
RC24766 (W0903-067) March 18, 2009
Computer Science

IBM Research Report

A State Transition Model for Policy Specification

Dinesh Verma, Seraphin B. Calo
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Gregory Cirincione
Army Research Laboratories

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It  has been issued as a Research
Report for early dissemination of its contents.  In view of the transfer of copyright to the outside publisher, its distribution  outside of IBM prior to publication should be limited to peer communications and specific
requests.  After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties).  Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598  USA  (email:  reports@us.ibm.com).  Some reports are available on the internet at  http://domino.watson.ibm.com/library/CyberDig.nsf/home .



A State Transition Model for Policy Specification 
 

 
          Dinesh C. Verma, Seraphin B. Calo                                 Gregory Cirincione  
           IBM T. J. Watson Research Center                            Army Research Laboratories  
       dverma@us.ibm.com, scalo@us.ibm.com                       cirincione@arl.army.mil  

 
Abstract 

 
The model of policies used in a variety of computer 

systems management and security domains has 
typically followed the paradigm of if-then-else 
statements. While the use of such statements has 
resulted in significant progress in the field of policy 
based systems, their use has also entailed significant 
effort in defining the policy rules and system models 
needed for employing policy based technologies. 
Better models of policy specification can ease some of 
the difficulties associated with building policy based 
systems. In this paper, we introduce a new model for 
specifying policies, based on a user defined state 
transition diagram describing system behavior, and 
demonstrate how this model can be employed 
advantageously in managing policies.    
 
1. Introduction 
 

Policy based management has been proposed and 
used successfully in many different research 
prototypes and commercial products. These systems 
use a variety of policy languages, some examples 
being  Ponder proposed by researchers from Imperial 
College [1], PDL (Policy Description Language) 
proposed by researchers at Bell Labs [2], ACPL 
(Autonomic Computing Policy Language) proposed by 
researchers from IBM [3], and CIM-SPL (Simple 
Policy Language for CIM) from the standards 
association the Desktop Management Task Force [4]. 
Several other languages have been used in other 
research prototypes, commercial products and military 
pilots. Policies have been used in many contexts 
ranging from network management [5], security 
management [6], server data farms [7], storage systems 
[8], sensor networks [9] and privacy management [10], 
among others.  

 
Despite the wide number of languages, the policy 

specifications invariably follow the model of an if-
then-else expression, the format for a rule in predicate 
logic. The languages may differ in some nuances from 

a predicate logic rule, e.g., they may introduce the 
notion of an event as a qualifier in an if condition, or 
differentiate between obligation, authorization and 
delegation policies. However, all of the policy 
languages can be mapped relatively easily into rule-
based semantics.  

 
The use of predicate logic rules for specifying 

policies has several advantages as pointed out in the 
existing literature related to policy technology. The 
rules can be analyzed for conflicts, overlaps and 
inconsistencies. The rules simplify the task of 
managing systems and reduce the burden imposed on 
human administrators. However, many challenges still 
remain in the applications of policy based systems. 
Determining the right set of rules that need to be 
specified in any context is difficult and frequently non-
intuitive. The specification of rules also needs to be 
accompanied with a complete or near complete 
specification of a model of the system to which the 
policies are to be applied. In infrastructure systems 
where the implementation of a standard model like 
CIM exists, such a specification may not be a 
significant issue. However, for most distributed 
applications, a full model of the system is time-
consuming and difficult to develop.  

 
In order to address the limitations of current policy 

based systems, we need to explore new models of 
policy which can eliminate the requirement to specify a 
full system model, and provide a more intuitive 
specification of administrator intent than the writing of 
a set of predicate rules. In this paper, we present such 
an approach which offers these advantages.  

 
In section 2 of this paper, we introduce our model 

for specifying policies using a state transition diagram. 
In Section 3, we show how our model can be mapped 
to a set of predicate logic rules, and thus all of the 
existing policy infrastructure can be used in 
conjunction with our state transition model of policies. 
In Section 4, we discuss some algorithms that can be 
employed for validation of the policies when specified 



in terms of a state transition diagram. In Section 5, we 
present some examples of applications of this model of 
policy to real systems. We discuss the usability aspects 
of state transition diagrams in Section 6, and draw our 
conclusions in Section 7.  
 
2. The State Transition Model of Policies 

 
Policies are a way to represent the intent of an 

administrator as to how a computer system ought to 
behave. We propose that the administrator intent be 
specified by means of a state transition diagram that 
describes the allowable states in which a system ought 
to be operating, and the conditions under which a 
system ought to transition from one state to another. 
The set of all states, the conditions under which the 
transitions occur, and the means by which that 
transition can be orchestrated describe the policy 
constraints under which the system should operate.  

 
In order to specify policies using this model, an 

administrator would need to specify the following 
three pieces of information: 
(i) A set of states. Each state is defined in terms of  
constraints over some of the variables that are 
associated with the system. The set of states is 
mutually exclusive in that the system can exist in only 
one state at any time.  
(ii) A set of transitions. Each transition is an arc 
between two different states, and denotes a movement 
from one state to another. Each transition is defined by 
a procedure which can be used to move the system 
from the previous state to the next state 
(iii) A set of transition conditions. These define the 
events under which the administrator would like the 
state transitions to occur.  

Policy 
Management Tool 

Policy Decision 
Point 

Policy 
Enforcement 

Point 

Defines policy 
state transition

Monitors & 
Configures

Controller
State 

Transition
Model

State 
Transition

Current
State

Figure 1. Policy Management Architecture
 

With this definition of policies, we still expect a 
policy-enabled system to follow the conventional 
policy management architecture that includes: a policy 
manager, policy decision points (PDP) and policy 
enforcement points (PEP), as shown in Figure 1. 
However, the function of each of these components is 
slightly different than that of their counterparts in 
conventional policy management systems. The Policy 
Management tool allows the administrator to define 
and draw the desired state transition diagram for the 
system. The PEP is responsible for monitoring the 
system and determining which of the states the system 
is currently in, based on the values of the system’s 
state variables. The PEP invokes the PDP when one of 
the state transition conditions specified in the policy 
state transition diagram becomes true, and the PDP 
advises the PEP to invoke the transition function to 
change the state of the system. The PEP can be 
considered a monitor and the PDP a controller of the 
system in this case. We will use the term resource to 
identify the computer system to which a particular 
policy is applicable. In this case, the PEP is the 
resource monitor and the PDP is the resource 
controller.  

An alternate implementation of the state transition 
model of policies would be to convert the state 
transition specification into a set of policy rule 
specifications, and then use the traditional policy 
architecture to implement the system.   

 

US 
Users 
Only

US & 
UK 

Users

UK 
Users 
Only

Cuk = 0
Cus > 0
Res = High
Control = On  

Cuk > 0 
Cus > 0
Res = Med/High
Control = On

Cus = 0
Cuk > 0
Res = Med.
Control = Off 

On C1, Invoke F1

On C2, Invoke F2

On C2, Invoke F2 On C3, Invoke F3

Any 
Other 
State

On C1, Invoke F1

On C3, Invoke F3

On C2, Invoke F2

Figure 2. Example Policy  
As an example, let us consider an unmanned 

airborne vehicle (UAV) which is being used to survey 
an area by a coalition of US and UK forces. The UAV 
is capable of delivering images at high resolution or at 
medium resolution. Let us make the simplifying 
assumption that the UAV only produces one 
information stream which could be in either high or 
medium resolution. We also assume a global control 
mode which indicates whether the user can control the 



flight path of the UAV, or if it follows a 
preprogrammed path. A military planner may define 
three states for the use of the UAV: used by US forces 
only, used by UK forces only, and used by both US 
and UK forces. A state transition model that can be 
used to represent policy based control in this case is 
shown in the figure above. 

The state transition model uses four state variables 
of the resource (UAV) to define the state, a count of 
U.S. users of the UAV (Cus), a count of UK users of 
the UAV (Cuk), the resolution of the image, and a 
status variable indicating whether the control is 
enabled.   

The above example is just a toy example meant to 
illustrate the state transition model as a way to specify 
the policies. In any state, some of the variables are 
controllable (e.g., the resolution and the ability to 
control the UAV), while the others cannot be 
controlled by an automated system (e.g., the users in 
the system). However, when defining the policies in 
terms of the state, the military planner does not need to 
worry about these nuances of manipulating the state 
variables in the system. It is just that the constraints 
imposed upon the system by these variables needs to 
be satisfied.   

The above toy example also illustrates an important 
difference between policies and mechanisms. The 
specification of the intended system states and their 
transitions is not the same as the actual state transitions 
that the system may experience on its own. The actual 
system state may consist of many variables, and not all 
of those variables need to be used in the definition of 
the policies by the administrator. Assuming that the 
same states that the administrator specified are used to 
track the status of the system, the mechanisms included 
in the operation of the system dictate how the state 
transitions happen without any constraints from the 
administrator. The policy state transition diagram 
dictates the conditions under which the system would 
need to make a state transition different than what it 
would do on its own. State transitions that happen 
naturally are ones due to mechanisms implemented in 
the system. State transitions that would not necessarily 
happen naturally and are imposed upon the system by 
an automated management process because of the 
policies (as indicated in the policy state transition 
diagram) specified by the administrator are the result 
of policy enforcement. In most real use cases, we 
would expect the administrator to specify the desired 
state transition diagram without worrying about 
whether those changes occur naturally within the 

system or are happening because they are forced by the 
PDP/PEP because of the policies that are in effect.  

 
3. Relationship to Rule based Policies 

A set of policies defined by a state transition model 
can be mapped to a set of policies that are represented 
by a system of predicate logic rules. One can also 
construct a state transition diagram model for policies 
that are defined by predicate logic rules. Thus, the state 
transition model is as expressive as a predicate-rule 
based model of policies. The state transition model of 
policies, however, provides additional information 
about the allowable states of the system under policy 
control. 

In order to show that a state transition model can be 
converted to a set of rules, it suffices that we show that 
it can be done for a state transition model with two 
states only. Let the two states be s1 and s2 respectively. 
One can easily define predicate functions p(s1) and 
p(s2) which are true if and only if a system is in the 
corresponding state. One can now define another 
logical expression t12 which is true if the system moves 
from state s1 to state s2, and t21 which is true if the 
system moves from s2 to s1. In other words t12 is true if 
p(s1) is true at a time instance t, the condition c12 is true 
at time instant t, and p(s2) is true at the next time 
instance t+1. If the functions f1 and f2 are invoked on 
the transition of states, then one can write the two 
rules:  

If t12 then invoke f1 
If t21 then invoke f2 

A similar collection of rules can be used to define 
other transitions in the state transition model. Thus, 
any policy statement expressed by means of a state 
transition model can be expressed as a collection of 
predicate logic rules.  

In the reverse direction, a state transition diagram 
can be formulated to represent a set of rules. Let us 
consider a simple system which consists of two 
variables v1 & v2.  Let us suppose actions a1 and a2 are 
defined. Now let us consider the set of predicate logic 
rules given by: 

If v1 then take a1 
If v2 then take a2 

 
Necessarily, v1 and v2 are expressions over some set 

of variables. Similarly, a1 and a2 are operations on 
some set of variables. Take the collection of these 
variables as the state variables of a system. Define v12 
as being true over the region in which both v1 and v2 
are true, and false otherwise. Define v1‘ to be equal to 



v1 except for the region over which v12  is true over 
which it would be false, and v2‘ to be equal to v2 except 
for the region over which v12  is true. Then v1‘,v2‘, and 
v12 are mutually exclusive. 

 
Define any convenient state, s0, over the collection 

of state variables. Define s1 to be the state of the 
system after action a1 has been executed, and s2 to be 
the state of the system after action a2 has been 
executed. Define s3 to be the state of the system after 
both a1 and a2 have been executed (Note that if the 
order in which the two actions are taken matters, then 
there is an ambiguity in the subsequent state. However, 
that ambiguity exists in the original set of rules as well. 
This can be resolved in both systems by ordering the 
application of the actions. Alternatively, in the 
transition diagram, auxiliary state variables can be 
defined to separate the different outcomes.) With 
v1‘,v2‘, and v12 as conditions for invocation of actions 
a1 , a2 , and both a1 and a2 , we have a state transition 
diagram that models the original rules. 

 
It follows that the state transition based policies are 

as expressive as the rule-based policies. Therefore, one 
can use the alternative representations interchangeably 
for many purposes. The state transition diagrams, 
however, capture the system evolution in a more 
convenient fashion. 

 
Some of the analyses that can be performed on state 

transition policies are described in the next section.  
 
4. Analysis Algorithms 
 

Since a policy will be expressed as a desired state 
transition diagram, there are several analysis functions 
that can be performed in order to catch potential 
mistakes, conflicts and inconsistencies in the policies. 
The following is a list of some of the validation 
routines that can be run on the state transition model of 
policies.  

State Description Errors:  In the state transition 
models, states need to be defined to be mutually 
exclusive. Since each state is defined as a set of logical 
constraints on a set of different system variables, one 
can identify the conditions under which two states are 
not mutually exclusive. The errors in this specification 
can be caught by pair-wise comparison of any two 
state descriptions.   

Policy Simplification: A state transition diagram 
can be simplified to eliminate redundant states, as well 
as to simplify transition conditions. A state is 

redundant if it is defined by a state condition that is 
false, or it can not be reached from the current state of 
the system. A transition occurring on a condition that 
will always be false can be eliminated.  Multiple 
transitions occurring between two states can be 
combined into a single transition which is a disjunction 
of individual transition conditions, and the resulting 
logical expression can be simplified. If the resulting 
transition condition is always true (tautological), the 
two states can be merged.    

Policy Composition: If there were a single 
administrator specifying a state transition diagram 
based policy for a system, there would not be any 
conflicts. However, when two or more organizations 
are involved in specifying policies for the operation of 
a system, they may express policies using different 
state transition diagrams.  

 If a system has to be operated within the 
constraints specified by two organizations, then the 
two state transition diagrams need to be composed 
together. In these cases, the composition algorithm 
would be as follows:  

 
If there are N states in the first state machine and M 

states in the second state machine, then the composed 
state machine has NM states, each composed state 
consisting of a pair of states selected from the 
component state machines.  

 
The state condition of the composed state is the 

Boolean addition of the state conditions defining each 
of the states in the individual state machines.  

 
If the original state machine in a component 

machine has a transition t1 happening on a condition c1 
from state S1 to state S2, then the composed state 
machine has a transition from the composed state 
(S1,R) to the composed state (S2,R) where R is a state in 
the other component state machine. If as a result of this 
definition, there are two parallel transitions in the 
composed state machine between the two set of states 
then that is reduced to a single transition on a condition 
which is the logical or of the two conditions under 
which the parallel transitions occur.  

 
 The above described process is a natural way to 

combine two state transition models. 
 
Policy Consistency Checking:  When policies from 

one or more organizations are applicable to a system, 
then the effective set of policies can be obtained by 
composing the two state transition diagrams. Conflicts 



between policies can be identified by determining 
inconsistencies and conflicts that occur in the 
combined state machine.  

 
In the specification of the state transition models, 

some conflicting constraints may exist. As an example, 
there may be two transitions out of a single state to two 
different states which occur on the same conditions, or 
occur on conditions that can both be simultaneously 
true. In order to be well-formed, the transitions 
happening out of a single state must all be happening 
on mutually exclusive criteria. There should be no state 
which automatically transitions to another state on a 
tautology. Also, there should not be a state description 
error in the specification.  

 
Consistency checking in the state transition model 

is simply composing the two policies together and 
validating that the resulting state transition diagram 
does not have any errors.  

 
Resource Aggregation:  The policy state transition 

diagrams are specified on a per resource basis. 
However, one can combine state diagrams for multiple 
resources into a single transition diagram. This can be 
done by defining the new resource as the system 
containing all of the original resources, and defining 
states which have state conditions augmented to match 
the specific criteria for each of the individual 
resources.   
 
 
5. Example Applications 
 

In order to demonstrate the effectiveness of the state 
transition model for policies, let us compare the 
specification of policies for some application 
scenarios. We consider the specification of policies for 
a coalition sensor network as described in [9] 

 
A coalition network environment consists of 

multiple military coalition members who are engaged 
in performing a joint operation. For this illustration, we 
assume that the coalition partners are the U.S. and UK 
armies, and they have come together to plan a joint 
operation. In the context of a joint operation, they have 
deployed a sensor network which provides information 
flows to networks that belong exclusively to either the 
U.S. or UK systems. One operational environment for 
the coalition is shown in the figure below which 
depicts a coalition camp-site connected to the US and 
UK sites.  
 

The establishment and operation of such a campsite 
can be viewed as happening in three distinct stages: a 
mission planning stage, an operation planning stage 
and a operational stage. In the mission planning stage, 
the U.S. and UK planners discuss the types of assets 
they will each bring to the table for setting up the 
coalition camp-site. These discussions are governed by 
policies that dictate what asset information can be 
shared with other coalition partners. In the operation 
planning stage, members of the coalition team 
determine aspects such as the number and location of 
sensor assets that ought to be deployed at the coalition 
camp site, and the policies governing the information 
flow between the coalition camp site and the individual 
country sites.  In the operational stage, the camp site is 
functioning; and policies determined in the operation 
planning stage need to be enforced on the operational 
network. 
 

B

M1

M2
S1

S2

C

S3

S4

S1

S2

M1

UK Border Site 

Coalition
Camp Site 

B

S3

S2

S3

S2

S1

US Border Site 

M1

M1M2

A1

Fixed net connection

Ad-hoc net connection

Local C2 Sensor asset

Mobile asset Fixed Aerial asset
B

M1

M2
S1

S2

C

S3

S4

S1

S2

M1

UK Border Site 

Coalition
Camp Site 

B

S3

S2

S3

S2

S1

US Border Site 

M1

M1M2

A1

Fixed net connection

Ad-hoc net connection

Fixed net connection

Ad-hoc net connection

Local C2 Sensor asset

Mobile asset Fixed Aerial asset

Local C2 Sensor asset

Mobile asset Fixed Aerial asset

 
Figure 3. Coalition Base Camp Example 

 
 

The following types of policies may need to be 
specified in the coalition sensor network scenario.  
 
• ISR Asset Characteristics Exchange.  Policies that 

state what information about sensors and other 
ISR assets can be exchanged between coalition 
partners. These will be an input in the mission 
planning stage.  

• Local Command & Control.  Policies that 
delineate the command structure, the concomitant 
roles, their authorizations, and their obligations, 
including who can develop and modify missions, 
taskings, and policies. These will be defined in the 
mission planning stage and enforced during the 
other two stages.   

• Platform Control.  Policies that define whom, with 
what authentication, and under what conditions 
platforms (e.g., UAV's, UGV's, robotic vehicles, 



etc) can be controlled, configured, moved, and re-
tasked. These are defined in the operational 
planning stage and enforced during the operational 
stage.  

• Sensor and Sensor System Control.  Policies that 
define whom, with what authentication, and under 
what conditions sensors and sensor systems can be 
controlled, configured, moved, and re-tasked. 
These are defined in the operational planning 
stage and enforced during the operational stage.  

• Sensor Information Access Control.  Policies that 
define whom (person, C2 element, data fusion 
element, etc), with what authentication, under 
what conditions, and in what form (i.e., raw, 
processed, fused) sensor information can be 
accessed. These are defined in the operational 
planning stage but can be modified during the 
operational stage.  

• Information Flow Protection.  Policies that define 
how information flows are to be secured and 
protected (confidentiality, integrity, etc.). These 
are defined in the operational planning stage and 
enforced during the operational stage. 

• Information Dissemination.  Policies that describe 
the conditions/events under which information 
must be sent and to whom; and, the conditions and 
to whom information can be provided when 
queried. These are defined in the operational 
planning stage but can be modified during the 
operational stage.  

  
Let us examine how these policies can be expressed 

using the state machine transition model.  
 

ISR Asset Characteristics Exchange: To specify 
these policies, a state transition diagrams is attached to 
each type of sensor asset. One can optionally attach 
state diagrams to a collection of sensor assets, or to a 
subset of attributes of a sensor. Let us use the term 
resource to refer to the unit to which the state transition 
model is attached.  

 
Let us assume without loss of generality that we are 

specifying the policies for the resources owned by the 
U.S. Each state transition diagram consists of three 
states, one marking the resource being in a state where 
it is available only to the U.S., the other where it is 
available to U.S. and U.K., and the third where 
information about the asset is available publicly to any 
member. The conditions under which the specified 
resource can move from one state to another can be 
described as transitions. These conditions can include 

constraints on the resolution of data produced by the 
resource, its date of manufacture, or its capabilities.  

 
Local Command and Control(C2): In this case, the 

resource is an individual and each state corresponds to 
a set of C2 authorizations to which an individual in 
that state would be entitled. The conditions under 
which an individual would be allowed to expand its 
roles and responsibilities to get additional 
authorizations is captured by the transition arcs. As an 
example, the state transition diagram below authorizes 
a U.S. member with the rank of a Major to define 
operational policies. However, if this person is the 
highest ranking individual in the U.S. team, he is also 
authorized to modify asset exchange policies.  

 

A1 A2

Rank > Major

Highest Rank in Team
NATO Partners

A3

A1: Can Define Operational Policy
A2: Can modify Asset Exchange Policy
A3: Can modify operational policy

Rank > Sergeant

Rank > Major Gen.

Figure 4. Example Policy for Coalition Operation

 
Other control policies, e.g., platform control 

policies, sensor control policies, and sensor 
information access control policies are described 
similarly. The states correspond to a set of permitted 
access levels, and the conditions under which that 
access is granted; and, the conditions under which a 
person can be provided more access (or less access) 
are outlined by means of transition arcs. The resources 
to which these policies are attached are different, 
platform control policies are attached to platforms, 
sensor control policies to sensors, and sensor 
information access control policies to the specific feeds 
from the sensors.  

 
Information Flow Protection Policies are described 

by attaching policies to information flows, which are 
the resources in this case. To define protection 
policies, each of the different options for protecting a 
flow corresponds to a state in the policy specification 
diagram. The conditions under which a flow should be 
switched from one type of protection (e.g., being sent 
using a weak encryption algorithm) to another type of 
protection (e.g., a stronger encryption algorithm) 
describe the transition arcs.  



 
Information Dissemination Policies are described 

by using a sensor as a resource. A state can be 
described by a set of distinct receivers that need to 
receive information from that sensor, along with an 
attribute that indicates whether information is enabled 
or disabled for those receivers. The conditions under 
which they are enabled or disabled are indicated on the 
transition arcs.  

 
Thus, these policies can be expressed in the state 

transition model effectively and compactly.  
 
6. Usability Considerations 
 

Having introduced the state transition diagram 
model of policies, we now present the case why this 
model for policies is a more usable version that the 
rule-based policy language. The following are some of 
the areas where policies represented as state transition 
diagrams will result in a specification that will be 
easier for system administrators to specify.  
 

Partial State Modeling: One of the key challenges 
associated with specifying policies as rule-based 
systems has been the need to specify the complete 
model of the system being controlled using policies. 
As an example, the use of the CIM-SPL policy 
language needs to be accompanied with a CIM model 
of the system, which is a complex model that may or 
may not be readily available in many systems. Other 
policy specification systems impose their own state 
modeling systems which is sometimes redundant with 
the available description of the system. As an example, 
the specification of differentiated services policies on 
computer servers requires specifying a policy model 
that requires the duplication of a set of network MIB 
specifications. The duplication is an additional work at 
best, and at its worst can result in an inconsistent 
specification. On the other hand, using a state 
transition diagram model only requires using a subset 
of the model that is actually used in the specification of 
policies. Identifying and using only the subset that is 
relevant to the policies being defined reduces the chore 
of policy specification significantly.  
 

Visual Representation: The set of rules that are 
used for conventional policy specification are 
represented in textual or script based format that are 
easy to consume for computing systems but relatively 
complex for humans to understand intuitively. The 
program representation of policy represented in a 
language like CIM-SPL or Ponder are difficult to 

understand at a glance even for people familiar with 
the language. On the other hand, the state transition 
diagram model provides a visual representation of the 
indicated behavior of the system. The visual 
representation provides a much easier representation 
for humans as to the indicated effect and operation of 
the system. Furthermore, the state diagram can be 
rendered in a textual or XML representation to derive 
the benefits of fast computer interpretation and for 
administrators to easily cut and paste policies from one 
system to another.  
 

Separation between Policy & Mechanism: The 
policy based system management approach has always 
been subject to criticism that the differences between 
policies and mechanisms of a system are not readily 
apparent. Policies are supposed to be high-level 
guidelines for system operation, while mechanisms are 
the natural behavior of the system when left to itself. 
However, in a rule-based representation of policies, 
they have frequently been mixed up with system 
mechanisms, and in various instances been confused 
with system configuration. The use of a state transition 
diagram model, in which one can readily identify 
differences between the natural state transition the 
system would undergo on its own (mechanism) and the 
ones that are additional (administrator’s intent) are 
readily identified. Such identification is very difficult 
in a rule-based representation.   
 

Other advantages of a state transition diagram 
approach include the use of a familiar paradigm for 
system administrators, and the grouping of different 
conditions into a cluster of states. The description of a 
small number of states provides for a simpler model 
that can characterize the system in a manner that will 
be more intuitive for the system administrators.   
 
7. Conclusions  
 

In this paper, we have proposed a new model for 
specifying policies using a state transition diagram 
paradigm. This state transition diagram paradigm is 
simple and flexible, and allows the specification of 
many different types of policies. The state transition 
diagram model does not require a full specification or 
modeling of a computer system or resource to which 
policies are attached. It provides a new way to 
represent policies that will be more effective and 
enable a more compact and usable implementation of 
policies.  
   



8. Acknowledgements 
 

The research was sponsored by US Army Research 
laboratory and the UK Ministry of Defence and was 
accomplished under Agreement Number W911NF-06-
3-0001. The views and conclusions contained in this 
document are those of the authors and should not be 
interpreted as representing the official policies, either 
expressed or implied, of the US Army Research 
Laboratory, the U.S. Government, the UK Ministry of 
Defense, or the UK Government. The US and UK 
Governments are authorized to reproduce and 
distribute reprints for Government purposes 
notwithstanding any copyright notation hereon. 

 
9. References 
[1] N. Damianou, N. Dulay, E. Lupu, M Sloman, “The 
Ponder Specification Language,” in Proc. of Workshop on 
Policies for Distributed Systems and Networks (Policy2001), 
January 2001. 
[2] J. Lobo, R. Bhatia and S. Naqvi, A policy description 
language. In Proceedings of AAAI, Orlando, FL, 1999 

[3] I.B.M., Autonomic computing policy language. 
http://dl.alphaworks.ibm.com/ technologies/pmac/acpl.pdf, 
2005.  
[4] DMTF: CIM Simplified Policy Language (CIM-SPL). V 
1.4.5,  http://www.dmtf.org/apps/org/workgroup/policy/.  
[5] D. Agrawal, K-W. Lee, and J. Lobo. Policy-based 
management of networked computing systems. IEEE 
Communications, 43(10):69–75, 2005. 
[6] D. Clark and D. Wilson, A Comparison of Commercial 
and Military Computer Security Policies, IEEE Symposium 
on Security and Privacy, 1987. 
[7] K. Appleby et. al. , Oceano-SLA based management of a 
computing utility, Proceedings of 2001 IEEE/IFIP 
International Symposium on Integrated Network 
Management, pp 855-868, Seattle, WA, 2001 
 [8] Dakshi Agrawal, James Giles, Kang-Won Lee, Kaladhar 
Voruganti, Khalid Filali-Adib: Policy-Based Validation of 
SAN Configuration. POLICY 2004: 77-86 
[9] T. Pham, G. Cirincione, D. Verma and G. Peason, 
Intelligence Surveillance and Reconnaissance fusion for 
coalition operations, International Conference on 
Information Fusion, 2008. 
[10] G. Jarjoth and M. Schunter, A privacy policy model for 
enterprises, Proceedings of Computer Security Foundations 
Workshop, 2002.   

 


