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Abstract

New methods are presented for sparse signal recovery from a sequence of noisy observa-
tions. The sparse recovery problem, which is NP-hard in general, is addressed by resorting
to convex and non-convex relaxations. The body of algorithms in this work extends and
consolidate the recently introduced Kalman filtering (KF)-based compressed sensing methods.
These simple methods, which are briefly reviewed here, rely on a pseudo-measurement trick
for incorporating the norm relaxations following from CS theory. The extension of the methods
to the nonlinear case is discussed and the notion of local CS is introduced. The essential idea is
that CS can be applied for recovering sufficiently small and sparse state perturbations thereby
improving nonlinear estimation in cases where the sensing function maps the state onto a lower-
dimensional space. Other two methods are considered in thiswork. The extended Baum-Welch
(EBW), a popular algorithm for discriminative training of speech models, is amended here
for recovery of normalized sparse signals. This method naturally handles nonlinearities and
therefore has a prominent advantage over the nonlinear extensions of the KF-based algorithms
which rely on validity of linearization. The last method derived in this work is based on
a Markov chain Monte Carlo (MCMC) mechanism. This method roughly divides the sparse
recovery problem into two parts. Thus, the MCMC is used for optimizing the support of
the signal while an auxiliary estimation algorithm yields the value of elements. An extensive
numerical study is provided in which the methods are compared and analyzed. As part of this,
the KF-based algorithm is applied to lossy speech compression.

I. INTRODUCTION

Recent studies have shown that sparse signals can be recovered accurately using less observa-
tions than what is considered necessary by the Nyquist/Shannon sampling principle; the emergent

Manuscript received ; revised .
A. Carmi is with the Signal Processing Group, Department of Engineering, University of Cambridge, UK.
P. Gurfil is with the Faculty of Aerospace Engineering, Technion – Israel Institute of Technology, Haifa 32000,

Israel
D. Kanevsky and B. Ramabhadran are with IBM T. J. Watson Research Center, Yorktown, NY 10598, USA



2

theory that brought this insight into being is known as compressed sensing (CS) [1]–[3]. The
essence of the new theory builds upon a new data acquisition formalism, in which compression
plays a fundamental role. From a filtering standpoint, one can think about a procedure in which
signal recovery and compression are carried out simultaneously, thereby reducing the amount
of required observations. Sparse, and more generally, compressible signals arise naturally in
many fields of science and engineering. A typical example is the reconstruction of images from
under-sampled Fourier data as encountered in radiology, biomedical imaging and astronomy [4],
[5]. Other applications consider model-reduction methodsto enforce sparseness for preventing
over-fitting and for reducing computational complexity andstorage capacities. The reader is
referred to the seminal work reported in [3] and [2] for an extensive overview of the CS theory.

The recovery of sparse signals is in general NP-hard [1], [6]. State of the art methods for
addressing this optimization problem commonly utilize convex relaxations, non-convex local
optimization and greedy search mechanisms. Convex relaxations are used in various methods
such as LASSO [7], the Dantzig selector [8], basis pursuit and basis pursuit de-noising [9], and
least angle regression [10]. Non-convex optimization approaches include Bayesian methodologies
such as the relevance vector machine otherwise known as sparse Bayesian learning [11] as
well as stochastic search algorithms which are mainly basedon Markov chain Monte Carlo
techniques [12]–[15]. Notable greedy search algorithms are the matching pursuit (MP) [16], the
orthogonal MP [17], and the orthogonal least squares [18].

CS theory has drawn much attention to the convex relaxation methods. It has been shown
that the convexl1 relaxation yields an exact solution to the recovery problemprovided two
conditions are met: 1) the signal is sufficiently sparse, and2) the sensing matrix obeys the
so-called restricted isometry property (RIP) at a certain level. Another complementary result
ensures high accuracy when dealing with noisy observations. Further elaboration of this result
facilitated its probabilistic version which is concluded by the known statement of recovery
‘with overwhelming probability’. To put it informally, it is highly probable for the convexl1
relaxation to yield an exact solution provided the involvedquantities, the sparseness degrees,
and the sensing matrix dimensionsm× n maintain relation of the type

s = O(m/ log(n/m))

Influential as it may be, the theory of CS at its current stage deals with a parameter estimation
problem in which the observations are merely a linear projection onto a lower dimensional space

y = Hx+ ζ, H ∈ R
m×n

In this work we are taking the underlying model two steps further, though not entirely from the
theoretical standpoint.Step 1:The numerical recipes derived in this work are aimed at solving
the discrete-time linear filtering problem where the noisy observation model assumes the above
formulation. Here the time-varying signal is described viathe state dynamics

xk+1 = Axk + wk, k = 0, 1, 2, . . .

It can be easily verified that if for instanceA = I (i.e., xk is a random walk) then full recon-
struction of the statexk using the above measurement model is strictly infeasible. Nevertheless,
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if the underlying signal is sparse in some basis then by introducing the knownl1 relaxation,
accurate recovery is possible.

Step 2: Another extension which is of much interest involves the nonlinear counterpart of
the above observation model

y = h(x) + ζ, h : R
n → R

m

In this work we present the notion of local RIP of the sensing functionh which in turn facilitates
the implementation of local CS. The idea here is that CS can beused to recover small and sparse
perturbations∆x from a nominal statex∗. The l1 relaxation then takes the form

min ‖ ∆x ‖1 s.t. ‖ y − h(x∗ + ∆x) ‖2< ε

which is approximately equivalent to

min ‖ ∆x ‖1 s.t. ‖ ȳ − [∂h/∂x]x∗ ∆x ‖2< ε

where ȳ = y − h(x∗). The approximate linear form above facilitates the application of the
conventional CS where the estimation performance depends on the local RIP coefficient which
is a property of the Jacobian[∂h/∂x]. This idea is further shown to improve the estimation
performance of the extended Kalman filter when applied to thenonlinear observation model.

Algorithms: In broad, three types of algorithms are derived for solving the above mentioned
problems. These account for 1) CS-embedded Kalman filter (CSKF) that was initially introduced
in [19]–[21] and reviewed here for completeness, 2) Sparse Extended Baum-Welch (EBW), and
3) Stochastic subset search (S3). We remark here that our work is not the first attempt to combine
CS and KF. The Kalman filtering approach presented in [22] relies on an auxiliary optimization
procedure (e. g., the Dantzig selector of [8]) and is capableof coping with time varying sparse
signals. The method suggested inhere is based on a pseudo-measurement (PM) formulation of
the underlying constrained optimization problem. Compared to the algorithm in [22], this method
can be straightforwardly implemented in a stand-alone manner, as it is exclusively based on the
well-known KF formulation.

1) The CSKF has three variants each of which is based on a different relaxation. The CSKF-1
uses thel1 norm relaxation while the CSKF-p utilizes a quasi-norm formulation with lp,
p ∈ (0, 1). The third variant is based on a uniquel0 norm approximation.

2) The sparse EBW method is based on a widely used algorithm inspeech recognition. This
method essentially maximizes a lower bound of a general objective function defined over
a probability domain. The method is shown to naturally handle sparse directional vectors
(i.e., ‖ x ‖1= 1) and is guaranteed to converge.

3) The stochastic subset search is a Monte Carlo type method that uses both a simulated
annealing core and a point process representations for finding the signal support. The
estimated support is then fed to a conventional KF algorithm. This method is inspired by
a Markov chain Monte Carlo scheme used for filtering of randomfinite sets.

Nonlinear Extensions:
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1) A nonlinear variant of the CSKF is the CS-EKF. This algorithm utilizes the notion of
local CS for recovering a sparse signal based on the aforementioned nonlinear observation
model.

2) The sparse EBW naturally handles the nonlinear observation model and is essentially
shown to outperform the CS-EKF in the normalized case (i.e.,for ‖ x ‖1= 1).

This paper is organized as follows. The next section mathematically formulates the sparse re-
covery problem. Section III provides a brief overview of thevarious CSKF algorithms. Local CS
along with the nonlinear CS-EKF implementation are discussed in Section IV. The sparse EBW
optimization method is introduced in Section V. Section describes the stochastic subset search
method. Section VII provides the results of an extensive numerical study that had been carried
out for assessing and comparing the various estimation methods. The last part of this section
demonstrate the application of the CSKF to lossy speech compression. Finally, conclusions are
offered in the last section.

II. L INEAR ESTIMATION OF SPARSESIGNALS

Consider anRn-valued random discrete-time process{xk}∞k=1 that is sparse in some known
orthonormal sparsity basisψ ∈ R

n×n, that is

zk = ψTxk, #{supp(zk)} < n (1)

wheresupp(zk) and# denote the support ofzk and the cardinality of a set, respectively. Assume
that zk evolves according to

zk+1 = Azk + wk, z0 ∼ N (µ0, P0) (2)

whereA ∈ R
n×n and{wk}∞k=1 is a zero-mean white Gaussian sequence with covarianceQk ≥ 0.

Note that (2) does not necessarily imply a change in the support of the signal. For example,
A can be a block-diagonal matrix decomposed ofAd andAn corresponding to the statistically
independent elementszd /∈ supp(zk) andzn ∈ supp(zk) where the respective noise covariance
sub-matrices satisfyQd = 0 andQn ≥ 0. The processxk is measured by theRm-valued random
process

yk = Hxk + ζk = H ′zk + ζk (3)

where{ζk}∞k=1 is a zero-mean white Gaussian sequence with covarianceRk > 0, andH :=
H ′ψT ∈ R

m×n.
Letting yk := [y1, . . . , yk], our problem is defined as follows. We are interested in finding a

yk-measurable estimator,̂xk, that is optimal in some sense. Often, the sought after estimator is
the one that minimize the mean square error (MSE)E

[

‖ xk − x̂k ‖2
2

]

. It is well-known that if
the linear system (2), (3) is observable, i.e.,

O :=
[

HT (HA)T · · · (HAn−1)T
]T

rank(O) = n (4)

then the solution to this problem can be obtained using Kalman filtering. On the other hand, if
the system is unobservable, then the regular KF algorithm isuseless; if, for instance,A = In×n,
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then it may seem hopeless to reconstructxk from an under-determined system in whichm < n
and rank(H) < n. Surprisingly, this problem may be circumvented by taking into account the
fact thatzk is sparse.

A. The Combinatorial Problem and Compressed Sensing

Refs. [1], [6] have shown that in the deterministic case (i. e., whenz is a parameter vector),
one can accurately recoverz (and therefore alsox, i.e., x = ψz) by solving the optimization
problem

min ‖ ẑ ‖0 s.t.
k
∑

i=1

‖ yi −H ′ẑ ‖2
2≤ ε (5)

for a sufficiently smallε, where‖ v ‖p=
(

∑n
j=1 v

p
j

)1/p
is the lp-norm ofv, and the zero-norm,

‖ v ‖0, is defined as1 ‖ v ‖0 := # {supp(v)}.
Following a similar rationale, in the stochastic case the sought-after optimal estimator satis-

fies [2]
min ‖ ẑk ‖0 s.t.Ezk|yk

[

‖ zk − ẑk ‖2
2

]

≤ ε (6)

Unfortunately, the above optimization problems are NP-hard and cannot be solved efficiently.
Recently, it has been shown that if the sensing matrixH ′ obeys a so-calledrestricted isometry
property(RIP) while z is sparse enough possibly with [2]

s = O(m/ log(n/m)) (7)

wheres = #{supp(z)}, then the solution of the combinatorial problem (5) can almost always
be obtained by solving the constrained convex optimization[1], [2]

min ‖ ẑ ‖1 s.t.
k
∑

i=1

‖ yi −H ′ẑ ‖2
2≤ ε (8)

This is a fundamental result in the new emerging theory of compressed sensing (CS) [1], [2].
The main idea is that the convexl1 minimization problem can be efficiently solved using a
myriad of existing methods, such as LASSO [7], the Dantzig selector [8], Basis pursuit and
Basis pursuit de-noising [9], and least angle regression [10], to mention only a few.

III. K ALMAN FILTERING COMPRESSEDSENSING

It was only a matter of time until the Kalman filter, the work-horse of linear estimation theory,
would be employed for compressed sensing. The popularity ofthe KF algorithm is owing to
its ease of implementation and its modest computational demands (with respect to some other
known estimation methods) as well as to its well-known statistical properties, such as being

1For 0 ≤ p < 1, ‖ v ‖p is not a norm; the common terminology iszero normfor p = 0 and quasi-normfor
0 < p < 1.
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the best minimum MSE (MMSE) linear estimator around (which coincides with the optimal
estimator in the MMSE sense for linear Gaussian systems) [23].

The first successful attempt for Kalman filtering-based compressed sensing was presented
in [22] where the traditional KF algorithm was endowed with the Dantzig selector of [8].
This approach divides the sparse recovery problem into two interlaced subproblems: 1) support
extraction, and 2) reduced order recovery. This separationroughly specifies a two phase algorithm
in which some CS method (in this case the Dantzig selector) identifies the subset of elements
in the support of the signal while the ordinary KF is applied for the reduced order system
corresponding to the obtained subset. This approach, whichis termedinterlaced CSapproach
in this work, proved itself to be very successful as was demonstrated in [22].

A rather straightforward approach for solving the sparse filtering problem using KF was
recently introduced in [19]–[21]. The suggested methods inboth these works are based on a well-
known trick for incorporating nonlinear equality constraints into the traditional KF formulation.
Compared with the interlaced CS approach which involves an external optimization procedure,
these methods are fairly simple to implement and requires nomajor modifications in the original
KF structure. The emphasize here is on simplicity which makes these methods viable and
appealing for many filtering applications. For completeness we revisit here the main concepts
from [19]–[21].

1) Pseudo-Measurement Trick:For the system described by (2) and (3) the classical KF
provides an estimatêzk that is a solution to the unconstrainedl2 minimization problem

min
ẑk

Ezk|yk

[

‖ zk − ẑk ‖2
2

]

Inspired by the CS approach while retaining the KF objectivefunction, we replace (6) by the
constrained optimization

min
ẑk

Ezk|yk

[

‖ zk − ẑk ‖2
2

]

s.t. ‖ ẑk ‖1≤ ε′ (9)

This procedure is based on the following proposition which is given here without a proof.
Proposition 1 ( [21]): Let y and Y be an observation random variable and its realization,

respectively. Let alsox and x̂ be a random variable and its associatedy-measurable estimator,
respectively. Giveny = Y , the optimization problems

min
x̂
Ex|y

[

‖ x− x̂ ‖2
2

]

s. t. ‖x̂‖1 ≤ ε1 (10)

min
x̂

‖x̂‖1 s. t. Ex|y

[

‖x− x̂‖2
2

]

≤ ε2 (11)

with ε1, ε2 > 0, are equivalent.
The constrained optimization problem (9) can be solved in the framework of Kalman filtering

using the pseudo-measurement (PM) technique [24], [25]. The idea is fairly simple: the inequality
constraint‖ zk ‖1≤ ε′ is incorporated into the filtering process using a fictitiousmeasurement
0 =‖ zk ‖1 −ε′, whereε′ serves as a measurement noise. This PM can be rewritten as

0 = H̄zk − ε′, H̄ := [sign(zk(1)), . . . , sign(zk(n))] (12)
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where sign(zk(i)) denotes the sign function of theith element ofzk (i.e., sign(zk(i)) = 1 if
zk(i) > 0 and equals 0 otherwise) . In this setting, the covarianceRε of ε′ is regarded as a
tuning parameter, which can be determined based on simulation runs. A single iteration of the
CS-embedded KF is detailed in Algorithm 12.

Algorithm 1 CSKF-1 [21]

1: Prediction
ẑk+1|k = Aẑk|k (13a)

Pk+1|k = APk|kA
T +Qk (13b)

2: Measurement Update
Kk = Pk+1|kH

′T
(

H ′Pk+1|kH
′T +Rk

)−1
(14a)

ẑk+1|k+1 = ẑk+1|k +Kk

(

yk −H ′ẑk+1|k

)

(14b)

Pk+1|k+1 = (I −KkH
′)Pk+1|k (14c)

3: CS Pseudo Measurement:Let P 1 = Pk+1|k+1 and ẑ1 = ẑk+1|k+1.
4: for τ = 1, 2, . . . , Nτ − 1 iterationsdo
5:

H̄τ = [sign(ẑτ (1)), . . . , sign(ẑτ (n))] (15a)

Kτ = P τ H̄T
τ

(

H̄τP
τ H̄T

τ +Rε

)−1
(15b)

ẑτ+1 = (I −Kτ H̄τ )ẑτ (15c)

P τ+1 = (I −Kτ H̄τ )P τ (15d)

6: end for
7: SetPk+1|k+1 = PNτ and ẑk+1|k+1 = ẑNτ .

2) Quasi-Norm Constrained Variants:A different approach for approximately solving the
combinatorial problem in (6) is based on replacing‖ · ‖0 by a quasi-norm‖ · ‖p with 0 < p < 1.
This approach has already been shown to yield better accuracy compared to thel1 norm [6].

Following the previous section methodology, the PM technique is used here to incorporate
the quasi-norm inequality constraint‖ zk ‖p≤ ε′ by producing the fictitious measurement

0 =‖ zk ‖p −ε′

whereε′ serves as a zero-mean Gaussian measurement noise with covarianceRε. In practice,
this PM is linearized around some nominal statez∗k to yield

0 =

(

n
∑

i=1

|z∗k(i)|p
)1/p

+ H̄∆zk − ε′ + O(‖ ∆zk ‖2
2) (16)

2Notice that this is an unusual implementation of the KF as thematrix H̄τ is state dependent.
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wherezk(i) denotes theith element ofzk, the perturbation∆zk := zk − z∗k, and

H̄(i) =

{

(
∑n

i=1 |z∗k(i)|p)1/p−1 [z∗k(i)]
p−1 , if z∗k(i) > 0

− (
∑n

i=1 |z∗k(i)|p)1/p−1 [−z∗k(i)]p−1 , if z∗k(i) ≤ 0
, i = 1, . . . , n (17)

is the ith element ofH̄. This formulation facilitates the implementation of an extended KF
(EKF) stage for incorporating the PM. Following this, the nominal statez∗k is set as the updated
estimate at timek.

A single iteration of the resulting KF algorithm with the linearized PM stage is similar to
Algorithm 1 with a slight modification in the PM implementation as described in Algorithm 2.

Algorithm 2 PM Stage of The CSKF-p [21]

1: Pseudo Measurement:Let P 1 = Pk+1|k+1 and ẑ1 = ẑk+1|k+1.
2: for τ = 1, 2, . . . , Nτ − 1 iterationsdo
3: ComputeH̄τ using (17) withz∗k = ẑτ .

Kτ = P τ H̄T
τ

(

H̄τP
τ H̄T

τ +Rε

)−1
(18a)

ẑτ+1 = ẑτ −Kτ ‖ ẑτ ‖p (18b)

P τ+1 = (I −Kτ H̄τ )P τ (18c)

4: end for
5: SetPk+1|k+1 = PNτ and ẑk+1|k+1 = ẑNτ .

3) Approximatel0 Norm: The l0 norm can alternatively be approximated by

n−
n
∑

i=1

exp (−α|zk(i)|) (19)

for large enoughα > 0. The corresponding PM stage in that case consists of the samesteps
(18) where (18b) is replaced by

ẑτ+1 = ẑτ +Kτ

[

n−
n
∑

i=1

exp (−α|ẑτ (i)|)
]

(20)

(i.e., the PM isn =
∑n

i=1 exp (−α|zk(i)|) + ε′) whereH̄ is given by

H̄(i) =

{

−α exp (−αz∗k(i)) , if z∗k(i) > 0
α exp (αz∗k(i)) , if z∗k(i) ≤ 0

, i = 1, . . . , n (21)

IV. EXTENDED COMPRESSEDSENSING

At its current stage the theory of CS deals with the recovery of signals that are linearly
projected onto a lower dimension observation space. One could naturally wonder whether a
similar set of rules apply in the case of arbitrary smooth mappings. The formulation would then
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be the following. Given a sufficiently smooth mappingh : R
n → R

m, m < n and somes-sparse
vectorz ∈ R

n that obey the observational relationyi = h(z) + ζ, i = 1, . . . , k, then to what
extent and under what conditions can we recoverz from y using thel1 relaxation suggested by
CS, i.e., by solving

min ‖ ẑ ‖1 s.t.
k
∑

i=1

‖ yi − h(ẑ) ‖2
2≤ ε (22)

It should be mention that such a nonlinear observation modelwas recently addressed in [26],
though from a greedy standpoint, i.e., by generalizing the orthogonal matching pursuit algorithm.
In this work we are not going to fully answer the above stated question but rather demonstrate
how CS can be applied for recovering sufficiently small sparse perturbations from a given
nominal state.

One of the fundamental results in CS is that accurate and possibly exact recovery of sparse
signals is feasible depending on the RIP level of the sensingmatrix [2]. The RIP is closely
related to the the Johnson-Lindenstrauss (JL) lemma which is stated about general Lipschitz
low-distortion embeddings [27].

Lemma 1 (JL):Given someδ ∈ (0, 1), a setZ of l points in R
n and a numberm0 =

O(ln(l)/δ2), there is a Lipschitz functionh : R
n → R

m wherem > m0 such that

(1 − δ) ‖ z − z∗ ‖2≤‖ h(z) − h(z∗) ‖2≤ (1 + δ) ‖ z − z∗ ‖2 (23)

for all z, z∗ ∈ Z.
Now, consider a case wherez = z∗ + ∆z with sufficiently small‖ ∆z ‖2, then by taking the

first-order Taylor expansion ofh(z) aroundz∗ it can be easily recognized that the JL lemma
reduces to approximately the RIP of the Jacobian[∂h/∂z] computed locally atz∗, that is

(1 − δ) ‖ ∆z ‖2≤‖ [∂h/∂z]z∗ ∆z + o
(

‖ ∆z ‖2
2

)

‖2≤ (1 + δ) ‖ ∆z ‖2 (24)

In that sense the Lipschitz function that satisfies the JL relation (23) locally obeys the RIP at
z∗ for the perturbation vector∆z. The property (24) of the sensing functionh(z) is termed
Local RIP in this work. Similarly to the linear case, the level of the local RIP ofh(z) at z∗ is
determined according to the maximal sparseness degrees of the perturbation∆z for which (24)
holds. Obviously, when considering the recovery of a sufficiently small and sparse∆z, CS can
be applied where the Jacobian[∂h/∂z]z∗ takes the role of the traditional sensing matrix. Thel1
relaxation would then have the form

min ‖ ∆ẑ ‖1 s.t.
k
∑

i=1

‖ yi − h(z∗ + ∆ẑ) ‖2
2≤ ε (25)

where the accuracy of recovery would be related to the local RIP constantδs of the sensing
function h(z).
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A. Local CS and Nonlinear Estimation: The CS-Embedded EKF

Maybe the most interesting implication that follows from the local CS idea is that thel1
relaxation can improve conventional nonlinear estimationmethods that are based on linearization
such as the EKF. In such methods the linearization around some predetermined nominal point,
which is usually taken as the best up to date estimate, facilitates the application of a linear
estimator (e.g., the KF) for reconstructing the perturbed state. The sensing matrix in this case is
merely the Jacobian of the sensing function locally computed at the nominal point whereas the
state transition matrix is taken as the Jacobian of the time propagation function. Now, consider
a case in which the sensing functionh(z) maps the state onto a lower-dimensional space, then
following the preceding argument it is expected that local CS will allow better recovery of
sufficiently sparse perturbation∆z provided thath(z) obeys the local RIP at a proper level.

In this work we have implemented the local CS idea by amendingthe CSKF algorithms of
Section III for nonlinear estimation. The slight modification consists of replacing the ordinary
KF recursion with an EKF one while retaining the desired PM stage (i.e., corresponding to the
l1, the lp or the approximatel0 norms).

V. SPARSEOPTIMIZATION : THE EXTENDED BAUM -WELCH

Extended Baum-Welch (EBW) is a popular optimization technique in speech recognition to
optimize discriminative objective functions [28]. As the name suggests, EBW is an extension of
the BW algorithm. The Baum-Welch (BW) algorithm is an expectation-maximization algorithm
that computes maximum likelihood estimates and posterior mode estimates for the parameters
(transition and emission probabilities) of a Hidden MarkovModel, when given only emissions
as training data [29]. The BW algorithm can be used to optimize non-negative polynomials over
probability domains. More precisely it can be used to solve the following problem:

max
z
Q(z) s.t.z ∈ P = {zij ≥ 0,

mi
∑

j=1

zij = 1} (26)

andQ is a polynomial with non-negative coefficients andP is a discrete probability domain.
This is an iterative procedure that uses the Jensen inequality to reduce the optimization for
each recursive step to optimization of an auxiliary function overP . The auxiliary function is
estimated at each step and is a weighted sum oflog zij . In practical tasks that require maximum-
likelihood estimates of HMM with large number of parametersthe BW method became popular
because it is easy to implement, it usually requires a small number of iterations to get to
near optimum and each iteration requires number of computations that is proportional to a
number of parameters. The BW algorithm was not applicable directly to discriminative estimation
problems for HMM that required optimization of (26) whereQ was a polynomial with some
negative coefficients since the Jensen inequality could notbe applied there. Twenty years ago
the following simple trick was found how to extend BW methodsto polynomials that contain
negative coefficients [28]. It was observed that an optimization problem of maximzingQ does
not change if ones adds toQ a polynomialW (z) = D(

∑

ij zij + 1)m that is a constant in the
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probability domainP . In other wordsQ(z) +W (z) = Q(z) +D × L whereL = (
∑

ij zij +
1)m is a constant inP and arg maxz Q(z) = arg maxz{Q(z) + W (z)} = arg maxz{Q(z) +
D × L}. Now if one takesm a degree of the polynomialQ and sufficiently largeD then all
coefficients of the polynomialQ(z) + W (z) have non-negative coefficients and therefore the
Jensen inequality and as a consequence the BW procedure is applicable to it. The extension of
BW to polynomials that contain negative coefficients immediately allows the extention of BW
to rational functions over probability domains. Then via a suitable approximation process BW
has also been extended to discriminative functions defined over sets of Gaussian distributions
rather than discrete probabilities. EBW has become a popular method in discriminative speech
recognition tasks in the last decade because of its ease of implementation and convergence
properties.

In this Section we show EBW recursion can be naturally applied to maximizing a differentiable
function over a domain consisting of parameters whose q-norms equal 1. It was explained in
previous sections that 1-norm constraints lead to compressive sensing conditions. Therefore we
call EBW methods for optimizing functions over 1-norm constraints as sparse optimization.

The following theorem [30] is needed to extend EBW methods tosparse constraints.
Theorem 1:Let F (z) be a function that is defined overP = {zij ≥ 0,

∑

j zij =
∑j=mi

j=1 zij =

1}. Let F be differentiable atz ∈ P . Let cij = zij
∂

∂zij
F (z), and let ẑ = {ẑij} 6= z = {zij}

where
ẑij =

cij + zijD
∑

i cij +D
(27)

Then F (ẑ) > F (z) for sufficiently large positiveD and F (ẑ) < F (z) for sufficiently small
negativeD.
Remark: This theorem was proved in [28] for rational functions. IfF (z) is a polynomial with
non-negative coefficients thenF (ẑ) > F (z) for D = 0 and EBW coincides with BW. This is
a special case of the fact that the ML estimation of HMM parameters via EBW coincides with
the BW.

For improved reading the proof of Theorem 1 is deferred to theAppendix.

EBW Over Fractional Norms

Let Q(y) be a differentiable function ofy = {yi} ∈ R
n, i = 1, ...n. Let us consider the

following problem:
max

y
Q(y) s.t. ‖ y ‖q≤ β (28)

We solve this problem by transforming (28) into a problem over a probability domain for
which EBW update rules (27) exist. Let us consider thel1 norm, that is by settingyi = x

1/q
i ,

F ({xi}) = Q({yi}) andε = βq. The problem (28) then becomes

max
x

F (x) s.t. ‖ x ‖1≤ ε (29)

Now, using the dummy variablex0 ≥ 0 the above problem is rewritten as

max
x

F (x) s.t. ‖ x ‖1 +x0 = ε (30)
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Further lettingvi = xi/ε, i = 0, ...n, andF (x) = F ({εvi}) = G(v) we may write

max
v
G(v) s.t. ‖ v ‖1= 1 (31)

Recognizing that
‖ v ‖1=

∑

i

σ(vi)vi (32)

and
G(v) = G({σ(vi)σ(vi)vi}) = G(σ(vi)zi) = G(z) (33)

whereσ(vi) = sign(vi), andz = {zi} = {σ(vi)vi} allows writing an equivalent problem to (29)
which takes the form

max
z
G(z) s.t.

∑

zi = 1, zi ≥ 0 (34)

Problems of the type (34) have an EBW based solutions that canbe obtained by iterating (27).
The detailed EBW recursion for solving (29) is given in Algorithm 3.

Algorithm 3 Sparse Directional EBW

1: Set intial conditionsx0 s.t. ‖ x0 ‖1= 1
2: for t = 0, 1, . . . , Nt iterationsdo
3: Setzt

i = σ(xt
i)x

t
i

4: Gt(z
t) = F ({σ(xt

i)σ(xt
i)x

t
i}) = F (σ(xt

i)z
t
i)

5: Compute coefficents

cj = cj(z
t) =

∂Gt(z
t)

∂zt
j

6: AdaptD according to some rule, e.g.,D∗ = argmaxD Gt({zt+1

i (D)})
7: Update estimate

zt+1

i = zt+1

i (D) =
(ci +D)zt

i
∑

j cjz
t
j +D

8: end for

A. TuningD

Note that the sign ofzt+1
i in Algorithm 3 depends on how large isD. Namely, it is positive

for sufficiently largeD and is negative ifci + D < 0. In practice, instead of computation of
D∗ = arg maxD Gt{zt+1

i (D)} one can use various approximate schemes. As a general ruleD
should increase significantly when a local maximum of an objective function is approached. One
way to achieve this is to chooseD that is inversely proportional to some degree of a gradient to
an objective function at a point that is being updated duringan iterative optimization process.
Various gradient steepness metrics that could be used for tuning D for EBW update rules for
Gaussian parameters are described in [31]. Several popularstrategies for tuningD in speech
recognition tasks are introduced in [32].
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VI. STOCHASTIC SUBSET SEARCH

In recent years, Monte Carlo (MC) methods and in particular Markov chain MC (MCMC) have
been successfully implemented for vast high-dimensional optimization and filtering applications.
Their popularity is a direct consequence of their flexibility, their problem solving capabilities and
the ever increasing processing power of todays computers. Being a simulation based approach,
MCMC generally imposes no restrictions on the characteristics of the problem being solved. In
addition, smart strategies that have been developed over the past years improved the efficiency
of these methods when dealing with multi-modality and varying dimensionality [33]. The reader
is referred to [34]–[37] for extensive overview and applications of MCMC.

In this section we derive a MCMC-based sparse recovery algorithm. The MCMC approach
inhere is inspired by the particles algorithm used in [38] for multi-target tracking. However, in
this work the MCMC particles mechanism is used for optimization rather than for filtering. The
formal derivation proceeds as follows.

A. Random Set Representations

We exploit the following formulation which is used for representing random finite sets.
Consider aRn-valued indicators random vectore of which each element may take either values
0 or 1. Havingei = 1 implies that theith element is active. The indicators vector is associated
with a vectorz = [z1, . . . , zn]T . Both these quantities represent a random setS, that is

S = {zi | ei = 1, i = 1, . . . , n} (35)

In the context of our sparse recovery problem the vectore represents the unknown support of the
signal and is essentially optimized using a MCMC mechanism whereas the corresponding values
in S are obtained using a traditional KF. In that sense, this technique follows theinterlaced CS
concept discussed in Section III.

B. MCMC Particles

Suppose that at every time stepk we haveN candidates (particles){ek(j), zk(j)}N
j=1. Each

particle represents a set of dimension
∑

i e
i
k(j) that correspond to a subset of the sensing matrix

H ′. Let us denoteH(j) the subset corresponding to thejth particle, that is,H(j) = {H ′
i |

eik(j) = 1, i = 1, . . . , n} whereH ′
i denotes theith column ofH ′. We define for each particle

a scoring function of the form

L(S(j)) = exp

{

−1

2
(1 − γk)

(

yk −H(j)Ŝ(j)
)T

Vk(j)
−1
(

yk −H(j)Ŝ(j)
)

}

(36)

where thejth set Ŝ(j) is taken as the output of an auxiliary estimator that was applied for
processingyk with an initial stateS(j) and a sensing matrixH(j). As it would become clear
in the ensuing, the time-dependent scaling parametersγk ∈ [0, 1] andVk(j) ∈ R

m×m affect the
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sampling efficiency of the method. In this work we have used a KF for obtainingŜ(j) where
Vk is set accordingly as the innovations covariance, that is

Vk = H(j)PkH(j)T +Rk (37)

wherePk is the corresponding KF covariance. At this point we use the Metropolis-Hastings
(MH) algorithm for producing an improved particles population. Thus, every new candidate
S(j)′, j = 1, . . . , N is accepted with probability ofL(S(j)′)/L whereL denotes the scoring
function of the previously accepted one. The obtained population serves as the initial set of
particles at the next time step{ek+1(j), zk+1(j)}N

j=1. The estimated signal{e∗k, z∗k} is then
taken as the one having the maximal acceptance rate.

Similarly to the cooling schedule in simulated annealing, here, the ‘tempering’ parameterγk

is used for regulating the algorithm’s convergence rate. The ability of the algorithm to overcome
local maxima traps greatly depends on a good choice of the cooling scheme. Following a thumb-
rule from MH theory, a fairly good tempering schedule allowsaccepting between 20% to 40%
of the purposed candidates [37].

C. Birth/Death Moves

A good exploration of the search space is maintained by incorporating birth/death type moves.
In this work the indicatorseik, i = 1, . . . , n are assumed to evolve according to a Markov chain
with the transition kernel

p(eik | eik−1 = j) =

{

aj, if eik = j
1 − aj , otherwise

(38)

whereaj denotes the probability of staying in statej ∈ [0, 1].

VII. N UMERICAL STUDY

In this section we demonstrate the performance of the derived algorithms as well as some
additional concepts that were introduced in previous sections. A major part here is devoted to
the comparison of the various algorithms in different cases. Thus, the CSKF variants (i.e., the
l1, the lp and the approximatel0 norms) are compared with the sparse EBW implementation
as well as with the S3 method. We demonstrate the performance of the CSKF algorithms both
in the static and dynamic cases. We then proceed on with the nonlinear implementations, the
CS-EKF endowed with the various norms that are compared withthe sparse EBW method. In
addition, example is given that exemplifies the implementation of the S3 method for finding the
RIP coefficient of an arbitrary matrix. The last part of this section demonstrates the application
of the CSKF for lossy speech compression.
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A. Static Case

The following example is partially based on the one in [19]–[21]. Here the signalz ∈ R
256

is assumed to be a sparse parameter vector (i.e.,A = I256×256, Qk = 0). The signal support
consists of total of 10 elementsz(i) 6= 0 of which both the index and value are uniformly
sampled overi ∼ Ui[1, 256]

3 and z(i) ∼ U [−10, 10], respectively. The sensitivity matrixH ′

consists of72 rows in which the elements are sampled from a Gaussian distributionN (0, 1/72).
The columns ofH ′ are normalized following the example in [22] (this matrix has been shown
to satisfy the RIP at a sufficient level, see [2], [22]). The observation noise covariance is set as
Rk = 0.0012I72×72.

1) Algorithms Settings:The tuning covarianceRε of the CSKF-p was set as200002 and
2002 for p = 0.5 andp = 1, respectively. The alternativel0 approximation (19) is implemented
usingα = 1 andRε = 1002 (these values were chosen based on tuning runs for achievingideal
performance in terms of accuracy).

The sparse EBW was implemented using the following objective function

G(z) = p(y | z) ∝
k
∏

i=1

exp

{

−1

2

(

yi −H ′z
)T
R−1

i

(

yi −H ′z
)

}

(39)

using not more than 10 iterations per time step. The estimation procedure was performed in a
sequential fashion by taking the best estimate of the preceding time step as the initial state for
the next one.

The S3 algorithm used a total of 1000 particles. The cooling parameter was set asγ0 = 1−10−7

and was rapidly reduced at increments of10−6. The birth/death moves probability was set as
aj = 0.9 for j = 0, 1. These settings maintained an average of 30% acceptance rate of the MH.

2) Results:Before comparing the various methods we demonstrate the affect of some of the
parameters on the estimation performance in this case [21].Thus, Fig. 1 depicts the mean square
estimation error based on 50 Monte Carlo runs for various numberNτ of PM iterations of the
CSKF-p algorithm withp = 0.5, 1. As expected, increasingNτ yields an improved estimation
performance as the estimation error attains lower values. It can be clearly seen that the CSKF-0.5
outperforms the CSKF-1 using the same number of iterations.This fact is further demonstrated
in the next few figures. In an additional figure, Fig. 2, a snapshot at timek = 20 shows the
performance of both the CSKF-1 and an ordinary KF (i.e., without the PM stage) in a typical
run. As it could be expected the ordinary KF implementation is useless as the underlying system
is unobservable.

The estimation performance of the various methods in the static case is shown in Fig. 3. This
figure, which consists of the mean square estimation error based on 100 Monte Carlo runs of the
various methods, corresponds to two cases one of which involves an actual normalized signal
z/ ‖ z ‖1. The purpose of this is to allow a fair comparison with the EBWmethod that is intended
for recovering normalized (or directional) signals. Thus,the only methods that are considered
in Fig. 3a are the CSKF-p withp = 0.5, 1, the CSKF with the approximatel0 norm, and the S3

3Ui[a, b] denotes a discrete uniform distribution of which the support are all the integers in the interval[a, b].
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Fig. 1: Mean square estimation error based on 50 runs of the CSKF-1 (a) and of the CSKF-0.5
(b) for various numbers of PM iterations. The lines, top to bottom, correspond to 50, 100, and
200 pseudo-measurement iterations. Static case. [19]–[21]

method. It can be clearly seen that the best estimation accuracy is attained while using either the
quasi-normlp with p = 0.5 or the S3 algorithm. Both these algorithm attain estimation accuracy
at the level of the observation noise (i.e.,10−3). The alternativel0 approximation is slightly
less accurate but tends to converge faster. The CSKF-1 Algorithm exhibits inferior estimation
accuracy with respect to the other methods. The estimation performance of an ordinary KF that
is aware of the signal support is shown to attain errors of approximately 0.9 × 10−3, slightly
better than the CSKF-0.5 and the S3. Proceeding to Fig. 3b, the EBW exhibits inferior estimation
performance compared to the CSKF-1 (and respectively with all other variants of the CSKF). The
EBW version that allows the recovery of negative componentsis shown to perform worser than
its non-negative counterpart mainly due to some runs at which the algorithm did not converge.

The 1σ bounds corresponding toz(1) − ẑ(1) as computed by the various filters in a single
run are shown in Fig. 4. It can be seen that these bounds reflectthe accuracy when using the
different norms in the CS stage. We have already seen that thebest estimation performance was
achieved by the CSKF-0.5 and correspondingly its 1σ bounds are the tightest.

B. Dynamic Case

The various CSKF algorithms are applied to filtering of sparse random-walk processes in
[19]–[21]. The reader is, therefore, referred to these works for additional details and insights.

Here we have excluded both the EBW and S3 methods for the following reasons. In its
formulation presented inhere, the EBW is not suitable for the recovery of random processes. It
should be noted that this issue is a part of the authors ongoing research. The implementation of
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Fig. 2: A snapshot atk = 20 in a typical run of the CSKF-1 (a) usingNτ = 200 PM iterations
and of an ordinary KF (b). Showing the elements of the actual (squares) and estimated (lines)
signals. Static case.

the S3 algorithm for this case is trivial and does not reflect the performance of the subset search
mechanism.

C. Nonlinear Extensions

This part of the numerical study demonstrates the idea of extended CS (or local CS) of
Section IV and its application to nonlinear estimation. We consider a recovery problem consisting
of the following nonlinear observation model

yi = h(z) + ζi, h(z) = H ′
[

diag(z)1
1

2 1 + az(j)1
]

(40)

where1 denotes a vector of which all entries are 1’s,a is some constant, andj is an arbitrary
number between 1 andn. The Jacobian matrix of the sensing functionh(z) is given by

∂h

∂z
= 1

1

2
H ′diag(z)

1

2 + aH ′diag(ej) (41)

whereej ∈ R
n has itsjth entry equals one while all others are zero. Similarly to the previous

examples, the random matrixH ′ ∈ R
72×256 has its entries independently sampled from a zero-

mean normal distribution with variance1/72. The vectorz has 10 non-zero elements of which
the locations are uniformly sampled over the integers in theinterval [1, 256]. The values of the
elements in the support ofz are uniformly sampled between[0.5, 1.5]. All other algorithm and
noise related parameters are set as before.

From the above it is evident that the local RIP ofh(z) is affected by the parametera. Taking
a too large may violate this desired property thereby deteriorating the attainable estimation



18

20 40 60 80 100
10

−4

10
−2

10
0

10
2

Observation

M
S

E

 

 

(a) Unnormalized z

20 40 60 80 100
10

−4

10
−2

10
0

10
2

Observation

M
S

E

 

 

(b) Normalized z

Fig. 3: Mean square estimation error based on 100 runs of the various algorithms. Left panel
(a): showing the CSKF-1 (solid line), the CSKF-0.5 (marked by circles), the CSKF with the
approximatel0 norm (dashed line), the S3 algorithm (thick solid line), and a regular KF that
is aware of the signal support (dotted line). Right panel (b): showing the EBW when negative
elements ofz are allowed (dashed line), the EBW when all elements ofz are non-negative (solid
line), the CSKF-1 (thick line), and an ordinary KF that is aware of the actual support. Static
case.

accuracy at each local CS step. At this point we have seta = 0.05 (which seemed to be fairly
small for maintaining the local RIP at a sufficient level).

We have implement a CS-embedded EKF (or in short CS-EKF), which is essentially an EKF
with a CS pseudo-measurement stage (see Section IV-A), for recoveringz using the sequence
of noisy observationsy1, . . . , yk. It should be noted that unlike the KF, the EKF is a suboptimal
estimator that relies on the validity of the linearization assumption of small estimation errors.
As such, it usually requires some tuning procedures to be carried out, e.g., the incorporation
of artificial process noise. In this example we have set the process noise covariance asQ =
5 × 10−2I256×256.

The estimation performance based on 100 Monte Carlo runs of the EKF variants (i.e., with
either thelp, p = 1, 0.5 norms or the approximatel0 norm) is shown in Fig. 5. For comparison
we have depicted the performance of two ordinary EKF’s (i.e., without a local CS stage) that
were implemented, one of which is aware of the actual supportof the signal. As it can be
clearly seen from the left panel in this figure, the local CS stage indeed improves the estimation
performance over the ordinary EKF. Nevertheless, it seems that at least for this specific case,
the various norm formulations of the CS stage yield roughly the same performance.

The same nonlinear problem was solved using the EBW. As before, the actual sparse signal
is assumed to be normalized, i.e.,‖ z ‖1= 1. The objective function used by the EBW is given
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Fig. 4: The estimation errorz(1) − ẑ(1) (middle line) and the 1σ bounds of: (a) the CSKF-1
(dashed line), the CSKF with the approximatel0 norm (solid line), and the CSKF-0.5 (solid
thick line). (b) the CSKF-0.5 with Nτ = 50 PM iterations (thick line), and withNτ = 200 PM
iterations. Static case.

by

G(z) = p(y | z) ∝
k
∏

i=1

exp

{

−1

2
(yi − h(z))T R−1

i (yi − h(z))

}

(42)

whereRi denotes the observation noise covariance. The results of this experiment are shown
in Fig. 5b. Surprisingly, the EBW outperforms all other methods while exhibiting a rapid
convergence towards the EKF that is aware of the signal support. This superiority over the
CS-EKF can be related to the guaranteed convergence of the EBW (in this casez is defined
over a probability domain, see Theorem 1), a property that essentially depends on tuning and
initial conditions in the case of the EKF.

D. Example: Lossy Speech Compression

In all previous examples the underlying signals were assumed to be sparse. The following
case consider compressible signals which are not necessarily sparse. Analogously to the support
in the sparse case, here the most significant elements in terms of magnitude comprises the set
of interest.

Speech is a compressible signal. Usually, vowels can be represented using a limited number of
frequencies for which the human hear is most sensitive. The cardinality of this set of significant
frequencies may serve as an analog measure to sparseness degree#{supp(z)}. A more formal
argument proceeds as follows. Letz ∈ R

n be the discrete Fourier transform (DFT) ofyk over
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the discrete timesk = 1, . . . , n, that is

z(j) =
√
n
−1

n
∑

k=1

yk exp

(

−2πi

n
(j − 1)(k − 1)

)

, j = 1, . . . , n (43)

which can be compactly written as
z = Fy (44)

whereF andy ∈ R
n denote the DFT matrix and a vector whose components are the time points

yj, respectively. DenoteFε the set ofε-significant frequencies, and let

Fε = {z(j) | 10 log |z(j)| > ε} (45)

that is, all frequencies for which the amplitude is greater than ε dB. Following this definition,
#Fε is an analog measure to sparseness degree wheren/#Fε is the compression ratio.

In this example we have used the CSKF for reconstructing a frequency representationz of
a speech signal from under-sampled time series. In other words, our reconstruction algorithm
solves the following problem

y = F∗
mz + ζ, y ∈ R

m, m < n (46)

whereF∗
m ∈ R

m×n denotes a sub-matrix obtained by samplingm rows from the inverse DFT
matrix (which, in this case, is the conjugate transpose ofF). If we follow the arguments presented
in [2] (Theorem 2.1) for sparse signals, we may say that in this case an adequate frequency
representation is highly probable provided that

m ≥ c · #Fε log n (47)

1) Experimental Settings:The CSKF was implemented using the approximatel0 norm for
reconstructing the short time DFT of a speech recording froma series of overlapping Hamming
windows. The algorithm utilizedNτ = 200 PM iterations withRε = 1002 and α = 1. The
window size was set to 256 with only 6 non-overlapping elements. In this example, our DFT
vector z is composed out ofn = 256 elements corresponding to the amplitude and phase of
128 frequencies. Taking the frequency threshold parameterε = 0 in (45) yields#Fε between 10
to 20 for the specific signal considered. A rough estimate based on (47) suggests that we need
aroundm = 110c samples picked at each time window for a ‘good’ frequency representation.
We have tested the algorithm with bothm = 165 andm = 205 samples, i.e., the algorithm uses
either 65% or 80% of the available data. The results of these experiments are summarized in
Figs. 6 and 7.

2) Results:The entire time series is shown in Fig. 6d. A typical random sampling pattern
when using 65% of the samples in a single time window is shown in Fig. 6c. The original short
time DFT of the signal (i.e., when using all available data) is depicted via a spectrogram in
Fig. 6b. The reconstructed short time DFT based on the under-sampled data is shown in Fig. 6a.
In a companion figure, Fig. 7, the performance of the algorithm is compared when using either
65% or 80% of the available data. The DFT reconstructions in both cases are shown in Figs. 7a
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and 7b. These spectrograms are accompanied by slices at a single time point of the original and
reconstructed signals. In this figures the original signal is shown via a dotted line. As it could
be expected, the algorithm better captures the amplitudes of subtle frequencies when using 80%
of the available data.

VIII. C ONCLUSIONS

New methods are presented for sparse signal recovery from a sequence of noisy observations:
1) CSKF, 2) CS-EKF, 3) EBW, and 4) stochastic subset search (S3). The CSKF, a Kalman
filtering-based algorithm that was initially derived in [19]–[21], relies on a simple modification
of the basic KF scheme. Three variants of this algorithm utilizing different norm relaxations are
tested and compared in both static and dynamic scenarios. Inall examples it is evident that the
non-convexlp, 0 < p < 1 relaxation (CSKF-p) as well as the approximatel0 norm improve the
estimation accuracy with respect to thel1 norm (CSKF-1).

The CS-EKF algorithm demonstrates the application of CS in the nonlinear case. It relies on
the notion of local CS introduced inhere. The essential idea, which is exemplified by comparing
the performance of the CS-EKF with an ordinary EKF, is that CScan be used for improving
estimation accuracy in cases where the nonlinear sensing function maps the state onto a lower-
dimensional observation space,h(z) : R

n → R
m, m < n. Thus, local CS applies for sufficiently

small and sparse perturbations from a nominal state.
The EBW, a popular optimization technique used in speech recognition, is amended here for

directional sparse optimization (i.e., assuming a normalized signal). This method exhibits inferior
estimation performance compared to the CSKF in the linear case. Its real advantage, however,
is clear in the nonlinear case in which it outperforms the CS-EKF owing to its guaranteed
convergence (proved inhere).

The last method derived in this work, the S3, is based on a Markov chain Monte Carlo
mechanism. It uses random finite set representations for modeling sparseness. In the simulations,
the S3 is shown to attain the highest estimation accuracy among allother methods. Its estimation
performance, however, depends on the size of the particles population which makes it, in general,
highly computationally demanding.

APPENDIX

A. Proof of Theorem 1

The following lemma is needed for proving the theorem.
Lemma 2:Let F (z) = F̃ ({uj}) = F̃ ({gj(z)}) = F̃ ◦ g(z) whereuj = gj(z), j = 1, ..m

and z varies in some real vector spaceR
n of dimensionn. Let gj(z) for all j = 1, ...m and

F (z) be differentiable atz. Assume that∂F̃ ({uj})
∂uj

exists atuj = gj(z) for all j = 1, ...m. Let

L(z′) ≡ ∇F̃
∣

∣

∣

g(z)
· g(z′), z′ ∈ R

n . Let TD be a family of transformationsRn → R
n such that

for somel = (l1...ln) ∈ R
n, TD(z) − z = l/D + o(1/D) if D → ∞ (hereo(ε) stands for the

small ’o’ notation, i.e.,o(ε)/ε→ 0 for ε→ 0). Assume thatTD(z) = z if

∇L|z · l = 0 (48)
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Then for sufficiently largeD, TD is a growth forF at z iff TD is a growth forL at z.
Proof of LemmaFirst, from the definition ofL we have

∂F (z)

∂zk
=
∑

j

∂F̃ ({uj})
∂uj

∂gj(z)

∂zk
=
∂L(z)

∂zk

Next, for z′ = TD(z) and sufficiently largeD we have

F (z′) − F (z) =
∑

i

∂F (z)

∂zi
(zi′ − zi) + o(1/D) =

∑

i

∂F (z)

∂zi
li/D + o(1/D)

=
∑

i

∂L(z)

∂zi
li/D + o(1/D) =

∑

i

∂L(z)

∂zi
(zi′ − zi) + o(1/D) = L(z′) − L(z) + o(1/D)

Therefore for sufficiently largeD, F (z′) − F (z) > 0 iff L(z′) − L(z) > 0.
Proof of TheoremFollowing the linearization principle, we first assume thatF (z) = l(z) =

∑

aijzij is a linear form. Than the transformation formula forl(x) is given by

ẑij =
aijzij +Dzij
l(z) +D

(49)

We need to show thatl(ẑ) ≥ l(z). It is sufficient to prove this inequality for each linear sub
component associated withi,

∑j=n
j=1 aij ẑij ≥∑j=n

j=1 aijzij . Therefore without loss of generality
we can assume thati is fixed and drop subscripti in the ensuing (i.e. we assume thatl(z) =
∑

ajzj, wherez = {zj}, zj ≥ 0 and
∑

zj = 1). We have:l(ẑ) = l2(z)+Cl(z)
l(z)+C , wherel2(z) :=

∑

j a
2
jzj . The linear form of Theorem 1 follows in the next two lemmas.

Lemma 3:
l2(z) ≥ l(z)2 (50)

Proof of LemmaLet as assume thataj ≥ aj+1. Substitutingz′ =
∑j=n−1

j=1 zj we need to show
that

j=n−1
∑

j=1

[a2
jzj + a2

n(1 − z′)] ≥
j=n−1
∑

j=1

(aj − an)2z2
j + 2

j=n−1
∑

j=1

(aj − an)anzj + a2
n

We will prove the above relation by showing for every fixedj that(a2
j −a2

n)zj ≥ (aj −an)2z2
j +

2(aj−an)anzj. If (aj−an)zj 6= 0 then the above inequality is equivalent toaj−an ≥ (aj−an)zj
which obviously holds since0 ≤ zj ≤ 1.

Lemma 4:For sufficiently large|D| the following holds:l(ẑ) > l(z) if D is positive and
l(ẑ) < l(z) if D is negative.
Proof of LemmaFrom (50) we have the following inequalities.

l2(z) +Dl(z) ≥ l(z)2 +Dl(z)

l(ẑ) =
l2(z) +Dl(z)

l(z) +D
≥ l(z)2 +Dl(z)

l(z) +D
if l(z) +D > 0
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l(ẑ) =
l2(z) +Dl(z)

l(z) +D
≤ l(z)2 +Dl(z)

l(z) +D
if l(z) +D < 0

Now, Theorem 1 follows immediately upon recognizing that (48) is equivalent tol2(z)−l(z)2 = 0
for largeD.
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Fig. 5: Top panel: Mean square estimation error based on 100 Monte Carlo runs. (a) Showing
the CS-EKF withl1 norm (marked by circles), the CS-EKF with the approximatel0 norm (thick
line), the CS-EKF withlp, p = 0.5 norm (solid line), and an ordinary EKF that is unaware
(dashed line) and aware (dotted line) of the actual support.(b) Showing the CS-EKF withl1
norm (marked by circles), the CS-EKF with the approximatel0 norm (solid line), the EBW
(thick line), and an ordinary EKF that is unaware (dashed line) and aware (dotted line) of the
actual support. Bottom panel: Snapshot atk = 100 of the true (squares) and estimated (lines)
signals using the CS-EKF (c), a regular EKF (d), and the EBW (e). Nonlinear case.
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Fig. 6: Reconstructing a short time DFT of a speech signal from under-sampled data.
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(a) Reconstructed 65% (b) Reconstructed 80%
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Fig. 7: Reconstructing a short time DFT of a speech signal from under-sampled data.


