worst-case quadratic time for a restricted class of inputs and that (2) realistic
Java programs usually belong to this class.

1 One can reduce Andersen’s analysis to CFL-reachability [22, 27], for which Chaud-
huri’s algorithm is slightly sub-cubic [5].



Andersen’s analysis can be formulated as a dynamic transitive closure prob-
lem over a flow graph representing the flow of pointers in the program, where the
flow graph grows dynamically to capture value flow through pointer dereferences
(details in §3). We show that when the input program is k-sparse, Andersen’s
analysis can be computed in quadratic time. A k-sparse program must have (1)
at most k statements dereferencing each variable and (2) a sparse flow graph
at analysis termination, i.e., including all dynamically inserted edges. The key
insight behind the bound is that difference propagation [7, 21] limits both the
closure work and edge insertion work to quadratic time for k-sparse programs
(details in §4).

For strongly-typed languages like Java, program structure typically con-
strains programs to be k-sparse and hence analyzable in quadratic time. In par-
ticular, types associated with heap allocated data in Java limit flow analysis to
a small number of named instance fields per object. Furthermore, modularity of
typical Java programs—in particular, the common use of “getter” and “setter”
methods to encapsulate field accesses—limits the number of statements accessing
any particular field. We show that programs with no arrays or dynamic dispatch
that use fields in this manner must be k-sparse, and we argue that dispatch and
arrays usually do not materially compromise k-sparseness in practice. Further-
more, we present empirical evidence of k-sparseness across a suite of large Java
programs.

Perhaps surprisingly, our quadratic complexity bound does not rely on many
engineering details that have been shown to have a significant impact on real-
world performance of Andersen’s analysis. We include a discussion of many of
these issues (set implementation, worklist ordering, cycle elimination, etc.), de-
scribing potential constant-factor speedups, space consumption, and the relative
importance of the techniques for strongly-typed languages like Java vs. weakly-
typed languages like C.

Contributions This paper makes the following contributions:

– We show a simple algorithm that computes Andersen’s analysis in worst-case
quadratic time for k-sparse programs.

– We show that Java’s type system and typical program structure suggest that
realistic programs will be k-sparse.

– We present measurements across a suite of large Java programs that show
they are k-sparse, with the number of flow graph edges being at most 4.5X
the number of nodes. We also show that the implementation we tested [30]
scales roughly quadratically.

The remainder of this paper is organized as follows. §2 formulates Andersen’s
analysis for Java, and §3 gives our algorithm for computing the analysis. We
prove a quadratic bound for k-sparse programs and argue that Java programs
are likely to be k-sparse in §4. In §5, we discuss various other factors affecting
performance. Then, we present measurements for several large Java programs in
§6. Finally, we discuss related work in §7 and conclude in §8.



Statement Constraint

i: x = new T() oi ∈ pt(x) [New]

x = y pt(y) ⊆ pt(x) [Assign]

x = y.f
oi ∈ pt(y)

pt(oi.f) ⊆ pt(x)
[Load]

x.f = y
oi ∈ pt(x)

pt(y) ⊆ pt(oi.f)
[Store]

Table 1. Canonical statements for Java points-to analysis and the corresponding
points-to set constraints.

2 Andersen’s Analysis for Java

Here, we briefly review Andersen’s points-to analysis [1] for Java, as treated
in detail in previous work [17, 24, 27, 31]. A points-to analysis computes an
overapproximation of the heap locations that program variables may point to,
where a finite heap abstraction represents configurations of the runtime heap.
The analysis result is typically represented as a points-to set pt(x) for each
variable x. Andersen’s points-to analysis has the following properties:

– Abstract location per allocation: The heap abstraction represents all objects
potentially allocated by a statement with a single abstract location.

– Flow insensitive: The analysis assumes statements in a procedure can exe-
cute in any order and any number of times.

– Subset based : The analysis models directionality of assignments; i.e., a state-
ment x = y implies pt(y) ⊆ pt(x). In contrast, an equality-based analysis
(e.g., [28]) would require pt(y) = pt(x) for the same statement, a coarser
approximation.

As is typical for Java points-to analyses, we also desire field sensitivity, which
requires separate reasoning about each abstract location instance field. Finally,
we restrict our attention to context-insensitive analysis, which computes a single
result for each procedure, merging the behaviors of all callers.

Table 1 presents the canonical statements for Java points-to analysis and the
corresponding points-to set constraints, as seen previously (e.g., in [17]). More
complex statements (e.g., x.f = y.g.h) are handled through suitable introduc-
tion of temporary variables. We assume that all accesses to global variables
(static fields in Java) occur via a copy assignment to a local, implying that load
and store statements do not directly dereference globals; this model matches
Java putstatic and getstatic bytecodes. Since we focus on context-insensitive
analysis, we elide method calls and assume a precomputed call graph with copy
statements for parameter passing and return values. (§5.2 discusses on-the-fly



call graph construction.) Arrays are modeled with a single field representing the
contents of all array indices. For simplicity, we ignore the effects of reflection and
native code in this exposition.

3 Algorithm

Here we present an algorithm for Andersen’s analysis for Java, as specified in
§2. The algorithm is most similar to Pearce et al.’s algorithm for C [21] and also
resembles existing algorithms for Java (e.g., [17]).

The algorithm constructs a flow graph G representing the pointer flow for
a program and computes its (partial) transitive closure, a standard points-to
analysis technique (e.g., see [6, 11, 14]). G has nodes for variables, abstract
locations, and fields of abstract locations. At algorithm termination, G has an
edge n→ n′ iff one of the following two conditions holds:

1. n is an abstract location oi representing a statement x = new T(), and n′

is x.
2. pt(n) ⊆ pt(n′) according to the rules of Table 1.

Given a graph G satisfying these conditions, it is clear that oi ∈ pt(x) iff x is
reachable from oi in G. Hence, the transitive closure of G—where only abstract
location nodes are considered sources—yields the desired points-to analysis re-
sult.

Since flow relationships for abstract location fields depend on the points-to
sets of base pointers for corresponding field accesses (see [Load] and [Store] rules
referencing pt(oi.f) in Table 1), certain edges in G can only be inserted after some
reachability has been determined, yielding a dynamic transitive closure (DTC)
problem. Note that Andersen’s analysis differs from a general DTC problem in
two key ways. First, unlike general DTC, edge deletions from G need not be
handled. Second, as observed in [11], the work of adding new edges to G is part
of the points-to analysis work—edge insertion work is typically not considered
in discussions of DTC algorithms. The second point is important, as we must
consider edge insertion work when reasoning about analysis complexity.

Pseudocode for our algorithm appears in Figure 1. The DoAnalysis routine
takes a set of program statements of the forms shown in Table 1 as input. (We
assume suitable data structures that, given a variable x, yield all load statements
y = x.f and store statements x.f = y in constant time per statement.) The
algorithm maintains a flow graph G as just described and computes a points-
to set pt(x) for each variable x, representing the transitive closure in G from
abstract locations. Note that abstract location nodes are eschewed, and instead
the relevant points-to sets are initialized appropriately (line 2).

The algorithm employs difference propagation [7, 17, 21] to reduce the work of
propagating reachability facts. For each node n in G, pt∆(n) holds those abstract
locations oi such that (1) the algorithm has discovered that n is reachable from
oi and (2) this reachability information has not yet propagated to n’s successors
in G. pt(n) holds those abstract locations for which (1) holds and propagation



DoAnalysis()

1 for each statement i: x = new T() do
2 pt∆(x)← pt∆(x) ∪ {oi}, oi fresh
3 add x to worklist
4 for each statement x = y do
5 add edge y → x to G
6 while worklist 6= ∅ do
7 remove n from worklist
8 for each edge n→ n′ ∈ G do
9 DiffProp(pt∆(n), n′)

10 if n represents a local x
11 then for each statement x.f = y do
12 for each oi ∈ pt∆(n) do
13 if y → oi.f 6∈ G
14 then add edge y → oi.f to G
15 DiffProp(pt(y), oi.f)
16 for each statement y = x.f do
17 for each oi ∈ pt∆(n) do
18 if oi.f → y 6∈ G
19 then add edge oi.f → y to G
20 DiffProp(pt(oi.f), y)
21 pt(n)← pt(n) ∪ pt∆(n)
22 pt∆(n)← ∅

DiffProp(srcSet ,n)

1 pt∆(n)← pt∆(n) ∪ (srcSet −pt(n))
2 if pt∆(n) changed then add n to worklist

Fig. 1. Pseudocode for the points-to analysis algorithm.

to successors of n is complete. The DiffProp routine updates a difference set
pt∆(n) with those values from srcSet not already contained in pt(n). After a node
n has been removed from the worklist and processed, all current reachability
information has been propagated to n’s successors, so pt∆(n) is added to pt(n)
and emptied (lines 21 and 22).

Theorem 1 DoAnalysis terminates and computes the points-to analysis result
specified in Table 1.

Proof. (Sketch) DoAnalysis terminates since (1) the constructed graph is finite
and (2) a node n is only added to the worklist when pt∆(n) changes (line 2 of
DiffProp), which can only occur a finite number of times. For the most part, the
correspondence of the computed result to the rules of Table 1 is straightforward.
One subtlety is the handling of the addition of new graph edges due to field
accesses. When an edge y → oi.f is added to G to handle a putfield statement
(line 14), only pt(y) is propagated across the edge, not pt∆(y) (line 15). This



operation is correct because if pt∆(y) 6= ∅, then y must be on the worklist, and
hence pt∆(y) will be propagated across the edge when y is removed from the
worklist. A similar argument holds for the propagation of pt(oi.f) at line 20. ut

4 Complexity for k-Sparse Programs

Here, we show that the algorithm of Figure 1 has quadratic worst-case time
complexity for k-sparse input programs (§4.1). We then argue that, due to strong
types and typical program structure, realistic Java programs are likely to be k-
sparse (§4.2).

4.1 Quadratic Bound

Let N be the number of variables in an input program plus the number of new
statements in the program (i.e., the number of abstract locations in the heap
abstraction). 2 Also, let D(x) be the number of statements dereferencing variable
x, and let E be the number of edges in G at analysis termination. We show that
DoAnalysis from Figure 1 runs in worst-case O(N2 maxx D(x) + NE) time.

Definition 1 A program is k-sparse if (1) maxx D(x) ≤ k and (2) E ≤ kN .

For k-sparse programs with k being constant, DoAnalysis runs in worst-case
O(N2) time.

We begin with a key lemma characterizing the effect of difference propaga-
tion.

Lemma 1 For each abstract location oi and node p in G, there is at most one
execution of the loop at lines 6-22 of DoAnalysis for which n = p∧oi ∈ pt∆(p).

Proof. If there exists a loop execution where n = p ∧ oi ∈ pt∆(p), line 21 of
DoAnalysis adds oi to pt(p) and line 22 removes oi from pt∆(p). Subsequently,
pt∆(p) may only be modified by line 1 of DiffProp, which ensures that elements
of pt(p) cannot be re-added to pt∆(p). ut

DoAnalysis does four kinds of work:

1. Initialization: Lines 1 through 5, which handle new statements and add the
initial edges to G.

2. Edge Adding : Lines 13, 14, 18, and 19, which add new edges to or from
abstract location field nodes in G as needed.

3. Propagation: All calls to the DiffProp routine.
4. Flushing Difference Sets: Lines 21 and 22.

2 Note that N must be no greater than the number of statements in a program, since
each statement can introduce at most one variable.



The cost of the algorithm is the sum of the costs of these four types of work,
which we analyze in turn. In this sub-section, we assume a points-to set data
structure which allows for (1) constant time membership checks, (2) constant
time addition of a single element, and (3) iteration in constant time per set
element, e.g., an array of bits (for (1) and (2)) combined with a linked list (for
(3)). (Note that this is not a space-efficient data structure; we discuss space /
time tradeoffs in §5.1 and §5.5.) We also assume a worklist data structure that
prevents duplicate worklist entries and allows for constant-time removal of a
node.

Initialization The loop from lines 1 to 3 clearly takes O(N) time. The loop on
lines 4 and 5 takes time proportional to the number of copy assignments in the
program, which could be O(N2) in the worst case. Hence, we have an O(N2)
bound for initialization.3

Edge Adding We assume a suitable graph data structure so that lines 13, 14, 18,
and 19 each execute in constant time. For each statement dereferencing a given
variable x, the algorithm performs at most |pt(x)| edge adding work, since by
Lemma 1 the loops headed at lines 12 and 17 can execute at most |pt(x)| times
per such statement. Since |pt(x)| is O(N) and we have O(N) variables, the edge
adding work is bounded by O(N2 maxx D(x)).

Propagation To reason about propagation work, we first prove the following
lemmas.

Lemma 2 For each graph node p, at any time during execution of DoAnalysis
except between lines 21 and 22, pt∆(p) ∩ pt(p) = ∅.

Proof. The condition clearly holds before the first iteration of the loop starting
at line 6. Afterward, for any node p, pt∆(p) can only be changed by line 22 or
by a call to DiffProp. The condition clearly holds after line 22 since pt∆(n)
is emptied. DiffProp also preserves the condition, since it only adds abstract
locations to pt∆(n) that are not contained in pt(n). ut

Lemma 3 For each abstract location oi and each edge e = n → n′ in G, oi is
propagated across e at most once during execution of DoAnalysis.

Proof. Propagation across edges occurs via the DiffProp calls at lines 9, 15,
and 20. By Lemma 1, line 9 can propagate oi across e at most once. By Lemma 2,
we know that pt∆(y)∩ pt(y) = ∅ at line 15 and that elements from pt(y) cannot
later be re-added to pt∆(y). Hence, if an abstract location is propagated across
y → oi.f at line 15, it cannot again be propagated across the same edge by
line 9 in a later loop iteration. Similar reasoning holds for the propagation at
line 20. ut
3 A tighter bound would be the number of statements, which we expect to be O(N)

in practice. This is irrelevant to our proof since initialization costs are dominated by
edge adding.



By Lemma 3, propagation work is bounded by O(NE), where E is the final
number of edges in G.

Flushing Difference Sets By Lemma 1, each abstract location can be flushed
from a difference set at most once per variable, immediately yielding an O(N2)
bound for this work.

In the worst case, the work of initialization and flushing difference sets will
be dominated by edge adding and propagation. So, we have a worst-case bound
of O(N2 maxx D(x) + NE) for the algorithm, or O(N2) for k-sparse programs
(see Definition 1), as desired.

We note that if the average points-to set size is O(N), the O(N2) bound for
k-sparse programs is tight, as the result itself would be quadratic in the size of
the program. In §6, we give evidence that average points-to set size grows with
the size of the program (see Figure 3(a)). Sub-quadratic bounds may be possible
in practice for clients that do not require all points-to sets [11].

4.2 Realistic Java Programs

Here, we argue that the Java type system and typical program structure imply
that realistic Java programs are likely to be k-sparse. In particular, we show that
method size limits imply that maxx D(x) is bounded and that the type system
and modular programming imply that G will most likely be sparse.

The structure of Java methods ensures that maxx D(x) does not grow with
program size. For maxx D(x) to grow with program size, methods would have
to become larger in bigger programs.4 In practice, Java programs tend to have
many small methods, and in fact the Java virtual machine enforces a fixed bound
on method size.

Java programs must have E = O(N) if they exclusively use “getters” and
“setters” to access fields and do not use arrays or dynamic dispatch. Edges in G
correspond to either (1) copy assignments or (2) flow through abstract location
fields. For (1), the number of intraprocedural copy assignments in a program can
only grow linearly (due to limited method size), and without dynamic dispatch,
the number of interprocedural copies must grow linearly as well. For (2), we can
bound the number of inserted edges for abstract location fields as follows. Let
K be the maximum number of accesses of any field, and let F be the maximum
number of instance fields in any class. The maximum number of field edges is
O(NFK): there are at most NF abstract location field nodes, and each such
node can have at most K incident edges. Java enforces a bound on class size,
which yields a constant limit for F . Furthermore, if all fields are only accessed
via “getter” and “setter” methods, then K = 2 for all fields. Hence, the number
of edge insertions for abstract location fields must be O(N) for this class of
programs.

4 This assumes that static fields cannot be directly dereferenced, which holds for Java
bytecode.



In practice, the number of statements accessing any given field tends to be
small due to encapsulation. However, the synthetic field arr used to model array
contents is an exception: the number of array access statements (i.e., accesses of
arr) increases with the size of the program, potentially leading to a quadratic
number of flow graph edges. If the base pointers of array accesses have points-to
sets of bounded size, then only a linear number of inserted edges will be required
for these accesses, maintaining flow graph sparseness. While array base pointers
usually have small points-to sets (again due to encapsulation), exceptions can
occur due to context-insensitive analysis of frequently used library methods; we
discuss this issue further in §6.

Hypothetically, dynamic dispatch could also cause a quadratic number of
flow graph edges, in the case where there were O(N) call sites of a method, each
of which could dispatch to O(N) possible targets. In practice, this phenomenon
could only occur for methods defined in the root java.lang.Object class like
toString(), and its likelihood is mitigated by on-the-fly call graph construction
(see §5.2); we have not observed such a blowup in practice.

5 Other Factors

The literature presents myriad other implementation techniques that, at the
least, yield significant constant-factor time improvements. Furthermore, when
performing points-to analysis on large programs, space concerns often dominate,
necessitating space-saving techniques that complicate analysis of running time.
In this section, we briefly discuss several other factors relevant to Andersen’s
analysis performance and relate them to our complexity result.

5.1 Bit-Vector Parallelism and Worklist Ordering

The use of bit-wise operations for propagation can yield significant constant-
factor speedups in practice. The complexity proof of §4 assumes that abstract
locations are propagated across edges one at a time. With an appropriate set
representation, bit-wise operators can effectively propagate up to k abstract lo-
cations across an edge in constant time, where k is the machine word size (e.g.,
64). When using such operations, our proof of a quadratic bound no longer ap-
plies, since propagation across an edge becomes proportional to the total number
of abstract locations instead of the size of the source set. Nevertheless, using bit-
wise operations usually improves performance in practice, since the cost model
on real machines usually depends more on cache locality than the number of
register-level arithmetic instructions.

The speedup due to bit-wise operations depends on an effective worklist
ordering [20]. For a node n, the analysis would ideally complete all propagation
to n before removing n from the worklist, since this maximizes the benefits of
using bit-wise operations when propagating to n’s successors. If the analysis only
required computing standard transitive closure over a DAG, the best worklist



ordering would be topological, in which case the algorithm would propagate
across each edge at most once.

With dynamic transitive closure, even if the final flow graph G is a DAG, it
may not be possible to do propagation in topological order due to cyclic data
dependences. Consider the following example program:

x = new Obj(); // o1
z = new Obj(); // o2
y = x; y.f = z; x = y.f;

Note that y = x and x = y.f are cyclically data dependent on each other. Ini-
tially, G only contains the edge e = x→ y. After o1 is propagated across e, the
analysis can add incident edges for o1.f , yielding the graph z → o1.f → x→ y.
After these edge insertions, the analysis must repeat propagation across e to add
o2 to pt(y). Hence, repeated work across edges may be required even when G is a
DAG. It would be interesting to characterize how much cyclic data dependences
affect performance in practice.

In real programs, cycles in the flow graph G further complicate matters.
Online cycle elimination can lessen the impact of flow graph cycles, as we shall
discuss further in §5.6. In WALA [30], the analysis implementation used for our
measurements, worklist order is determined by a pseudo-topological ordering of
the flow graph, periodically updated as edges are added. Further discussion of
worklist ordering heuristics appears in [20].

5.2 Function Calls

Direct handling of higher-order functions, i.e., on-the-fly call graph construction,
does not affect the O(N2) bound for k-sparse programs. For Java, on-the-fly
call graph construction requires (1) reasoning about possible virtual call targets
using receiver points-to sets and (2) incorporating constraints for discovered call
targets, as described previously [17, 24, 31]. Both of these operations can be
performed for all relevant call sites in quadratic time, and the core propagation
and edge adding operations of the analysis are unaffected.

Though it does not affect our worst-case bound, on-the-fly call graph build-
ing has a significant impact on real-world performance. If constraint generation
costs are ignored, on-the-fly call graph reasoning can slow down analysis, as more
iterations are required to reach a fixed point [31]. However, if the costs of con-
straint generation are considered (which we believe is a more realistic model),
on-the-fly call graph building improves performance, since constraints need not
be generated for unreachable library code. Also, as suggested in §4.2, on-the-
fly call graph reasoning can make the flow graph for a program more sparse,
improving performance.

Much recent work on Java points-to analysis employs some context-sensitive
handling of method calls [18, 19, 31]. For cloning-based context sensitivity, our
bound implies that Andersen’s analysis can run in time quadratic in the size of
the program after cloning (presuming k-sparsity). This bound is not encouraging,
as a m-limited call-string or m-object-sensitive analysis may require O(Nm)



clones. In practice, BDDs have been employed to make the explosion from cloning
more manageable, as we shall discuss in §5.5.

5.3 Exploiting Types

Type filters [3, 17], which ensure that points-to sets for variables are consistent
with their declared types, are critical to good performance for Java points-to
analysis. Type filters do not affect our worst-case bound for sparse programs: a
quadratic pre-processing step can create an appropriate mask for each type to use
during propagation. The filters improve performance by dramatically reducing
the size of points-to sets and hence the amount of propagation work [17].

We remark that only applying type filters at propagation for downcasting
operations, whether explicit (a JVM checkcast bytecode) or implicit (passing
the receiver parameter at a virtual call site), yields the same precision benefit as
applying them for all propagation operations (as was formulated in some previous
work [3, 31]). Reducing the use of type filters without affecting precision can be
a significant performance win, since they make propagation more expensive.

5.4 Preprocessing

Preprocessing techniques [10, 23] can improve performance by detecting and
merging equivalent variables or abstract locations before analysis, reducing the
size of the input. (Suitable data structures are maintained to enable retrieval
of the points-to set for any original program variable after analysis.) Most such
techniques do not affect our worst-case complexity bound since they run in worst-
case quadratic time or less. A possible exception would be the HRU algorithm of
Hardekopf and Lin [10], which runs in worst case O(N4) time, though in practice
the algorithm seems to improve overall analysis time.

5.5 Space

Space usage often presents a bigger bottleneck for points-to analysis than run-
ning time, especially for context-sensitive analyses. Here, we discuss some space
optimizations performed by points-to analyses and their effects on running time.

Employing difference propagation exhaustively as in Figure 1 may double
space requirements and hence represent an unattractive space-time tradeoff.
Our complexity proof relies on exhaustive use of difference propagation since
it assumes that propagating a single abstract location requires one unit of work.
A set implementation that enables propagation of abstract locations in parallel
(see §5.1) lessens the need for exhaustive difference propagation in practice. In
our experience, the key benefit of difference propagation lies in operations per-
formed for each abstract location in a points-to set, e.g., edge adding (see lines 12
and 17 in Figure 1). To save space, WALA [30] only uses difference propagation
for edge adding and for handling virtual call receivers (since with on-the-fly call
graph construction, each receiver abstract location may yield a new call target).



Also note that the best data structure for the pt∆(x) sets may differ from the
pt(x) sets to support smaller sets and iteration efficiently; see [17, 20] for further
discussion.

Many points-to analyses use set data structures that exploit sharing between
points-to sets, like shared bit sets [14] or BDDs [3, 31, 32], to dramatically reduce
space requirements. Their effects on running time are difficult to analyze, since
the propagation cost model is very different: running times for BDD operations
are highly dependent on variable orderings, and shared bit set operations depend
on the current bit set cache state. Further understanding of the use of these data
structures for analyzing k-sparse programs is a topic for future work.

5.6 Other Languages

Our main result of quadratic time complexity for points-to analysis of k-sparse
programs can be adapted to other languages fairly easily. We believe the algo-
rithm of Pearce et al. for C points-to analysis with difference propagation [21,
Figure 7], very similar to the algorithm of Figure 1, would run in quadratic
time for k-sparse C programs. The Figure 1 algorithm could also be adapted
to perform control-flow analysis for functional languages [25] (formulated as dy-
namic transitive closure in [11]). For this case the notion of k-sparseness (see
Definition 1) would be slightly transformed: rather than counting the number of
dereferences of a variable D(x), one would count the number of function appli-
cations of a variable / expression.

It is an open question as to whether typical programs in other languages
are k-sparse. Pearce et al. [21] present some evidence that for C, the number
of flow graph edges increases much more quickly with program size than for
Java. They present a benchmark gawk with less than 20,000 LOC where the
number of flow graph edges added during analysis is over 40X the number of
variables; in contrast, our measurements in the next section never saw a factor
more than 4.5X. This increased edge density in C may be due to the use of
the * operator rather than named fields and the weaker type system. It may
also explain the greater importance of projection merging [29] and online cycle
elimination [6, 9, 14] for C; in our experience, when respecting declared types in
Java, relatively few cycles are discovered (also observed in [17]).

6 Measurements

We used the Watson Libraries for Analysis (WALA) [30] for our measurements.
The WALA implementation of Andersen’s analysis differs from the algorithm of
Figure 1 in a few ways. WALA employs on-the-fly call graph construction (§5.2)
and type filters (§5.3), both of which reduce the size of the constraint graph with-
out increasing worst-case complexity. WALA also models some Java reflective
methods (e.g., Class.newInstance()) and native methods with synthetic code
generated during analysis.5 Program sizes for the presented programs may differ
5 Reflection and native code may still cause the analysis to be unsound.



Benchmark Methods Bytecodes Flow Graph Flow Graph Edges / Runtime
(KB) Nodes (K) Edges (K) Nodes (s)

antlr 3381 238 54 101 1.87 20
bloat 6438 456 99 218 2.20 43
chart 19089 1359 310 617 1.99 414
eclipse 17021 1169 275 563 2.05 359
fop 25542 2225 459 2039 4.44 2920
hsqldb 4600 330 79 138 1.75 25
jython 5291 386 85 157 1.85 35
luindex 4114 296 64 113 1.77 15
lusearch 16826 1160 268 530 1.98 312
pmd 18125 1248 286 569 1.99 361
xalan 2691 176 43 79 1.84 9
apache-ant 18404 1449 294 577 1.96 378

Table 2. Characteristics of programs analyzed.
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Fig. 2. Sparsity measure for flow graphs. Each data point represents one benchmark
analyzed. We show a standard scale in (a) and a log scale in (b). The lines show the
best fit via linear regression, with a slope of 3.46 in (a) and 1.17 in (b).

from other work due to variations in library versions and handling of reflection;
we analyzed the IBM Java 1.6.0 libraries.

Table 2 lists the programs used in this study. They include all of the DaCapo
2006-10-MR2 benchmarks [4] and Apache Ant 1.7.1 [2], another large Java pro-
gram. The table reports program sizes as determined by the methods discovered
during on-the-fly call graph construction.

Density of Flow Graphs The second-to-last column of Table 2 reports the density
of the final flow graph constructed during pointer analysis. The Table shows that
for all programs, the number of edges (E) per node (N) is less than 4.5. The
fop program seems to be an outlier; all other programs have less than 2.2 edges
per node in the flow graph.

Figure 2(a) displays the edges in flow graphs as a function of the number of
nodes. The figure shows the best linear fit, which would have E grow as 3.46N .
Figure 2(b) shows the same data on a log-log scale. The best linear fit on a
log-log scale has slope 1.17, indicating that the best polynomial fit to the data
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Fig. 3. Total size of computed points-to sets in (a) and pointer analysis running time
in (b) on log scales, both as functions of nodes in flow graph. The lines show the best
fit via linear regression, with a slope of 1.79 in (a) and 2.10 in (b).

has E growing as N1.17. If we exclude fop as an outlier, the best polynomial
fit indicates E grows as N1.05. We conclude the flow graphs are mostly sparse.
As discussed in §4.2, we expect E = O(N), with exceptions arising from object
arrays and dispatch, and the data support this conclusion.

We examined fop in detail. Most of the edges in the fop flow graph result
from the failure of the pointer analysis to adequately disambiguate the contents
of object arrays passed to library routines, due to context insensitivity. In a
practical pointer analysis client, we would recommend a context-sensitivity pol-
icy designed to clone common library routines that manipulate arrays, such as
the java.util.Arrays utilities.

Size of pointer analysis result Figure 3(a) shows the total size of the computed
points-to sets, as a function of the node count in the flow graph on a log scale.
The figure shows the best linear fit, which has a slope of 1.79, indicating that the
points-to solution size grows roughly as N1.79. As we have defined the pointer
analysis problem, this factor represents a lower bound on complexity of the
Andersen’s analysis in practice, since any algorithm will take at least O(N1.79)
to output the solution. In practice, many clients do not demand the complete
analysis result, instead issuing a targeted set of alias queries. For these clients,
demand-driven pointer analysis [13, 26, 27] may offer a better fit.

Observed pointer analysis performance Figure 3(b) shows the running time of
the pointer analysis as a function of the node count in the flow graph on a
log scale.6 The figure shows the best linear fit, which has a slope of 2.10, in-
dicating that running time grows roughly as N2.10. If we exclude fop from the
regression, running time grows as N1.92. The running of time of a real implemen-
tation depends on many factors, including those discussed in §4.2 and §5. The
results here show that on this benchmark suite, our Andersen’s analysis scales
6 We ran the analysis on a Linux machine with an Intel Xeon 3.8GHz CPU and 5GB

RAM, using the Sun 1.5.0 06 virtual machine with a 1.8GB heap.



roughly quadratically with program size. It remains for future studies to deter-
mine whether quadratic scaling holds for other pointer analysis implementations
and benchmarks.

7 Related Work

Our work is most closely related to the studies of points-to analysis complexity of
Pearce et al. [20, 21]. Our algorithm is very similar to that of [21, Figure 7], but
adapted to Java. Pearce was the first to show difference propagation can affect
worst-case complexity, in his case improving a worklist-based algorithm from
quartic to cubic time [20, §4.1.3]. We further improve the bound to quadratic
time for k-sparse programs, which requires additionally reasoning about the
cost of edge-adding work. Difference propagation was first presented by Fecht
and Seidl in [7].

Lhoták and Hendren present a Java points-to analysis algorithm with dif-
ference propagation (there termed an “incremental worklist” algorithm) and
showed its performance benefits [17]. Their algorithm does not fully employ
difference propagation for abstract location fields, as it periodically does full
propagation for field access statements [16, §4.4.3]. Hence, it is not clear if the
quadratic bound for k-sparse programs holds for their algorithm.

Heintze and McAllester present a sub-cubic control-flow analysis algorithm
for bounded-typed programs [11]. They formulate the analysis problem as dy-
namic transitive closure and distinguish edge addition work from closure work
(in fact, they occur in separate phases in their algorithm). As their algorithm
does not allow for recursive types, it is not immediately applicable to Java.

Various other work studies points-to analysis complexity. Heintze and McAllester
relate the difficulty of flow analysis to the 2NPDA complexity class [12]. Melski
and Reps formulate Andersen’s analysis for C as a CFL-reachability problem,
immediately yielding a cubic algorithm [22]. Fändrich et al. use a probability-
based analytic model over random graphs to study online cycle elimination for
set constraints in inductive form [6]. Chaudhuri presents a slightly sub-cubic
algorithm for CFL-reachability, thereby breaking the “cubic bottleneck” for An-
dersen’s analysis [5].

8 Conclusions

We have proven a quadratic worst-case time bound for computing Andersen’s
analysis for k-sparse input programs, and we have given empirical evidence that
Java programs are usually k-sparse. These results help account for the gap be-
tween the nearly cubic worst-case complexity of Andersen’s analysis and its scal-
ability in practice. The notion of k-sparsity may also be useful in understanding
the real-world performance of other program analyses.
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