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Abstract Two major data mining competitions in 2008 presented challenges in med-

ical domains: KDD Cup 2008, which concerned cancer detection from mammography

data; and Informs Data Mining Challenge 2008, dealing with diagnosis of pneumonia

based on patient information from hospital files. Our team won both of these compe-

titions, and in this paper we share our lessons learned and insights. We emphasize the

aspects that pertain to the general practice and methodology of medical data mining,

rather than to the specifics of each of these modeling competitions. We concentrate

on three topics: information leakage, its effect on competitions and proof-of-concept

projects; consideration of real-life model performance measures in model construction

and evaluation; and relational learning approaches to medical data mining tasks.

Keywords Medical data mining · Leakage · Model evaluation · Relational learning

1 Introduction

During 2008, there were two major data mining competitions that presented chal-

lenges in medical domains: KDD Cup 2008, which concerned cancer detection from

mammography data; and Informs Data Mining Challenge 2008, dealing with diagnosis

of pneumonia based on patient information from hospital files. Our team won both of

these competitions, and in this paper we share our lessons learned and insights. We
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emphasize the aspects that pertain to the general practice and methodology of medi-

cal data mining, rather than to the specifics of each modeling competition. Although

fundamentally different, these two challenges turned out to have several major charac-

teristics in common. Correct understanding and handling of these characteristics are

critical in our success in the competitions, and they should play a major role in many

medical data mining modeling tasks. After an introduction to the competitions, their

tasks, their data and their results in Section 2, we discuss three main issues that are

in our view both critical and generalizable to the larger medical mining domain, and

beyond:

Data leakage. Fundamentally, data leakage is a lack of coordination between the data at

hand and the desired prediction task, which exposes data that should not “legitimately”

be available for modeling. As a trivial example, a model built on data with leakage may

conclude that people who miss a lot of work days are likely to be sick, when in fact

the number of sick days should not be used in a predictive model for sickness (we will

discuss later the time-separation aspect that causes the leakage in this example). In

Section 3, we propose a definition, discuss causes, prevalence and detection, and offer

some thoughts on a general methodology for handling and preventing leakage.

Adapting to measures of predictive performance. Building models that are truly useful

for medical purposes clearly requires taking into account the environment they will be

used in and the decision process they are supposed to support. This is reflected on the

choice of measures for model evaluation and selection. However, it also should affect

the manner in which models are built, where appropriate. In other cases, it may lead to

model post-processing with the specific goal of improving performance relative to the

appropriate measures. We discuss and demonstrate these different aspects in Section

4.

Relational and multi-level data. The complexity of medical data typically exceeds by

far the limitations of a simple ‘flat’ feature vector representation. The data often contain

multiple levels (e.g., patients, tests, medications), temporal dependencies in the patient

history, related multimedia objects such as ECG or images. Some of them require highly

specialized modeling approaches, and at the very least a very thoughtful form of feature

construction or relational learning. We discuss the complexity of the competition data

in Section 2 and present in Section 5 a number of approaches to represent and capture

the complex interdependencies beyond the flat world of propositional learning.

It is important to note that while we use the two competitions as motivating ex-

amples for our discussion throughout this paper, our main goal in this paper is not to

demonstrate good performance on them. Rather, it is to show how the three points

above come into play in each of them. Consequently, we do not limit the discussion

to solutions that work well, but rather present unsuccessful ones as well, if they lead

to algorithmic or theoretical insights. We also limit our algorithmic discussions and

experiment to a “one problem at a time” approach. Combinations of algorithms pre-

sented in separate sections are not experimented with or discussed, since our goal in

this paper is not to devise superior solutions to the competition modeling problems,

but rather to delve into the methodological challenges they raise.
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2 The two competitions: description of challenges, data and results

While the specific details of the two medical competitions are not the direct focus of

this paper, we present here a brief overview to provide the context for our more general

observations about data mining applications in medical domains.

2.1 KDD CUP 2008: Breast Cancer detection

The KDD CUP is the oldest data mining competition and has been held for over 10

years in conjunction with the annual leading conference SIGKDD. It served as forerun-

ner and thanks to its success and popularity many similar venues have been started.

The 2008 CUP was organized by Siemens Medical Solutions and consisted of two pre-

diction tasks in breast cancer detection from mammography images.

The organizers provided data from 1712 patients for training; of these 118 had

cancer. Siemens uses proprietary software to identify in each image (two views for each

breast) suspect locations that are called candidates. Each candidate is described by its

coordinates and 117 normalized numeric features. No explanation of the features was

given. Overall the training set included 102,294 candidates, 623 of which were positive.

A second dataset with similar properties was used as the test set for the competition

evaluation. For more details see [20].

The two modeling tasks were:

Task 1: Rank the candidates by the likelihood of being cancerous in decreasing

order. The evaluation criterion for this task was a limited area under the FROC

curve, which measures how many of the actual patients with cancer are identified

while limiting the number of candidate false alarms to a range between 0.2 and

0.3 per image. This was meant to reflect realistic requirements when the prediction

model is used as an actual decision support tool for radiologists.

Task 2: Suggest a maximal list of patients who are surely healthy. In this task,

including any patient with cancer in the list will disqualify the entry. This was

meant to be appropriate for a scenario where the model is used to save the radi-

ologist work by ruling out patients who are definitely healthy, and thus the model

was required to have no false negatives.

Our winning solutions to both tasks include three main components, and more

details on our methodology can be found in [16]:

1. Leakage: Our initial data analysis identified that the patient IDs carried predictive

information about a patient’s likelihood to have cancer. We discuss the details of

this phenomenon in Section 3. We included this information as an additional feature

for the classification model.

2. Classification model: Linear models seemed to be most suitable for the task. We

considered a number of model classes including logistic regression, SVM, neural

networks, and decision trees. The superiority of logistic regression and linear SVM

are probably due to the nature of the 117 normalized numeric features and the
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Fig. 1 Database schema of the medical domain for the INFORMS competition. The Hospital
file is the main focus of the contest and only links from it are included.

dangers of overfitting with such few positive examples for less constrained model

classes.

3. Post processing: The FROC evaluation metrics for Task 1 is considerably dif-

ferent from traditional machine learning evaluation measures such as accuracy,

log-likelihood or AUC. We optimized the model scores for the FROC as shown in

detail in Section 4.

Our final submission for Task 1 used bagged linear SVMs from the SVMlight pack-

age [9] with an additional identifier-based feature, maximizing zero-one loss, c = 20

and heuristic post processing. This approach scored the winning result of 0.0933 on

the test set compared to 0.089 of the runner up. For Task 2, the logistic regression

model performed slightly better than the linear SVM models due to the high sensitiv-

ity of likelihood to extreme errors. We submitted the 1020 first ranked patients from

a logistic model that included the ID features in addition to the original 117 provided

features.

2.2 INFORMS Data Mining Contest

The first INFORMS Data Mining Contest was announced by the Data Mining Section

of INFORMS in April 2008. The focus of the task was on nonsocomial infections —

infections obtained while staying in the hospital for some other reason.

The contestants were given two years of patient data from 2003 and 2004 in 4 sep-

arate files, including a hospital file with the information whether a patient contracted

an infection during a medical procedure. Figure 1 shows the database schema of the

4 provided tables, how they link to the main hospital table through one of two keys

(Patient ID and Event ID), and the number of rows in each of them. Near the end

of the contest, data from patients during 2005 were be provided. Similar to the KDD

CUP, the INFORMS contest had two tasks, but only the first focused on data mining.

Task 1: The goal of the first task was to detect instances in the hospital file that

contained the diagnosis code for nonsocomial pneumonia in one of the four provided

diagnosis columns. Observe that contrary to most data mining competitions, the

participants were asked design a ’clean’ training set with a target label themselves.
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Task 2: The second task was more aligned with the actual decision process and

required the design of a cost metric and the design of some optimal treatment

policy. We did not participate in this task.

Our winning solution to the first task also had three main components:

1. Cleaning and design of a suitable representation: Similar to most real-world

data, this dataset was rather messy. First we observed plenty of missing numerical

values in some columns of the hospital and medication table. We also observed that

a large set of hospital rows had large parts of features consistently missing - we

suspect these were mostly accounting entries 1. We ultimately removed some of the

numeric columns from the hospital tables that had mostly accounting information

(how much was charged against which insurance and how much was ultimately

paid). The demographic table had plenty of duplicates for the same patient, but

with different feature values. We decided to remove all duplicates and pick randomly

one of the two feature sets. We also considered the ’distributed’ appearance of one

of the most relevant information, the diagnosis codes to be unsuitable for modeling

and pooled all diagnosis codes in just one condition table and removed them from

the other tables. We finally converted the medication names into a bag-of-word

representation.

2. Relational Learning: We observed in this domain two types of relational char-

acteristics. Obviously, the information resides in 4 separate tables. Aside from the

demographic information which (after de-duplication) can be joined easily and can

be included directly in the hospital table; the relationship between each row in the

hospital table and the other two table is a one-to-many relationship. There is no

simple solution to a one-to-many case and we decided to use a propositionalization

[11] approach and use the ACORA [17] system to automatically bring in and ag-

gregate the relevant information. A second observation is the linkage between the

rows in the hospital table for the same patient and event2.

3. Leakage: The main challenge for the organizers of this competition was the fact,

that the data actually contained the target deeply embedded. 3 of the 4 tables

contain a diagnosis code field, and the target of interest could show up in any of

them. To make the competition worthwhile, all instances needed to be removed.

This turned out to be impossible without leaving certain traces of alteration be-

hind. And indeed we observed, that a certain combination of missing diagnosis code

and some other feature provided predictive information. This could identify a sub-

stantial subset of hospital rows as certain positives and others a certain negatives.

Similar to the KDD CUP solution we included this information as an additional

feature and discuss this in more detail in Section 3.

Our final submission for the competition used logistic regression on one leakage

feature, some of the hospital features and the automatically constructed features using

ACORA on the slightly modified representation of the 3 additional tables. This solution

scored an AUC of 0.88 while the second place had an AUC of 0.83. Our analysis suggests

1 We strongly suspected that a row in the table does not correspond to a particular visit,
but rather to some event during a visit — even just the submission of a bill to an insurance.

2 It turns out that something odd is also here happening with the patient identifiers. In an
attempt to recreate a patient history from the hospital file we observed that no patient had
more than 1 year history and only a very small but consistent percentage of patients appear
in two consecutive years, but none in 3 consecutive years. There is no predictive information
in this, but some evidence of an id assignment process.
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that leakage alone had a performance of 0.84. However, the explicit coding of the

leakage was not necessary - the result of 0.88 was also reached by ACORA without the

additional leakage feature. We concluded that feature construction probably captured

the leakage in some way.

2.3 Similarities across both domains

At this point we would like to point out similar characteristics of both domains that are

very typical for medical data and should have strong implications on the application of

data mining to medical domains. We explore the last 3 in more detail in the remaining

sections of the paper.

– Independent data collection: In both cases, the data was collected indepen-

dently of the particular data mining effort. In particular, the collection process was

part of the standard medical procedures long prior to the modeling. This leads to

some problematic artifacts, that are related to the leakage issues we are discussing

in Section 3. One of the issues is that no precise time stamps were recorded in the

case of the hospital data. This prevented us from proper data cleaning and could

lead to the situations where the model identified effects instead of causes.

– Privacy issues: There have been strong privacy concerns in almost all medical

datasets. As a result, some of the information has to be removed and other is

obscured for the sake of preserving the identity of the patient. While the first may

just limit the quality of models, the latter can be part of the process that ultimately

leads to the examples of leakage we observed. In particular, replacing true patient

identifiers like social security number with some IT-system generated number that

will carry information about the time and place it was recorded.

– Leakage: In both domains we were able to build a ’more accurate’ model based on

information that either should not have been predictive (the identifier) or would

most likely not be available in a real application scenario of the model (the trace

of diagnosis removal). It is therefore impossible to predict the true reliability and

value of a modeling effort.

– Non-trivial evaluation: In most real-world applications the standard perfor-

mance measures used in the data mining literature are of limited value. Most models

are used in the framework of decision support and the application-specific decision

process is often highly complex and not entirely quantifiable. While cost-sensitive

learning has been focusing on some of the issues arising in decision support, med-

ical applications often have additional legal and practical constraints that go far

beyond the existing work in machine learning. In Section 4 we will discuss the issue

of evaluation in more detail.

– Relational data: We observed in both domains rich relationship information be-

tween examples. In the case of the KDD CUP, different candidates belong to the

same breast of one patient and have some spatial relationship. Similarly, multiple

rows in the hospital table are also linked to the same patient and should clearly

influence the prediction of the model. In addition, we observed in the INFORMS

case the typical relational database structure where relevant information for the

modeling task is located in additional tables and cannot simply be joined if there

is a one-to-many relationship between the entities. This scenario calls either for

feature construction (manual or automatic) or a first order model representation

that is able to express such dependencies.



7

3 Information leakage

Leakage can be defined as the introduction of predictive information about the target

by the data collection, aggregation and preparation processes. As a trivial example, a

model built on data with leakage may conclude that people who miss a lot of work

days are likely to be sick, when in fact the number of sick days should not be used

in a predictive model for sickness (we will discuss later the time-separation aspect

that causes the leakage in this example). Such information leakage — while potentially

highly predictive out-of-sample within the study — leads to limited generalization and

model applicability, and to overestimation of the predictive performance. As we dis-

cuss below, such leakage was present in both competitions discussed here. However,

it is by no means limited to such competitions — practically every modeling project

has a proof of concept or model development phase, where historical data are used to

simulate the “real” modeling scenario, build models, evaluate them, and draw conclu-

sions about which modeling approaches are preferable and about expected performance

and impact. In our experience, many such real life proof of concept projects are also

plagued by leakage problems , which render their results and conclusions non-useful,

often leading to incorrect conclusions and unrealistic expectations. It is also common

in data mining competitions. They resemble in some respects the proof of concept state

of projects, where data are prepared for the explicit goal of evaluating the ability of

various tools/teams/vendors to model and predict the outcome of interest. This in-

cludes the two competitions we discuss here and also KDD-Cup 2007 [21], where the

organizers’ preparation of the data for one task exposed some information about the

response for the other task; and KDD-Cup 2000 [7], where internal testing patterns

that were left in the data by the organizers supplied a significant boost to those who

were able to identify them.

While it is clear that such leakage does not represent a useful pattern for real

applications, we consider its discovery and analysis an integral and important part of

successful data analysis.

Two of the most common causes for leakage are:

1. Combination of data from multiple sources and/or multiple time points, followed

by a failure to completely anonymize the data and hide the different sources.

2. Accidental creation of artificial dependencies and additional information while

preparing the data for the competition or proof-of-concept.

Our definition of leakage is related to a problem dependent notion of what consti-

tutes “legitimate” data for modeling. It is related to several notions in the literature,

including spuriousness [25] and causality [6] — causal and non-spurious associations are

guaranteed to be legitimate. However, non-causal associations can also be legitimate,

as long as they are legitimately useful for prediction.

3.1 Leakage in the competitions

KDD Cup 2008 data suffered from leakage that was probably due to the first cause

above. The patient IDs in the competition data carried significant information towards

identifying patients with malignant candidates. This is best illustrated through a dis-

cretization of the patient ID range, as demonstrated in Figure 2. The patient IDs are

naturally divided into three disjoint bins: between 0 and 20,000 (254 patients; 36%
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Fig. 2 Distribution of malignant (black) and benign (gray) candidates depending on patient
ID on the X-axis in log scale. The Y-axes is the score of a linear SVM model on the 117
features. Vertical lines show the boundaries of the identified ID bins.

malignant); between 100,000 and 500,000 (414 patients; 1% malignant); and above

4,000,000 (1044 patients, of them 1.7% malignant). We can further observe that all 18

afflicted patients in the last bin have patient IDs in the range 4,000,000 to 4,870,000,

and there are only 3 healthy patients in this range. This gives us a four-bin division

of the data with great power to identify sick patients. This binning and its correlation

with the patient’s health generalized to the test data. Our hypothesis was that this

leakage reflects the compilation of the competition data from different medical insti-

tutions and maybe different equipment, where the identity of the source is reflected

in the ID range and is highly informative of the patient’s outcome. For example, one

source might be a preventive care institution with only very low base rate of malig-

nant patients and another could be a treatment-oriented institution with much higher

cancer prevalence3.

In the INFORMS 2008 competition, the leakage was a result of an attempt to re-

move only the occurrence of pneumonia while leaving the rest of the patient record un-

touched, creating abnormally looking patient records. In particular, any patient record

that had no conditions mentioned was more likely to be a positive example, i.e., a

patient that had only pneumonia-related conditions in the record, which were then

removed. Some additional glitches in the removal process exacerbated this problem.

In this instance, it was easy to build models that benefited from the leakage without

even being aware of it. To clarify how, we give a few additional details on the data and

removal process: the hospital records contained fields that held codes for each medical

condition of this the patient record (up to four different codes, named icdx1 to icdx4),

and an indicator SPECCOND of whether or not the record actually pertains to any

medical condition (as opposed to accounting records, for example). Any record in the

test data with NULL in all icd# fields and 1 in SPECCOND was guaranteed to be a

leakage-based positive. Thus, a model (say, logistic regression) which uses the observed

number of condition codes of the patient as a categorical variable and also the variable

SPECCOND would have been able to nail down the leakage-based effects by assigning

a high weight to both the case of no condition codes and SPECCOND=1, and lower

weights for records that have condition codes. As we show below, a more complex rela-

tional modeling approach leads to taking advantage of the leakage in even less obvious

3 The organizers later explained that in order to increase the number of positive examples,
the dataset was comprised of examples from different time periods.
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ways. This point is critically important when we consider the competitions as simulat-

ing proof of concept projects, since they corresponded to a case where, even without

careful analysis and identification of the leakage, predictive models would still have

been likely to take advantage of the leakage. This would obviously render their eval-

uation on held-out data (with the leakage present) useless in terms of real prediction

performance.

3.2 Detection

We feel that it cannot be overstated how important and difficult leakage detection really

is. We are by no means certain that we have observed all leakage issues in the above

competitions or in our proof of concept modeling projects. Contrary to our discovery

and intentional exploitation of leakage in the artificial competitive settings, the much

more common scenario is a real world application where the model takes advantage of

some leakage WITHOUT the modeler even being aware of it. This is where the real

danger lies and what may be the cause of many failure of data mining applications.

While for KDD Cup 2008 it seems clear that the patient ID should NOT be part

of a model (although we argue in the next section that this is not necessarily the case)

the INFORMS example demonstrates an example where we could have accidentally

built a model that used leakage without knowing about it.

So how can one find out that there might be an issue? We discuss three different

approaches for detection of leakage: exploratory data analysis (EDA), model evalua-

tion, and real use-case scenario.

Exploratory Data Analysis. EDA seems to have become something of a lost art in

the KDD community. In proper EDA, the modeler carefully examines the data with

little preconception about what it contains, and allows patterns and phenomena to

present themselves, only then analyzing them and questioning their origin and validity

[15]. It seems that many instances of leakage can be identified through careful and

thoughtful EDA, and their consequences mitigated. In the two competitions we discuss

here, EDA was critical for identifying and characterizing the leakage. In KDD Cup

2008, the patient ID is not naturally a variable one would use in building models for

malignancy detection, but EDA led us to the image seen in Figure 2 and its conse-

quences. In the INFORMS competition, EDA supported the discovery of the glitches

in the removal mechanism. We hope that our discussion here can serve as a reminder

of the value of open-minded exploratory analysis.

Critical Model Evaluation. The second key tool in leakage detection is critical ex-

amination of modeling results. Ideally, one should form a concept of what predictive

performance a “reasonable” model is expected to achieve, and examine the results on

held-out data against this standard. Models that perform either much worse or much

better than their reasonable expectation should be investigated further. If no such

prior concept of reasonable performance exists, the performance of various modeling

approaches on the same task can be compared, and significant differences be further

investigated. For example, in one experiment on the INFORMS challenge data, a logis-

tic regression model which used the number of condition codes as a numerical variable

gave hold-out area under the ROC curve (AUC) of 0.8. By switching this variable to
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categorical, the AUC increased to 0.88. Such a significant improvement from a small

change in model form should have raised some concerns, as could the fact that this

implies a non-monotonic relationship between the number of diagnosis codes and the

probability of contracting pneumonia. Judicious comparison of the two models would

have been likely to expose the leakage, had it not been discovered by EDA.

Exploration of Usage Scenarios. Finally, in the spirit of “The proof of the pudding

is in the eating”, a very relevant strategy for leakage detection is to push early during

the proof-of-concept to get as close as possible to the true application setting. This

might involve extended communications with the potential future users or domain

experts, considerations of the real data feeds that will be utilized at the time, etc.

It might also include an early real-world test run that puts the models into place

and observes their performance over a period of time, and compares it to the prior

expectations and out-of-sample results.

3.3 Approaches for leakage avoidance

Our definition of leakage points at data that should not ”legitimately” be available

to the model. The prevention or avoidance of leakage is therefore intimately tied to a

careful definition of what the modeling problem is and how the model will be used, in

order to judge, what data can and cannot be used as part of the predictive model.

One important scenario where, in principle, leakage can be completely avoided,

is based on the famous saying, attributed to Niels Bohr: ”Prediction is very difficult,

especially about the future”. Medical applications of data mining are typically tied into

some decision process: Should the patient be examined further and biopsies be taken or

sent home? Should an incoming patient be given special preventive treatment against

pneumonia or not? All such decision processes have a temporal component: there are

things that are known at the time of the decision, and there are outcomes (pneumonia

infection) and consequences of actions taken (antibiotics given) that are only known

later.

In these decision scenarios, leakage can be avoided by a clean temporal separation

of 1) the data that can be used as explanatory variables for modeling up to the decision

time and 2) everything thereafter, in particular the predicted outcome and any possible

implication thereof. The formal definition of the predictive modeling task is to build

a model ŷ = f̂(x) which describes the dependence of y on x and will be used to

predict y given new values of x. In prediction about the future, we further assume

that at prediction time all the explanatory data in an observation x are observed and

predictions are made at some time t(x), and the response y is determined only at a

later time, say t(x)+∆t. The task is, naturally, to make a good prediction at time t(x)

about what y will be.

If this is indeed the case, then an obvious approach to avoiding leakage is to make

sure that the data used for modeling complies with this time separation as well. Assume

the data for training are made of n observations {xi, yi}
n
i=1. Then to avoid leakage,

one simply has to make sure that the values in xi were observed at the appropriate

“observation time” t(xi) and not affected by any subsequent updating and information

flow, including (but not limited to) the observation of the response yi.

This seemingly simple requirement is often hard to implement when dealing with

databases that are constantly updated and enhanced, however when it is successfully
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implemented, it guarantees non-leakage. The importance and difficulty of this require-

ments was previously noted in medical applications ([24,22]). If it cannot be imple-

mented, it is advisable to investigate the reasons for the difficulties in implementation,

and that process itself may expose potential leakages. We now discuss the implemen-

tation of prediction about the future in the two competitions and one other predictive

modeling scenario.

Pneumonia Prediction: Taking the INFORMS challenge as an example, the re-

sponse y was the existence or non-existence of pneumonia, and the explanatory data

x contained all hospital records with the references to pneumonia removed (as well

as other relational information such as medications, which we ignore for simplicity).

This formulation already violates the prediction about the future paradigm, because the

hospital records contain information that was updated after the onset of pneumonia.

In fact, it seems that a modeling task based on hospital records (of which each patient

may have multiple) has no chance of complying with this paradigm. However, if the

task was to be switched to the patient level, and information was available of the date

on which each record was created and each condition was diagnosed, then one could

hope to create a prediction about the future modeling scenario. In this scenario, the ex-

planatory data xi for each patient would represent all the information available about

this patient up to some time ti and the response yi would correspond to appearance

of pneumonia in some fixed ∆t after this time.

Breast Cancer Identification: The example of KDD CUP is an interesting one what

highlights the need to define the prediction task very clearly. It is not entirely obvious

whether the patient ID is a case of leakage or not. Let us assume that the ID is indeed

an indicator of a certain subset of the population. Is it legitimate to use this informa-

tion? The answer depends on whether the assignment of a patient to a subset was an

outcome of her having cancer (which seems to be the case in this competition). If yes,

then using this ID would clearly be a violation of the prediction of the future rule. If on

the other hand, the sub-populations are coincidental, e.g., there may be geographical

or demographical locations that have a higher cancer prevalence rates, then it would

be legitimate to incorporate this information into a model that is used across those

different populations. It seems, however, awkward to define the population based on

the range of the patient IDs and the optimal model should ideally be given a more

direct indicator of the legitimate underlying driver of this change in prevalence rate.

A Business Intelligence Example: Modeling propensity to purchase IBM products

by companies [12], we defined x as the historical relationship a company has with IBM

up to some fixed time t (say, end of year 2006), and its firmographics (i.e., characteristics

of the company). The response y was the purchase of the product in some period ∆t

(say, one year) following t. However, in later work we sought to also utilize information

from companies’ websites to improve the model [13]. This appeared to be very useful,

but we encountered a problem with predicting about the future — the websites were

only available in their present form, and we had no access to what they looked like

at the end of 2006. Indeed, by examining their content we found an obvious leakage,

where the name of IBM products purchased (such as Websphere) often appeared on the

companies’ websites. A predictive model built on such data would naturally conclude

that the word Websphere indicates propensity to buy this product, but the true time
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relationship between the purchase and the appearance is likely reversed. We removed

the obvious leakage words manually, but the potential for more subtle leakage remained.

4 Adapting to real-world performance measures

For predictive modeling solutions to be useful, in particular in the medical domain,

it is critical to take into account the manner in which these models will ultimately

be used. This should affect the way models are built, judged, selected and ultimately

implemented, to make sure the predictive modeling solutions actually end up addressing

the problem in a useful and productive manner.

In many real life applications, and in particular in the medical domain, the model

performance measures are very different from the standard statistical and data mining

evaluation measures. For classification and probability estimation the typical candi-

dates for the latter include accuracy, likelihood, and AUC. They have their benefits

in terms of general properties such as robustness, invariance, etc. However, the same

properties that make them useful for data mining evaluation across domains typically

render them irrelevant for a particular application domain with the goal of supporting

a specific decision.

For example, in KDD Cup 2008, the organizers chose to rely on the specialized Free

Response ROC (FROC) curve [1,2], which we explain in detail below. This reflected

their conception of how the resulting scores will be used, and what is required to make

them most useful. In this case, they surmised that physicians are likely to be com-

fortable with manually surveying an average of 0.2–0.3 suspicious regions per patient

image (or about one suspicious region per patient), when the patient is in fact healthy.

Accordingly, the performance criterion essentially measures what percentage of actual

malignant patients would be identified in this scenario (by having at least one of their

malignancies flagged).

The measure of the second task for the same competition had a similar justification:

Since the cost of a false negative (sending a sick patient home) is close to infinite, the

performance criterion used was the maximal number of patients that a model can rule

out, provided they contained no false negatives.

The first task INFORMS contest was using AUC, which is a standard performance

measure in data mining and not really specific to medical domains. However, the second

task asked explicitly for the design of an appropriate metrics as well as a preventive

strategy. We did not participate in this task due to its open ended nature, but we see

again a special focus on evaluation.

Intuitively, the specific choice of performance metric should drive the construction

and selection of models, and to some extent the issue of model performance for decision

support has been considered in sub-areas of data mining such as utility-based data

mining [28] and cost-sensitive learning [26]. However, there are still two fundamental

inhibitors to a greater focus on real-world measures, namely,

– There is not just one relevant “real” measure, but as many as there are applications,

for every application requires a potentially different performance measure. Further-

more, these measure are often not fully defined because the “cost” of decisions can

typically only be approximated.

– Many of the empirically relevant measures present statistical difficulties (high vari-

ance, non-robustness, non-convexity, etc.) This often makes statistically valid in-

ference difficult, and hinders progress.
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4.1 Impact of performance measures on modeling process

Considerations of the ultimate performance measure should enter the modeling process

in different stages. It is not just a question of final evaluation, but might come into

play much earlier in the model building stage. As a simple example, if the performance

measure is the sum of absolute errors, one might consider estimating a model using

absolute loss rather than squared error loss. However, it is often the case that integra-

tion of complex performance criteria into the model building stage is very difficult, due

to computational difficulties (e.g., if it results in non-convex loss functions) or imple-

mentation difficulties, including a reluctance to forsake tried and tested modeling tools

which use “standard” objectives in favor of development of new ones for “specialized”

objectives.

An interesting example is the modeling approaches that have been developed in

the classification community, which use the area under the ROC curve (AUC) as an

optimization criterion instead of the error rate or its convex approximations [4,8]. This

was an attempt to directly build models that are expected to perform well in terms

of AUC performance, directly using the non-convex AUC as an optimization objec-

tive for modeling. However, these approaches did encounter computational difficulties,

and it was not always clear that they do empirically better than “standard” classifica-

tion approaches in practice, in terms of predictive AUC. Thus, even for a commonly

used measure like AUC, it has proven difficult to make much progress by designing

specialized modeling algorithms, compared to using standard “out of the box” tools.

An alternative, less ambitious approach is to use the performance measure as a

guide for post processing of the results of standard modeling approaches. In this ap-

proach, once model scores have been calculated, one might ask, how should these be

manipulated, changed, or re-ordered, given the real-life performance measure to be

used for the model. For the rest of this section, we concentrate on this approach, and

its application to task 1 of KDD-Cup 2008.

4.2 KDD Cup 2008 example: Optimizing FROC

As already discussed, the performance measure for the KDD cup Task 1 is specifically

designed by the radiology community and goes far beyond the typical variations of

evaluation in machine learning. Our research into model post-processing approaches

to optimize this measure led us to results and algorithms that were interesting and

important, both theoretically and empirically. We present them for their independent

interest, but also as a case study into the value of post-processing for adapting to

real-world performance measures.

4.2.1 FROC Definitions

Assume the objects in the data have two levels, which we will name patients and

candidates as in KDD-Cup 2008 (in other applications the names may be different).

Each patient has multiple candidates (suspected locations in mammography images),

and each candidate has a label of positive (malignant) or negative (non-malignant). A

patient is considered malignant if any of her candidates are in fact malignant. Assume

we have a model which ranks the candidates according to some criterion. Then the

FROC curve plots the cumulative percentage of true positive patients on the y-axis
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Fig. 3 An example Free Response Receiver Operating Curve (FROC).

versus the cumulative percentage (often expressed as false alarms per image) of false

positive candidates as we go down the ranked list. For KDD-Cup task 1 the evaluation

measure was the area under this curve in the range of 0.2-0.3 false positive candidates

per image, as discussed before. An example FROC curve is shown in Fig. 3, where the

area of the shaded region corresponds to the evaluation measure used.

In what follows, we denote the area under the FROC curve by AUFROC, and

competition evaluation criterion, i.e., the area in the 0.2-0.3 region by fFROC.

4.2.2 Optimizing the AUFROC

In this section we are going to describe a postprocessing procedure that improves

AUFROC. We prove that this procedure is optimal under the assumption that the

model provides us with accurate probabilities of every candidate being malignant.

Assume we have a perfect estimate for the probability pi, that each candidate is

malignant, and that malignancy of each candidate is independent of any other candi-

dates (given their probabilities). Assume further that we have a patient, for which we

have already included k candidates at the top of our list. Denote the probabilities of

these candidates by p1, . . . , pk. The probability PMk that none of them is malignant

(and therefore we have not yet identified this patient as malignant) is
Qk

i=1(1 − pi).

Given another candidate for this patient with probability of malignancy pk+1, we can

add the candidate to the list, and identify a new malignant patient with probability

PMk × pk+1 or add another false alarm with probability 1− pk+1. This motivates the

following definition:

For a given candidate C let p1 ≥ p2 ≥ . . . ≥ pk ≥ . . . ≥ pK be probabilities of malig-

nancy of all candidates belonging to the same patient, with pk corresponding to the

candidate C itself. Define

y(C) = (1 − p1) · (1 − p2) · . . . · (1 − pk−1) · pk ·
1

1 − pk
.
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The main results of this section are

Theorem 1 Let {Ci}
N
i=1 be a sequence of candidates ordered in such a way that for

every i < j there holds y(Ci) ≥ y(Cj). Then the expected value of AUFROC({Ci}
N
i=1)

is maximal among all orderings of candidates.

Theorem 2 Let {Ci}
N
i=1 be a sequence of candidates ordered in such a way that for

every i < j there holds y(Ci) ≥ y(Cj). Then the expected value of fFROC({Ci}
N
i=1) is

maximal among all orderings of candidates.

In words, if we order the candidates by the values of y, we are guaranteed to

maximize expected AUFROC and fFROC. The proofs of these theorems are given in

the appendix.

The following algorithm makes the optimal policy in terms of AUFROC and fFROC

explicit.

Algorithm 1 (postprocessing) Input: the sequence X of pairs {IDi, pi}
N
i=1. Out-

put: Y = {yi}
N
i=1.

1. Set ζ = 1.

2. Sort X using the ordering {IDi, pi} ≺ {IDj , pj} if and only if IDi < IDj or

IDi = IDj and pi < pj in descending order within a patient

3. Append {−1,−1} at the end of X (for technical reasons, it is assumed here that all

IDi > 0)

4. For i = 1 to N

(a) Set PM = ζ.

(b) If IDi = IDi+1 set ζ = ζ ∗ (1 − pi) else set ζ = 1.

(c) Set yi = PM ∗ pi

1−pi
for pi < 1 and yi = 1 for pi = 1.

Note that if pi = 1 then PM = 0 for all j > i, IDj = IDi.

The sorting by patient is a technical trick allowing the algorithm to run in a linear

time.

For the Theorems 1 and 2 to hold, and thus for the sequence y obtained using

Algorithm 1 to yield better expected AUFROC (and fFROC) values than any other

transformation of the value of the pi’s, the pi’s must be true probabilities of malig-

nancy for each candidate. Clearly, this is not what our models generate. Some modeling

approaches, like SVMs, do not even generate scores that can be interpreted as proba-

bilities. In the case of SVMs, Platt correction [19] is a common approach to alleviate

this problem. We thus applied this post-processing approach to three different models:

– Logistic regression raw predictions. These are expected to be somewhat overfitted

and therefore not good as probability estimates. Since the emphasis of the algorithm

is on the largest pi’s we modified them simply by capping them, leading to:

– Logistic regression predictions, capped at different thresholds (e.g., 0.5)

– SVMs with Platt correction

Disappointingly, Algorithm 1 did not lead to a significant improvement in holdout

fFROC on any of these models, implying that our algorithm, while theoretically attrac-

tive, has little practical value when dealing with (bad) probability estimates instead

of true probabilities. We did observe that the AUFROC improved initially (below 0.05

false positives per image) but not in the relevant area of 0.2-0.3.

We managed to show the practical value of this approach by calibrating the prob-

abilities using non-parametric approaches (results not shown, but this resulted in sig-

nificantly improved performances on par with the heuristic post-processing approach,

described next).
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4.3 Heuristic AUFROC post-processing

To develop a heuristic approach, we return to the differences between the ROC and

FROC curves. In our case, a good ROC curve would result from the algorithm’s cor-

rectly ranking candidates according to their probabilities of being malignant. However,

if many malignant candidates are identified for the same patient, this does not im-

prove the patient-level true positive rate, drawn on the FROC curve Y-axis. As such,

a higher true positive rate at a candidate-level does not improve FROC unless the

positive candidates are from different patients. For instance, it is better to have 2

correctly identified candidates from different patients, instead of 5 correctly identified

candidates from the same. So it is best to re-order candidates based on model scores

so as to ensure we have many different patients up front.

In order to do this, we create a pool of the top n candidates, as ordered by our

model. We then select the candidates with the highest scores for each patient in this

pool, and move these to the top of our list. We repeat this process iteratively with the

remaining candidates in our pool until we have exhausted all candidates.

We only do this for the top n candidates, since the fFROC metric is based only

on the area under the curve for a small range of false alarm rates at the beginning

of the curve. We leave the ordering of the remaining candidates untouched. The only

parameter this post-processing procedure requires is the choice of n for the number of

top-ranked candidates we want to re-order. The specific fFROC metric used to evaluate

the KDD Cup Task 1 was the area under the FROC curve in the false alarm range of

0.2-0.3. Re-ordering scores beyond this range, has no effect on the area in this range.

Furthermore, since the true positive rate per patient (i.e. the y-axis of the FROC curve)

is monotonically increasing, any increase in AUFROC below the false alarm rate of 0.3

leads to an increase in the range 0.2-0.3. We select the value of n so as to minimize the

number of scores that need to be reordered. So the value of n is the smallest number

of candidates that must classified as positive before we hit the upper bound of the

false alarm rate used in the fFROC metric. The top n candidates can be composed

of both true positives and false positives; so the smallest value of n is given by the

maximum number of true and false positives within the prescribed false alarm range.

True positives do no contribute to the false alarm rate, so there can be as many true

positives as there are positive candidates in the test set. The maximum number of false

negatives is dictated by the upper bound on the false alarm rate, i.e.,

false alarm rate =
number of false positives

4 × number of patients
= 0.3

Combining the maximum number of true and false positives, we get the minimum

number of the top candidate-scores to be reordered,

n = number of positive candidates + 1.2 × number of patients

Since the true number of positive candidates in the test set is not known, we esti-

mate this from the positive rate in the training set. The impact of this post-processing

can be seen in Fig 4, where the reordering of scores increases the fFROC from 0.087

to 0.096. These results are based on a fifty-fifty train-test split of the labeled data pro-

vided in the competition. When repeating this exercise with other training-test splits,

we got consistent improvement of between 0.003 and 0.009 in fFROC. Since we were

not provided with the labels on the competition test set, the actual contribution of this
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Fig. 4 Increase in FROC based on post-processing of model scores.

post-processing to our winning solution is unknown. It should be noted that the signif-

icant increase in fFROC via post-processing comes with no additional modeling cost,

and is solely derived from a better understanding of the domain-specific performance

metric.

5 Relational and multi-level data

Statistics and machine learning have historically made one fundamental assumption

about the data: instances are independent and identically distributed (iid) and are

represented in a ’flat’ matrix that has for each instance a vector with feature values.

While certain violations of this assumption have been acknowledged and partially ad-

dressed in specific cases, medical data are very prone to extreme violations of this

assumption [23].

In the two competitions we faced two instances of non-iid data that are typical

for medical data. The INFORMS data has the common patient-centric view that links

many different pieces of information about a particular patient from different sources

and times. In the case of INFORMS there are multiple records for the same patient

and in addition one-to-n and m-to-n relationships into additional tables. In the case of

infections we may additionally suspect relevant interactions between patients if they

were for instance members of the same household as provided in the demographics

table, or hospitalized at the same time.

The KDD Cup has a more intrinsic form of non-iid data. Fundamentally, we want

to answer the question if a patient has breast cancer or not. So the natural unit of

analysis would be one single breast. However, the images are only dual 2D projections

and the pre-processing of the images has to trade off the immense cost of false negatives

and is therefore very conservative. As a result, many discrete candidates are identified

even though they may be overlapping and pointing to the same suspicious region.
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In the case of KDD Cup the organizers already pointed out that it might be possible

to take advantage of the fact that two different candidates may very well be indicators

of the same underlying lesion in the breast tissue and should therefore have similar

labels. In addition to the biological linkage, there might be another re-enforcing human

labeling bias. Once a candidate is tested positive in a biopsy, it seems likely that the

examiner will label all corresponding candidates as positive.

While there has been substantial work in relational machine learning during the last

decade, there are as of yet no verified standard cases or scenarios. In addition, most

of the higher-level learning approaches [3,14,5] have not yet demonstrated to scale

successfully to large domains. In particular, the winning approach in the relational

learning challenge (ILP challenge 2005 [18]) on a large genetic domain was won by our

feature construction algorithm ACORA [17].

Accordingly, we will provide a brief overview of our relational learning method

ACORA that was applied to the INFORMS data where it provides substantial im-

provements. We also offer a conceptual discussion of possible modeling approaches for

the relationships between candidates in the KDD CUP.

While we do not observe consistent performance improvements for all of them,

we consider it still of interest and relevance to show the many different ways the

dependencies can be modeled. The creative exploration of multiple different avenues

to address a particular property of the application domain is conceptually similar to

an open minded exploratory data analysis. Even if the performance is not necessarily

improving - failures help to reject suspected dependencies and can provide valuable

insight about the domain.

5.1 Neighborhood dependence in KDD CUP

We explored 3 fairly different but potentially equally valid approaches to utilize the

suspected neighborhood relationship and will discuss them in more depth below.

1. Two-stage framework were we first “predict” the labels of candidates, then use the

labels of close neighbors as features;

2. Penalty on vastly different prediction values for close neighbors;

3. Feature construction from the neighboring candidates.

5.1.1 Two stage completion approach

We can frame the objective of incorporating the notion of a dependence of the can-

didates score on the score of its neighbors as a learning task with latent variable: the

scores of the neighbors. This would suggest an iterative algorithm that would keep

refining a model that feeds the scores back to populate features of neighborhood like-

lihood.

We explored this approach starting for the first stage with a basic “flat” model based

on the provided 117 numeric features xk = (x1,k, ..., x117,k). With a leave one patient

out approach, we calculated out of sample scores for each of the 1712 patients (that

is, we actually built 1712 different regression models, each time leaving one patient’s

candidates out of the model estimation, and then calculating their scores).

sk,Stage1 = f(x1,k, ..., x117,k) (1)
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The scores from this model are used to generate “neighborhood features” in the

second stage. There are a number of choices to define a set of such features. In essence,

each of the neighborhood features is a function of the predicted scores and the distance

between the candidate and the neighbors n. One such neighborhood feature x̄118,k

could be a distance weighted average of the scores using some kernel to translate

Euclidean distances into weights. More generally, the second stage can incorporates a

number of derived features:

sk,Stage2 = f(x1,k, ..., x117,k, x̄118,k, ..., x̄p,k) (2)

Several encouraging results were observed from logistic regression models that used

for stage 2 the score of the closest neighbor and its distance.

1. The logistic regression identified the neighbor’s score and the distance as the two

most important features, with the expected signs (positive for neighbor score, neg-

ative for distance).

2. The two stage model was clearly better able to differentiate malignant candidates

from benign ones.

However, disappointingly, it did not do better in the fFROC metric, and specifi-

cally failed to identify more malignant patients than the first-stage model. Thus, despite

being a clearly more powerful model for malignancy detection, it did not manage to

improve the “real world” performance of our models. However, we still consider that it

proved to be a useful conceptual approach to utilizing neighborhood information. This

algorithm is can be related to the work on “stacking” for graphical models, which is a

statistical learning model for collective inference over relational data [27,10]. However,

our algorithm differs from stacking in that it does not assume an explicit graph struc-

ture between examples and the information propagation process is simpler.

5.1.2 Pairwise Constrained Kernel Logistic Regression

The data contains the coordinates of each candidate in a given image. We can define

a match as a pair of candidates (xk, xm) with an the Euclidean distance less than

a threshold t. The threshold could either be based on the number of pairs n or be

derived from the underlying geometry such that only candidates within 5% of the

main coordinate can be paired. This leaves us with a set C of Pairs:

C = {(xk, xm) | ||xk − xm|| < t} (3)

We would like candidates belonging to a pair (xk, xm) to have similar predicted

labels, i.e. f(xk) ∼ f(xm). We shall incorporate this condition using pairwise kernel

logistic regression, which is able to plug in additional pairwise constraints together

with labeled data to model the decision boundary directly [29].

Suppose we have a set of training examples {(xi, yi)}, and our set C of pairs. To

make the optimization problem feasible to solve, we define a convex loss function via

the logit loss as follows:

O(f) =
1

N

N
X

i=1

log(1 + e−yif(xi)) + λΩ(‖f‖H) +
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µ

n

X

(xk,xm)∈C

log(1 + ef(xk)−f(xm)) + log(1 + ef(xm)−f(xk)),

where the first term is the loss on labeled training examples, the second is the regularizer

and third term is the loss associated with the difference between the predicted labels

of the example pairs. The pairwise constraint coefficient µ is set to 1. For simplicity, we

define f as a linear classifier, i.e. f(x) = wT x. Since the optimization function is convex,

a gradient search algorithm can guarantee the finding of the global optimum. It is easy

to derive the parameter estimation method using the interior-reflective Newton method,

and we omit the detailed discussion. The constrained logistic regression unfortunately

did not improve the fFROC over the unconstrained baseline.

5.1.3 Feature construction

Whereas the first approach tried to add suspected information about the target to the

feature set, we now instead include the features of the neighbors directly. This approach

lacks the elegance of the two-stage framework or the penalty setup, but is closer in line

with some standard relational learning methods that we used very successfully on the

INFORMS domain (see below).

Similarly to the penalty setting we define for each candidate a set of neighbors

based on their Euclidean distance within a picture. We now add another 117 features

to the original feature vector that contains the mean feature value of the neighbors.

Similarly to our previous results we observe that this methodology does not improve

the fFROC performance substantially. We suspect that in the feature construction case

we ultimately have too few datapoints to support 234 features and the models are

subject to significant variance error.

5.2 Patient-centric data in INFORMS

While the relational feature construction did not improve the results in the KDD

CUP, we did observe a substantial improvement on the INFORMS competition. The

automated process of feature construction in relational datasets with one-to-many links

is formally known as propositionalization [11].

The main challenge arises from one-to-many link to tables with high-dimensional

categorical values. Contrary to the numeric features of the neighbors in the KDD-Cup

example we now have to aggregate sets of medications or conditions belonging to a

patient.

ACORA is a learning system that automatically converts a relational domain into

a flat feature-vector representation using aggregation to construct attributes given the

database schema as shown in Figure 1. ACORA consists of four nearly independent

modules, as shown in Figure 5:

– Exploration: constructing bags of related entities using joins and breadth-first

search based on the schema of the domain and identifiers that link the tables.

– Aggregation: transforming bags of objects into single-valued features by aggre-

gating one feature at a time (assuming independence) using a variety of aggregation

operators including mean, min and max for numerical features and class-conditional

vector distances for categorical features.

– Feature selection: based on the AUC on the predictio task of a single feature.
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Fig. 5 ACORA’s transformation process with four transformation steps: exploration, feature
construction, feature selection, model estimation, and prediction. The first two (exploration
and feature construction) transform the originally relational task (multiple tables with one-to-
many relationships) into a corresponding propositional task (feature-vector representation).

– Model estimation: using logistic regression or decision trees in combination with

bagging.

The aggregation operator for categorical features mirrors a ‘local’ naive Bayes

model and estimates vector distances to the class-conditional distributions of the rele-

vant features. For more details see [17].

The AUC increased from 0.8 for baseline model (using only the features in the

hospital table) to 0.9 once ACORA included the information from all tables including

class-conditional aggregates of the medication names and of the medical conditions as

well as demographic information.

6 Conclusion

In this paper we present three fundamental problems in medical data mining, as exem-

plified by their common appearances in both competitions we discussed. We use the

instances of these problems in the competitions as motivating and running examples,

to demonstrate the importance of these issues and how they help us develop appro-

priate solutions for the competition. Our discussion combines high-level insights and

guidelines, with specific detailed examples. Our theoretical results on the optimization

of AUFROC is novel and the main scientific contribution of this paper. We hope that

this as well as the other discussions will be useful for the larger medical data mining

community, which encounters similar problems on a regular basis.

Notice that although we raise and discuss these issues in the context of medical

data mining, and more specifically the competitions, it is clear that all three apply to

practical data mining tasks in other domains as well. Different domains, however, are

likely to emphasize different aspects and different flavors of these problems.

Appendix: Proof of Theorems 1,2

Notation:

- P(C) denotes a patient to whom candidate C belongs,

- ID(P) is a patient ID of patient P , and ID(C) = ID(P(C)),
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- ℘(C) is a probability that candidate C is malignant, returned by the model,

- C(P) denotes a (finite) sequence {Ci
1, Ci

2, . . . , Ci
K} of all candidates belonging to a

patient P , where i = ID(P), and for every 1 ≤ m < n ≤ K there holds pi
m ≥ pi

n,

where pi
m = ℘(Ci

m) and pi
n = ℘(Ci

n).

Before we prove Theorem 1 and Theorem 2 we are going to need a few technical

results.

Lemma 1 If for some patient P candidates C, C′ ∈ C(P) and there holds pk ≥ pm for

pk = ℘(C), pm = ℘(C′), then y(C) ≥ y(C′).

Proof It is sufficient to show that

(1 − p1) · . . . · (1 − pk) · pk+1 ·
1

1 − pk+1
≤ (1 − p1) · . . . · (1 − pk−1) · pk ·

1

1 − pk
.

This follows immediately from
(1−pk)2

pk
·

pk+1

1−pk+1
≤

(1−pk)2

pk
· pk

1−pk
≤ 1 − pk ≤ 1 as

pk ≥ pk+1 and x
1−x is an increasing function in [0, 1).

Note that the inequality is not sharp only in case pk = 0.

Given an ordering of candidates {Ci}
N
i=1 let

- Vi = V (Ci) equal 1 if candidate Ci is malignant and 0 if candidate Ci is benign,

- FPC(i) = i −
Pi

k=1 Vk be the number of false positives among first i candidates,

- TPP(i) = |{IDk : k ≤ i, Vk = 1}| be the number of true positive patients (patients

with at least one malignant candidate at any of their 4 images) among first i

candidates,

- nImages = 4 ∗ |{IDk : k ≤ N}| of all images (4 times the number of all patients).

Then

FAUC({Ci}
N
i=1) =

1

TPP(N)

1

nImages

N
X

k=1

TPP(k) · (FPC(k) − FPC(k − 1)). (4)

(note that by definition FPC(0) = 0 and that TPP(N) is simply the number of all

malignant patients).

Given an ordering of candidates {Ci}
N
i=1 each candidate Ck falls into one of the

three classes:

I a false positive,

II a true positive for a patient which has already been identified as malignant,

III a true positive for a patient which has not yet been identified as malignant.

For simplification we define

T
“

{Ci}
N
i=1, k

”

=

8

<

:

I if Ck ∈ I

II if Ck ∈ II

III if Ck ∈ III

.

Whenever it does not lead to misunderstanding we will write T (k) instead of T
“

{Ci}
N
i=1, k

”

.

Let {C′i}
N
i=1(k) be another ordering of candidates with Ck and Cm swapped, k < m.

We denote FAUC = AUFROC({Ci}
N
i=1) and AUFROC′ = AUFROC({C′i}

N
i=1).
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Lemma 2 The difference ∆ = ∆k,m = AUFROC′ − AUFROC depends only on

T
“

{Ci}
N
i=1, k

”

and T
“

{Ci}
N
i=1, m

”

. Moreover

∆(I, I) = ∆(II, II) = ∆(III, III) = 0,

∆(I, II) = −∆(II, I) = 0,

∆(I, III) = −∆(III, I) =
1

TPP(N)

1

nImages
(FPC(m) − FPC(k)),

∆(II, III) = −∆(III, II) = 0,

where the first argument of ∆(·, ·) is T (k) and the second one is T (m).

Proof Straightforward verification using (4).

Corollary 1 Swapping Ck and Ck+1 leads to an increment of AUFROC by 1
TPP(N)

1
nImages

if T (k) = I and T (k) = III, decrement of AUFROC by 1
TPP(N)

1
nImages if T (k) = III

and T (k) = I and has no influence on AUFROC in any other case.

Corollary 2 Expected values of AUFROC and AUFROC′ satisfy

EAUFROC′ = EAUFROC +
1

TPP(N)

1

nImages
· P (k,m),

where P (k,m) = ℘ ((T (k) = I) ∩ (T (m) = III))− ℘ ((T (k) = III)∩ (T (m) = I)).

Proposition 1 Let for some ordering {Ci}
N
i=1 candidates Ck, Cm, k < m belong to

the same patient Pi. Let moreover for every k < s < m Cs /∈ C(Pi). Let {C′i}
N
i=1

be the ordering of candidates with Ck, Cm reversed. If yk ≤ ym then EAUFROC′ ≥

EAUFROC.

Proof By Lemma 1 inequality yk ≤ ym implies pk ≤ pm.

Then ℘ ((T (k) = I) ∩ (T (m) = III)) = θ·(1−pk)·pm, ℘ ((T (k) = III) ∩ (T (m) = I)) =

θ · pk · (1 − pm), where θ =
Q

j<k,Cj∈C(Pi)

`

1 − ℘(Cj)
´

. Thus P (k, m) = θ · (1 − pk) ·

pm − θ · pk · (1 − pm) = θ · (pm − pk) ≥ 0 and proposition follows from Corollary 2.

Proposition 2 Let an ordering {Ci}
N
i=1 satisfy the following: for every two candidates

Cs, Ct, s < t who belong to the same patient Pi there holds ys ≥ yt.

Under this assumption let candidates Ck, Ck+1, belong to two different patients and

{C′i}
N
i=1 be the ordering of candidates with Ck, Ck+1 reversed. If yk ≤ yk+1 then

EAUFROC′ ≥ EAUFROC.

Proof Because Ck, Ck+1 belong to two different patients, whether either of them is

of type I , II or III is independent of the type of the other one. Thus thanks to the

assumption that probabilities of malignancies of all candidates are independent of each

other we get ℘ ((T (k) = I) ∩ (T (k + 1) = III)) = ℘(T (k) = I) ·℘(T (k +1) = III) and

℘ ((T (k) = III)∩ (T (k + 1) = I)) = ℘(T (k) = III) · ℘(T (k + 1) = I).

Let Ck ∈ C(PK), Ck+1 ∈ C(PM ). Then ℘(Ck) = pK
i , ℘(Ck+1) = pM

j for some i, j. We

have an explicit formula for weights yk = y(i,K) and yk+1 = y(j,M)

y(i, K) = (1 − pK
1 ) · (1 − pK

2 ) · . . . · (1 − pK
i−1) · pK

i ·
1

1 − pK
i

. (5)
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and

y(j, M) = (1 − pM
1 ) · (1 − pM

2 ) · . . . · (1 − pM
j−1) · pM

j ·
1

1 − pM
j

. (6)

The probability of candidate Ck to be of type I is equal to 1 − pK
i . The probability of

candidate Ck to be of type III is (1−pK
1 ) · (1−pK

2 ) · . . . · (1−pK
i−1) ·pK

i and analogous

formula holds for Ck+1. Therefore

P (k, k+1) = (1−pK
1 )·. . .·(1−pK

i−1)·pK
i ·(1−pM

j )−(1−pM
1 )·. . .·(1−pM

j−1)·pM
j ·(1−pK

i ).

Thus P (k, k + 1) ≥ 0 if and only if y(i,K) > y(j, M) and proposition follows from

Corollary 2.

Proof (of Theorem 1) There exists a finite number of orderings {Ci}
N
i=1, thus there

exists an ordering {C̄i}
N
i=1 for which the value of EAUFROC is maximal. By Proposi-

tion 1 for each patient all candidates belonging to {C̄i}
N
i=1 must be ordered according

to their weights y. In the opposite case we could find two candidates such that swap-

ping their order would increase expected value of EAUFROC
“

{C̄i}
N
i=1

”

leading to a

contradiction. Therefore {C̄i}
N
i=1 satisfies the assumptions of Proposition 2 and it fol-

lows that all candidates in {C̄i}
N
i=1 must be ordered according to their y’s.

So far we have proven that having yi ≥ yj for every i < j is a necessary condition for

an ordering to yield maximum value of EAUFROC. But – up to reordering candidates

having equal values of y – there exists unique ordering {Ci}
N
i=1 satisfying yi ≥ yj for

every i < j thus, because a (global) maximum does exist, it is also a sufficient condition

and the theorem follows.

Theorem 2 is proven by exactly the same methodology. The difference is that the

analogue of Lemma 2 now contains more cases to consider depending on whether and

how the region under FROC affected by the swap of candidates overlaps with the area

selected as relevant in fFROC definition. We decided to leave the details to the reader

instead of presenting here the tedious rigorous argumentation.
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