
RC24767 (W0903-071) March 18, 2009
Computer Science

IBM Research Report

The Spiral Cache:
A Self-Organizing Memory Architecture

Volker Strumpen
IBM Research Division

Austin Research Laboratory
11501 Burnet Road
Austin, TX 78758

Matteo Frigo
Cilk Arts, Inc.

55 Cambridge Street
Burlington, MA 01803

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

The Spiral Cache: A Self-Organizing Memory Architecture

Volker Strumpen
IBM Austin Research Laboratory

11501 Burnet Road, Austin, TX 78758

Matteo Frigo∗

Cilk Arts, Inc.
55 Cambridge Street, Burlington, MA 01803

ABSTRACT
We propose a self-organizing cache architecture, the spiral
cache, in an attempt to offer scalable performance for large
cache capacities and high clock frequencies into physical limits
with theoretical guarantees. To demonstrate the practical
value of the spiral cache we report results from full-system
simulations.

1. INTRODUCTION
Recent work on non-uniform cache architectures (NUCA), in-
cluding [6, 12, 16, 17, 19, 20, 25], recognizes the fact that the
random access machine model [1] with uniform access laten-
cies to each memory location is no longer valid even for single-
chip architectures. Because the access latency of a memory
array is proportional to its side length, NUCA designs strive
to reduce the access latency by breaking a large memory into
a set (usually an array) of memory tiles. Furthermore, NUCA
designs recognize that, because of the limited speed of signal
propagation over long wires, tiles that are physically distant
from the processor core incur higher access latencies than tiles
that are closer to the processor, and consequently these de-
signs employ dynamic replacement strategies that move most
frequently used data into those tiles that are physically closer
to the core. Thus, the placement policy is a fundamental
aspect of any NUCA design.

The NUCA placement policy can be viewed as a variant of
the classic problem of minimizing page faults in demand-page
systems [7], but with a twist: while a demand-page system
can be approximated with a binary cost function (cheap page
in memory vs. expensive page on disk), the access cost of
a memory tile on chip should be modelled as a function of
the distance of the tile from the processor core. This vari-
ant of the problem was studied theoretically by Sleator and
Tarjan [28], who proved the following result. Consider a sys-
tem where the access cost f(i) to tile i is a concave function,

e.g., f(i) = i or f(i) =
√

i, then the move-to-front placement
policy is 2-competitive. When accessing tile i, the move-to-
front policy moves the accessed data into front tile 1 and
shifts data from tile j to tile j + 1, for 1 ≤ j < i, in order to
make space for the data. Informally, the term 2-competitive
expresses that the aggregate cost of a sufficiently long series of
accesses under move-to-front is at most twice as large as the
cost incurred by any other placement policy, even ones that
have perfect knowledge of the future sequence of accesses.

Inspired by the result of Sleator and Tarjan, we propose
a non-uniform cache architecture called the spiral cache,
which is a tiled, self-organizing memory architecture that uses
a move-to-front dynamic placement policy. We lay out the
memory tiles in 2D space such that the access cost to the i-th
tile is a concave function of i, so that the competitiveness re-
sult applies. In addition, the spiral cache is a pipelined mem-

∗Work done while the author was at the IBM Austin Research
Laboratory.

ory architecture, capable of maintaining multiple accesses in
flight. The pipeline is implemented as a systolic network,
which avoids unnecessary buffer space and yields superior per-
formance over routed networks. As a result, the spiral cache
offers competitively low latencies under our spatial memory
model compared to any conceivable cache architecture, and
high throughput due to pipelining.

Despite the data movements incurred by adaptive cache
line replacement across tiles, power densities of our prototype
spiral cache design are lower than comparable conventional
cache designs. Furthermore, the spiral cache architecture en-
ables adaptive power management to reduce leakage power.
Although the spiral cache is an asymptotic design for large
caches, our simulation results demonstrate performance im-
provements up to a factor of 4 when replacing the existing
cache hierarchy of contemporary machines with a modestly
sized spiral cache of only 2MB.

This article is structured as follows. In Section 2 we intro-
duce a simple spatial memory model that accounts for signal
propagation delays. We study different placement algorithms
under the spatial memory model. The insights we glean lead
us to the spiral cache architecture in Section 3. Empirical re-
sults from full-system simulations can be found in Section 4,
and related work is discussed in Section 5.

2. DYNAMIC CACHE PLACEMENT
Given a memory trace, the sequence of addresses accessed
during the execution of a program, a cache placement policy
maps addresses to cache lines. In cache designs with non-
uniform access costs, the placement policy impacts the overall
system performance. In this section, we briefly recall some
well-known cache placement policies and known results about
them, and present less known empirical data.

2.1 1D Linear Memory Model
The spiral cache design that we describe in Section 3 is a
2D systolic array. To simplify the exposition of the basic
ideas, however, in this section we consider a NUCA cache
comprising a 1D systolic array of tiles, such as the one shown
in Figure 1. When processor P issues a load request to a
tile, e.g. tile 7, the request signal propagates across tiles 1
through 6 to tile 7, and the data stored in tile 7 propagate in
the reverse direction back to P .

x
7

x

memory tile

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15P

Figure 1: Linear array with memory tiles aligned in the
x-direction.

In this model, we make the following assumptions: (1) A

1

signal travels across one memory tile within one cycle of the
processor clock. Accessing tile i requires 2i cycles. (2) The
array of tiles acts as cache for a backing store, not shown in
the figure. (3) The tiles are exclusive [5] in the sense that a
data item is mapped into at most one tile. (4) A memory tile
holds one cache line.

2.2 Placement Algorithms
In the spatial memory model of Section 2.1, the placement
algorithm has a direct impact on the average access latency,
even if the entire working set fits into the cache and no
evictions occur due to conflict misses. In the following, we
assume that a memory tile holds one cache line. We il-
lustrate the effect of different placement algorithms on the
average access latency by means of the sample trace T =
[A1, B2, C3, C4, B5, B6] of addresses A, B, and C.

2.2.1 Direct-mapped Placement
The simplest placement algorithm is employed in variations
in direct-mapped cache designs: interpret the least significant
bits of a line address as the index for the cache line. Figure 2
illustrates the scenario where the mapping from addresses to
tile indices is assumed to be A → 7, B → 10, C → 2. Note
that this mapping is static, and precludes any control over
the distance of the placement from the processor.

A BC

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15P

Figure 2: Linear array with placement algorithm of a direct-
mapped cache: the least significant bits of a line address are
interpreted as memory tile index.

We judge the effectiveness of the placement by calculating
the average access latency of trace T . Assume the cache is
initially empty. Access A1 requires a backing store access,
which places the fetched data into tile 7, and then incurs 14
clock cycles of cache access latency. The next two accesses B2

and C3 also require backing store accesses, whereas the re-
maining three accesses are served directly out of the cache.
The access latencies (in cycles) are as follows:

access A1 B2 C3 C4 B5 B6 total
latency 14 20 4 4 20 20 82

The total number of clock cycles spent in access latency is 82,
plus the cycles required for 3 backing store accesses. The av-
erage access latency, not counting the backing store accesses,
is hence 82/6 = 13.7 cycles per access.

2.2.2 Most-frequent-first Placement
Next, we consider another static, yet more effective placement
algorithm. Assume we could map addresses into memory tiles
according to their access frequency, such that the most fre-
quently accessed address is mapped closest to the processor
to minimize the average access latency. In our trace, the most
frequently accessed address is B, which we access three times.
Hence, we map B → 1, the second most frequently accessed
address C → 2, and A → 3, as shown in Figure 3.

Analogous to the accounting of access latencies above, we
summarize the access latencies for this placement:

access A1 B2 C3 C4 B5 B6 total
latency 6 2 4 4 2 2 20

B C A

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15P

Figure 3: Linear array with placement algorithm that maps
most frequently accessed addresses closest to the processor.

The sum of the latencies is 20 clock cycles, and the average
access latency is 20/6 = 3.3 cycles per access, which is more
than four times faster than the direct-mapped placement.

2.2.3 Move-to-front Placement
Unlike static placements, a dynamic placement is capable of
adapting the mapping to the access pattern of a program’s
trace during execution. A popular algorithm is the move-
to-front rule [28]: “when accessing an address, move it to
the front of the array.” To make space for the new line in
the front, we push the current line back toward the tail of
the array. Because the placement of a line is now dynamic,
we must search the line upon subsequent accesses. Figure 4
illustrates the move-to-front placement.

A1

A

1 2 3 4 5P

B2

B A

1 2 3 4 5P

C3

C B A

1 2 3 4 5P

C4

C B A

1 2 3 4 5P

B5

B C A

1 2 3 4 5P

B6

B C A

1 2 3 4 5P

Figure 4: Linear array with dynamic placement algorithm
based on move-to-front heuristic.

The first three accesses fetch the data from the backing
store and move them into front tile 1. Then, access C4 finds
address C in tile 1, incurring the minimal access latency of
2 cycles. Next, access B5 moves the line from tile 2 into front
tile 1, effectively swapping the contents of tiles 1 and 2. Fi-
nally, access B6 finds address B in tile 1, causing the minimal
access latency of 2 cycles. The table below summarizes the
access latencies for the placement of Figure 4.

access A1 B2 C3 C4 B5 B6 total
latency 2 2 2 2 4 2 14

The sum of the access latencies is 14 clock cycles, and the
average access latency is 14/6 = 2.3 clock cycles per access.
It is noteworthy that the move-to-front heuristic produces
an even smaller average access latency than the placement
based on access frequency, although that placement is based
on the knowledge of the entire trace, whereas the move-to-
front placement considers one access at a time only.

2.2.4 Transposition Placement
The transposition heuristic [24] is a dynamic placement algo-
rithm that obeys the rule: “when accessing an address, swap
it with the item in the immediately preceding tile.” Many
hybrids and variations of move-to-front and transposition ex-
ist [4]. Figure 5 illustrates the dynamic placement of trace T ,

2

assuming that, in case of a miss, a datum is placed in the
nearest free tile to the processor.

A1

A

1 2 3 4 5P

B2

A B

1 2 3 4 5P

C3

A B C

1 2 3 4 5P

C4

A C B

1 2 3 4 5P

B5

A B C

1 2 3 4 5P

B6

B A C

1 2 3 4 5P

Figure 5: Linear array with dynamic placement algorithm
based on transposition heuristic.

To account for the access latencies, we charge the access
latency, and assume that the subsequent transposition incurs
no delay. Figure 5 shows the state for accesses C4, B5, and
B6 after the transposition. The access latencies, not counting
backing store delays, are shown below.

access A1 B2 C3 C4 B5 B6 total
latency 2 4 6 6 6 4 24

The average access latency is 24/6 = 4 clock cycles per access,
which is almost twice as large as that of move-to-front.

2.2.5 Known Facts About Placement Algorithms
A strong theoretical result [28] is known about the move-to-
front heuristic: provided that the access cost f(i) to tile i is
a concave function, move-to-front is 2-competitive. That is
the cost of a sufficiently long trace under move-to-front is at
most twice as large as that of any other placement policy. In
our 1D example, f(i) = 2i is concave; in our 2D spiral cache

in Section 3, we have f(i) = O(
√

i), which is also concave.
The factor of 2 in the competitiveness result depends on the
chosen cost function for list accesses, and can be larger under
different assumptions. However, experiments show that 2-
competitiveness is actually conservative, and move-to-front
often performs better in practice. More recent theoretical
work [2, 3] attempts to close this gap.

The transposition heuristic is not 2-competitive; the coun-
terexample by Bentley and McGeoch [8] demonstrates that
the transposition heuristic can have very poor amortized per-
formance. Although the transposition method has been shown
to use strictly fewer comparisons than move-to-front asymp-
totically [27], its convergence to the asymptotic limit is much
slower than for move-to-front [10].

Experimental studies [4, 8] report that the move-to-front
heuristic outperforms the transposition heuristic in all of their
experiments, although instances are known where the trans-
position heuristic is marginally faster than move-to-front. On
the other hand, the comparison in [4] of 18 heuristic families
and more than 40 algorithms shows that a variation of move-
to-front slightly outperforms vanilla move-to-front.

2.3 Empirics of Move-to-Front
To illustrate the behavior of move-to-front placement in prac-
tical situations, we study the memory behavior of ten impor-
tant algorithms, see Figure 6, when executed on a memory

array with one basic data type, such as an integer number,
per tile. Placement in the array is managed with the move-
to-front heuristic, as illustrated in Figure 4: each access to
tile i moves its datum to front tile 1 and shifts all data in
front of tile i by one tile toward the tail end. The array is
sized to accommodate the entire working set.

For each algorithm, Figure 6 plots the number of memory
accesses serviced by each tile. Specifically, an access to tile i >
1 causes its datum to be moved to front tile 1. If the datum
is reused subsequently, it will be found in some tile j ≥ 1.
Thus, j − 1 is the number of distinct data accessed between
subsequent accesses to the same datum. Quantity j is known
as the stack distance [22], and as such Figure 6 plots the
density of the stack distance for each algorithm.

The distribution of the stack distances offers some insight
into the “cache friendliness” of an algorithm. Consider a ma-
chine with LRU cache of size m. Accesses at stack distance
j ≤ m hit in the cache, and accesses at distance j > m are
cache misses. Thus, the stack distance gives a complete de-
scription of the behavior of an algorithm under LRU caches
of any size. Because a LRU cache of size m is 2-competitive
with any cache of size m/2, we also have an approximate
description of the behavior of an algorithm under any other
replacement policy.

Ideally, we would like the stack distance to decrease quickly,
so that a cache with m tiles will serve the majority of accesses,
independent of m. In Figure 6, however, only the shortest
path computation exhibits such a cache friendly behavior.
Particularly cache unfriendly algorithms are the iterative ma-
trix multiplication, stencil computation, and longest common
subsequence computation. The matrix multiplication in Fig-
ure 6, for example, can only exploit a cache if it is large
enough to cover the first 90,900 tiles. If the cache covers just
one tile less, more than half of all accesses will miss. In other
words, no cache of a given size can be effective for all problem
sizes. Algorithms like quicksort and minimum spanning tree
are still reasonably cache friendly, because they exhibit only
a few outliers of tiles with large numbers of accesses deeper
in the array. In contrast, the access distributions of the QR
decomposition, SVD, and FFT deviate significantly from an
exponential distribution, and can be classified as moderately
cache unfriendly. On memory bound machines, cache friend-
liness translates into higher performance.

3. SPIRAL CACHE ARCHITECTURE
In this section we present the architecture of the spiral cache.
Our design is based on the spatial memory model, exploits the
dimensionality of Euclidean space to support a near-optimal
worst case access time, uses the move-to-front heuristic to re-
duce average access time, and features a conflict-free systolic
data flow capable of pipelining multiple memory accesses.

3.1 Basic Spiral Cache Architecture
The basic architecture of a 2D spiral cache is shown in Fig-
ure 7. The spiral cache can be viewed as as the linear array
of Figure 1 wrapped around tile 1, such that the linear array
forms an Archimedes spiral in Manhattan layout. An unspec-
ified processor core is connected to the front end of the spiral
at tile 1. The tail end, in this case at tile 49 of the 7×7 matrix
of tiles, connects to the backing store, e.g. DRAM modules.

Each tile of the spiral cache comprises a conventional cache-
like array, e.g. a direct-mapped cache. An efficient tile design
balances the size of the array such that the propagation delay

3

Matrix multiplication of two dense 300 × 300 matrices C = AB. The 3-fold
nested loop exhibits a characteristic reuse pattern at tiles i = 1, 600, 90,900.
At i = 1, we find 3 · 3002 accesses after cold misses, at i = 600, reuse of row
elements of A, and at i =90,900 reuse of elements of B.

QR decomposition of an 800 × 300 matrix with Givens rotations against the
diagonal elements. We store the angle of the rotations for subsequent multiplica-
tions by Q or QT in the lower triangular part of the decomposed matrix.

SVD computes the singular value decomposition of a dense symmetric 350×350
matrix using a two-sided Jacobi algorithm.

Stencil computation solving heat equation on 1-dimensional spatial domain
with 3-point stencil. The computation uses toggle arrays, and iterates 500
time steps over 100,000 space points. Due to the toggle arrays, reuse occurs
at tiles i = 2 and 199,999 only.

LCS is an iterative dynamic program computing the length of the longest com-
mon subsequence of two sequences of lengths 10,000 and 190,000. The tableau
uses linear space of size 10,000+190,000.

FFT is an iterative version of out-of-place fast Fourier transform with vectors
of 216 complex numbers.

Quicksort sorts an array of 400,000 randomly chosen integer numbers using an
in-place algorithm with randomized pivot selection.

Minimum spanning tree computation based on Kruskal’s algorithm using a
disjoint-set data structure with union-by-rank and path-compression heuristics is
applied to a graph with 30,589 vertices and 86,892 arcs.

Single-source shortest paths computation using Dijkstra’s algorithm with a
binary heap implementation of a priority queue; applied to a graph with 30,589
vertices and 86,892 arcs.

Maximum flow with lift-to-front algorithm [14, Sec. 27.5] computes the maxi-
mum flow of a graph with 32,774 vertices and 49,159 arcs.

Figure 6: Memory access distributions of ten algorithms.

4

49 48 47

26 25 24

27 10 9

28 11 2

29 12 3

30 13 14

31 32 33 34 35 36 37

15 16 17 38

391854

1 6 19 40

46 45 44 43

42212223

8 7 4120

spiral/push−backmove−to−front

Figure 7: Spiral cache in 2-dimensional space.

of the wires connecting neighboring tiles equals the access
latency of the tile’s array. We assume that a cache line is the
unit of communication between tiles.

The interconnection networks shown in Figure 7 implement
the two functionalities needed for move-to-front placement of
cache lines into tile caches: (1) move a cache line to the front,
and (2) push back existing cache lines to make space for the
line that is moved to the front. We dedicate the spiral net-
work to the push-back operation. The spiral network con-
nects tile i to tile i + 1 in Figure 7. This choice enables us to
move one new data item into front tile 1 during every duty
cycle (more on the definition of a duty cycle later), because a
fully occupied spiral cache can perform one push-back swap
in each tile per duty cycle. To support the search for and
communication of a line to front tile 1, we introduce a sec-
ond network, the grid-style move-to-front network of next
neighbor connections indicated by the arrows in Figure 7.

From a high-level perspective the operation of the move-to-
front network is straightforward. Assume that the processor
issues a load operation for a line stored in tile 49. The pro-
cessor issues the request into tile 1, from where it travels
across the diagonal toward corner tile 49. The line is found
in tile 49, and moves to front tile 1 in an xy-routing style via
tiles 48 → 47 → 46 → 23 → 8. The travel time along path
(P, 1, 9, 25, 49, 48, 47, 46, 23, 8, 1, P) involves 11 hops, or 11 cy-
cles according to our spatial memory model. The analogous
access latency in a linear array of 49 tiles would be 2 ·49 = 98
cycles. Thus, the 2D spiral organization reduces the access
latency to about the square root of the number of tiles. In
the following, we refer to the access latency of a tile with
the largest Manhattan distance from tile 1 as the worst-case
access latency . We find that, in general, a k-dimensional
spiral cache consisting of N tiles has a worst-case access la-
tency of Θ(k

√
N). In particular, a linear array has the largest

worst-case access latency of Θ(N).
The move-to-front network of the spiral cache is structured

such that the latency of all tiles on a ring is the same, where
a ring consists of all tiles with the same Manhattan distance
from the processor. We refer to such a distance as the radius
of the ring. In particular, tile 1 has a latency of 2 duty cycles,
and tiles 2–9 have 5 duty cycles, tiles 10–25 have 8 duty cycles,
and tiles 26–49 have 11 duty cycles latency. In general, tile i
of the spiral cache in Figure 7 has latency ti = 2 + 3(ri − 1),
where ri is the radius of the ring of tile i. Since the radius ri

on the Manhattan layout is within a constant factor of that

of a true Archimedes spiral, we find from the geometry of the
latter that ri = Θ(

√
i), and thus ti = Θ(

√
i).

3.2 Geometric Retry
A characteristic feature of the move-to-front heuristic is that
it compacts the working set at the front of the spiral, and
keeps the most recently accessed cache lines in front tile 1.
Because of this property, it is desirable to employ a lookup
strategy that incurs a latency proportional to the radius of
the tile that contains the item being looked up, rather than
incurring a latency proportional to the radius of the spiral.
Specifically, we would like to incur a latency of 1 cycle when-
ever the requested line is found in tile 1, which should be a
frequent case according to Figure 6. We now describe one
way to attain this goal.

Recall that the move-to-front placement causes newly re-
quested cache lines to move to the front, and older lines to
be pushed back along the spiral to make space for newly re-
quested lines. Since the processor is unaware of the tile loca-
tion of a line, each request must search for the line. Sleator
and Tarjan’s [28] competitiveness result of the move-to-front
heuristic for a linear array assumes that this search scans the
tiles from front tile 1 toward the tail end of the spiral net-
work. However, in a 2D spiral cache we wish to exploit its
higher dimensionality and scan the area in a radial fashion, so
that the worst-case latency with n tiles is Θ(

√
n) rather than

Θ(n). In a 3D spiral cache design, we scan through “spheres”
rather than rings.

The problem with scanning as a search strategy is the un-
predictable flow of data moving toward front tile 1 when mul-
tiple accesses are in flight. In order to avoid the area and
time penalty associated with buffering and flow control mech-
anisms, we propose a different search strategy based on the
well-known principle of geometric retry. Figure 8 illustrates
our search strategy with the geometric retry rule: “If an item
is not found in the area of radius 2s retry the search in the
area with radius 2s+1.” The initial radius is 20 = 1 for s = 0.
This represents a lookup in tile 1. If the lookup in tile 1 fails,
we search all tiles within radius 21 = 2, that is all tiles 2–9
at radius 2, plus tile 1 at radius 1. If this search fails again,
we double the search radius to 22 = 4. This search covers
the entire spiral cache in Figure 8. If the search of the entire
spiral cache fails, the requested line is not in the cache and
the processor must fetch it from the backing store.

The data flow through the spiral cache during the scanning
search is illustrated in Figure 8 by means of the fat arrows.
The case with retry radius 20 = 1 is trivial, and retry radius
21 = 2 is a small version of the larger scenario exhibited by
retry radius 22 = 4. We explain the communication pattern
for the top right quadrant of retry radius 22. The other quad-
rants operate analogously. The request propagates from tile 1
outwards via the diagonal across tiles 7 and 21 to tile 43 in
the top right corner. There, the address is sent westwards to
tile 44 and southwards to tile 42. The westward path con-
tinues until tile 46, where it turns southwards to tile 1. The
southward path is followed until tile 40, where it turns west-
wards to tile 1. In each of the tiles on the southward path a
westwards path is split off. From tile 42, the westward path
traverses tiles 21 and 22, and turns southwards at tile 23, and
from tile 41, the westward path traverses tiles 20 and 7, and
turns southwards at tile 8. Each tile of the quadrant is vis-
ited, and a lookup can be performed in each tile’s cache with
the requested address.

The geometric retry does not change the asymptotic bounds

5

49 48 47

26 25 24

27 10 9

28 11 2

29 12 3

30 13 14

31 32 33 34 35 36 37

15 16 17 38

391854

1 6 19 40

46 45 44 43

42212223

8 7 4120

49 48 47

26 25 24

27 10 9

28 11 2

29 12 3

30 13 14

31 32 33 34 35 36 37

15 16 17 38

391854

1 6 19 40

46 45 44 43

42212223

8 7 4120

49 48 47

26 25 24

27 10 9

28 11 2

29 12 3

30 13 14

31 32 33 34 35 36 37

15 16 17 38

391854

1 6 19 40

46 45 44 43

42212223

8 7 4120

retry radius = 20 retry radius = 21 retry radius = 22

Figure 8: Geometric retry in 2-dimensional spiral cache.

due to move-to-front or due to the dimensionality of the spiral
cache. It merely introduces constant factors. More explicitly,
the following statements hold:

1. Geometric retry at most doubles the worst-case access
latency.

2. Geometric retry finds an item within a factor of 4 of the
scan access latency.

To prove the first statement, assume a linear array as in Fig-
ure 1 with N = 2n tiles. The worst-case access latency with-
out geometric retry according to our spatial memory model
is tN = 2N to access tile N at the tail end of the spiral. With
geometric retry, the worst-case access latency is

Pn
k=0 2 ·2k =

2 · (2n+1− 1) < 2 · tN . To prove the second statement, we ob-
serve that a successful lookup in tiles at position 2k +1 of the
linear array incur the largest slowdown. Without geometric
retry, a scan from the processor to tile 2k +1 results in access
latency t2k+1 = 2(2k + 1). With geometric retry, the access

latency becomes
Pk+1

j=0 2 · 2j = 2 · (2k+2− 1) < 4 · t2k+1. Both
arguments carry over to higher-dimensional spiral caches.

3.3 Systolic Design
In the following we show how the basic spiral cache architec-
ture augmented with the geometric retry mechanism extends
to a conflict-free systolic architecture that supports both low
access latency and high throughput at the same time.

Let a timeline be the subset of tiles of the spiral cache
with the same Manhattan distance from the processor. The
structure of the spiral cache maintains these three invariants:

1. During any cycle, tiles in different timelines process dif-
ferent requests.

2. During any cycle, if two tiles in a timeline each process
a request, then the requests carry the same address.

3. If a tile in a timeline processes a request, then all diago-
nal tiles in the same timeline process the same request.

Rather than formally proving these invariants, we illustrate
them by means of an example. Figure 9 shows the timelines
traversed by a request travelling from the outer corners to-
ward front tile 1. Assume that a request travelling along the
diagonals has arrived at corner tiles 49, 43, 37, and 31 during
cycle 0. As discussed in Section 3.2, each tile on the west-
ern and eastern boundary splits a request into a horizontal

and a vertical copy. Consequently, it cycle 1 the request ar-
rives at tiles 26, 48, 44, 42, 30, 32, 36, and 38, which are the
tiles that comprise timeline 1. Furthermore, the request is
no longer in timeline 0, maintaining invariant 1. Similarly, in
cycle 2 the request visits the 12 tiles of timeline 2. In cycle 3,
multiple requests arrive at tiles 46, 40, 34, and 28. There
are no conflicts that could destroy the systolic pattern, how-
ever, because multiple incoming requests on timeline 3 were
in timeline 2 at the previous cycle. By invariant 2, they are
the same request and can be merged. For the same reason,
tiles 23, 8, 4, 15, and 1 operate conflict-free, because each of
multiple incoming requests carries the same address during a
cycle, and the tiles pass this address along to the neighboring
tile connected to their output.

49 48 47

26 25 24

27 10 9

28 11 2

29 12 3

30 13 14

31 32 33 34 35 36 37

15 16 17 38

391854

1 6 19 40

46 45 44 43

42212223

8 7 4120

2

1

0

2

1

0

0

1

2

2

1

0

3 4 5

5 4 3

Figure 9: Timelines of systolic data flow in 2-dimensional
spiral cache.

Multiple requests arriving at a tile during the same cycle
can be merged because the tiles of the spiral cache are ex-
clusive: the move-to-front placement stores a cache line in at
most one tile. Thus, at most one copy of a request can find
the line in a tile, and move the line to the front. Each of
the tiles with multiple inputs either passes the already found
line from one of its inputs toward the front, or it receives the
same address on each of the inputs, performs a local cache
lookup, and, in case of a hit, passes the line or, in case of a
miss, passes the request address on to its output.

The systolic data flow enables the pipelining of multiple

6

requests. In the absence of geometric retry, this is easy to
see. Each request is sent from tile 1 via the diagonals to
the corners, and moves via the timelines back to front tile 1.
Viewing each tile on the outwards pointing diagonals and each
timeline as a pipeline stage, the 7× 7 spiral cache in Figure 9
has 10 stages. This spiral cache generates a throughput of
one request per cycle, and maintains 10 requests in flight. In
general, an

√
N ×

√
N spiral cache as shown in Figure 9 with

odd
√

N has d
√

N/2e+ 2b
√

N/2c, or approximately 3
√

N/2
pipeline stages.

Geometric retry introduces the complication that tiles on
the diagonal may receive both an inward request from the pre-
vious timeline, and an outward request from the processor. If
the retry radius of the outward request equals the tile radius,
then we have a violation of invariant 1, because we have two
requests with different addresses in the same timeline. To
restore invariant 1, we simply increase the retry radius of the
outward request. It is not possible to increase the retry ra-
dius at the corner tiles, but these tiles are conflict-free anyway
since they cannot receive any inward requests.

p
u
s
h
−

in
(D

)

a
d
d
r(

A
)

p
u
s
h
−

o
u
t(

D
)

/
m

2
f−

o
u
t(

D
)

push−out(A,D)

m2f−out(A,D)

push−in(A,D)

m2f−in(A,D)

Tile

Ctrl

Cache

Figure 10: Tile architecture with cache, push-back network,
and move-to-front network.

Finally, we describe how to schedule the move-to-front and
push-back accesses to the caches within each tile. Besides
the networks, the cache memory within each tile constitutes a
contended resource. Figure 10 shows the block diagram of the
tile architecture. The control unit coordinates the activities
on the push-back and move-to-front networks and the accesses
to the tile cache.

m2f−in lookup m2f−out

swappush−in push−out

m2f−in lookup m2f−out

swappush−in push−out

duty cycle duty cycle

0 1 42 3 5

clock cycle

Figure 11: Illustration of micro-pipelining of push-back and
move-to-front cache accesses (swap and lookup) and next-
neighbor communications in each tile.

Since the systolic design permits one move-to-front lookup
and one push-back per cycle, we introduce a micro-pipeline
with a duty cycle consisting of two clock cycles. During
the first clock cycle, we perform a swap operation as part
of the push-back functionality, and during the second clock
cycle we perform the cache lookup associated with the search
functionality of a request moving to the front. Figure 11

illustrates the pipelining of cache accesses and next-neighbor
communications from the perspective of one tile. We feel that
a swap operation should be incorporated in the memory array
design, because it uses the address efficiently: (1) apply the
push-back address, (2) read the cache contents, and (3) write
the push-back data. If the swap operation cannot be fit into a
single clock cycle, the swap functionality can be implemented
by means of a separate write after a read operation within two
clock cycles, prolonging the duty cycle of the micro-pipeline
to three clock cycles.

3.4 Space-Filling Spiral Caches
We introduce alternative geometries for spiral cache designs
which trade flexibility of layout for space utilization.

The effectiveness of the spiral cache hinges on the ability
to keep most recently used lines in close physical proximity
of the processor for as long as possible. The spiral geometry
is not the only one that ensures this property, however. The
essence of the spiral cache lies in the existence of a total order
of tiles, encoded in the spiral network in Figure 7, and of a
move-to-front network, such that the distance of a tile from
the processor in the move-to-front network is a bounded by
a monotonic convex function of the distance of the tile in
the spiral network. Any combination of two networks with
these properties is a possible architecture for a spiral cache.
For example, the 1-quadrant design on the left in Figure 12
may serve as building block to assemble the rectangular 2-
quadrant design or the L-shaped 3-quadrant design.

22 21 2

23 20 3

24 19 18

25 26 27 28 29 30 31

17 16 15 32

331454

1 6 13 34

40 39 38 37

3611109

8 7 3512

1 2 9 10

16 15 14 13

12765

4 1183

16 17 18 19

15 14 13 20

211232

1 4 11 22

28 27 26 25

24987

6 5 2310

1 Quadrant 2 Quadrants 3 Quadrants

Figure 12: Spiral cache designs based on 2D quadrants.

In the spirit of the quadrant design, we may also extend the
spiral cache to 3D architectures. Figure 13 shows a 1-octant
design of a 4 × 4 × 4 spiral cache. Multiple octants can be
connected analogous to 2D quadrants to fill a 3D space.

The constraints on the geometry of the spiral cache can
be relaxed even further, if we are willing to trade micro-
pipelining efficiency of a duty cycle for flexibility in aspect
ratio. We may stretch the diagonal across multiple tiles rather
than connecting next neighbors only. Considerable flexibility
with respect to the aspect ratio is available in contemporary
VLSI technologies, where higher metal layers can be employed
to implement faster, longer wires.

3.5 Power Management
The goal of the spiral cache is to provide a large cache with
low access latencies. Large caches can cope with large working
sets, but can be inefficient if small working sets occupy a
small portion of the cache only. The structure of the spiral
cache enables us to adjust the size of the active cache area
dynamically as a function of the working set size.

7

1 2 11 40

411234

5

6 7

8 9

10

131415

16 17 18

19

20

212223

24 25

2627

28

29

30 31

32

33 34

35

36 37

38

39

42

43444546

47 48 49 50

51

52

53

54

55565758

59 60 61 62

63

64

Figure 13: One octant of a 3-dimensional spiral cache. The
spiral network is not shown for clarity, but connects tiles ac-
cording to the number sequence. Timeplanes are indicated
by the color coding of the tiles.

The spiral network imposes a linear structure on spiral
cache designs. This linear structure identifies the head and
the tail for the move-to-front placement algorithm. The move-
to-front heuristic has the effect of compacting the working set
of a program, or of multiple programs in a multiprogrammed
environment, at the head of the spiral. This compaction ef-
fect is particularly visible for working sets that are smaller
than the capacity of the spiral cache. For those, the spiral
cache is cut into two disjoint pieces: the active tiles at the
head of the spiral which contain the working set, and the in-
active tiles at the tail, whose tile caches remain unused. We
exploit the compaction effect to reduce the power consump-
tion, including the leakage power, of large spiral caches.

A simple algorithm for the power management of a tile
in the spiral cache toggles the power supply of the memory
array between on and off, while keeping the move-to-front
and push-back networks active. Algorithm 1 assumes that
each tile maintains two counters a hit counter and a push-
back counter. During each duty cycle, each tile updates the
relevant counter.

Algorithm 1 Power management algorithm for each tile.

if array power is on then
if move-to-front lookup hits then

increment hit counter
end if
if receive push-back on spiral network then

increment push-back counter
end if
if hit rate < hit threshold
∧ push-back rate < push-back threshold then
push-out dirty data
turn array power off

end if
else {array power is off}

if receive push-back on spiral network then
increment push-back counter

end if
if push-back rate > threshold then

turn array power on
end if

end if

When the array of a tile is powered on, the tile counts the

number of hits due to move-to-front lookups and the number
of lines received from the spiral network. If the rate of hits and
push-ins (over a period of time) is less than a given threshold,
the tile does not contribute constructively to the program
execution. Thus, we should remove the tile’s memory array
from the active tile set. Before we can do so, however, we
must evict all dirty cache lines. This can be done with the
existing infrastructure by pushing dirty lines out toward the
tail end of the spiral during duty cycles when the tile does
not receive a push-in via the spiral network. Once the array
is clean, it can be powered off safely.

When a tile has its memory array powered off, it monitors
the push-back activity on the spiral network by means of the
push-back counter. If the number of push-backs over a period
of time exceeds a given threshold, the tile could contribute its
memory array constructively to the program execution. In
this case, the tile powers up its memory array, and resumes
storing push-in lines and performing lookups due to requests
arriving on the move-to-front network.

4. FULL-SYSTEM SIMULATIONS
We present full-system simulations [11] comparing two Pow-
erPC [23] based system configurations using the memory hi-
erarchies shown in Table 1 with modified versions that replace
the L2 and L3 caches with a cycle-accurate RTL model of a
2Mbyte spiral cache. The spiral cache is a 1-quadrant de-
sign with 16 tiles as shown on the left in Figure 12, with
a direct-mapped cache of 128Kbyte capacity per tile and a
line size of 128 bytes. The 16 tiles of this spiral cache offer
16-way associativity, with each set spanning all 16 tiles and
move-to-front replacement within each set. We have chosen a
conservative spiral cache design with a 3-stage micro-pipeline
and 3 processor clock cycles per duty cycle, cf. Section 3.3.
To mask the best-case spiral cache latency of 3 clock cycles
when accessing front tile 1, we employ a 32Kbyte L1 data
cache with 2-way set-associativity and write-through policy
in front of the spiral. Furthermore, a separate 32Kbyte 2-
way set-associative L1 instruction cache fetches instructions
via the spiral cache. Both L1D and L1I caches are inclusive
with respect to the spiral cache.

L1D L2 L3 DRAM
System Cap Lat Cap Lat Cap Lat Lat

[KB] [Cyc] [KB] [Cyc] [MB] [Cyc] [Cyc]
Power4 32 1 512 4 — — 67
Power† 32 1 256 6 4 23 36

Table 1: Memory configurations for full-system simulations.
Power† is a research design with relatively fast main memory
(DRAM) that limits the effectiveness of its caches.

Each simulation boots the Linux operating system, loads
the application program, switches the simulator into timing
accurate mode, purges the L1 and spiral caches to initialize
gathering of cache statistics, records the start cycle, executes
the application, and records the end cycle. In the following we
discuss two types of experiments. First, we micro-benchmark
the memory performance, and, second, we analyze the per-
formance of the ten applications shown in Figure 6.

4.1 Memory Microbenchmarking
We gauge the performance of different memory subsystems by
means of a simple microbenchmark, consisting of a loop that

8

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1000 10000 100000 1e+06 1e+07 1e+08

A
cc

es
s

L
at

en
cy

 [
cy

cl
es

]

Sweep Size [bytes]

conventional cache
1−access spiral cache
2−access spiral cache
4−access spiral cache

spiral cache

 0

 10

 20

 30

 40

 50

 60

 1000 10000 100000 1e+06 1e+07 1e+08

A
cc

es
s

L
at

en
cy

 [
cy

cl
es

]

Sweep Size [bytes]

conventional cache
1−access spiral cache
2−access spiral cache
4−access spiral cache

spiral cache

Figure 14: Memory performance of Power4 (left) and Power† (right) comparing the conventional memory hierarchies of
Table 1 with a 2MB spiral cache. Throttling of the number of outstanding requests (1-access, 2-access, 4-access) demonstrates
the value of pipelining. For sweep sizes ≥ 2MB the 2-access and 4-access curves are identical to the spiral cache curve.

repeatedly loads m cache lines with one load instruction per
line, and sweeps over m. Given the cache line size of 128 bytes,
the number of bytes n transferred in the loop body is n =
128 m, where 2KB ≤ n < 64MB. The PowerPC cores are
capable of maintaining sufficiently many outstanding loads
for this benchmark to be memory bound.

Figure 14 compares the access latencies of the conventional
Power4 and the Power† systems with the modified spiral cache
versions. We find that the spiral cache (‘spiral cache’) reduces
the step function (‘conventional cache’), typically observed
with conventional memory hierarchies, to a gentle slope. This
behavior indicates that much larger spiral caches will be ef-
fective up to a size where the slope transitions smoothly into
the backing store (DRAM) latency.

To expose the pipelining capability of the spiral cache, we
throttled the maximum number of outstanding requests ar-
tificially, and include the access latencies for at most one
(’1-access’), two (’2-access’), and four outstanding requests
(‘4-access spiral cache’) in Figure 14. We observe that the
pipelining capability boosts the spiral cache performance sig-
nificantly. In particular, pipelining two or more accesses hides
the additive effect of the sequential lookups in the 1-access
spiral cache and the backing store in case of a spiral cache
miss for n > 2MB completely. Achieving the same effect
in a conventional memory hierarchy requires additional logic
design effort to split and bypass tag and data accesses. Fur-
thermore, the larger the number of outstanding requests, the
lower the access latency as the sweep size increases but fits
into the spiral cache.

4.2 Application Analysis
We compare the ten applications of Figure 6 when executed
on the conventional memory configurations with executions
on the spiral cache. The problem sizes for the applications
were chosen such that their working set sizes are approxi-
mately 2Mbytes for both the access distributions presented
in Section 2.3 and the full-system simulations reported here.
Thus, the working sets fill the spiral cache, overflow the L2
cache of the Power4, and fit comfortably into the L3 cache of
the Power†.

Table 2 reports runtimes and speedups of all applications.
We find that the Power4 system exhibits significantly im-
proved performance by a factor of 1.4–3.4 for half of the ap-
plications, matrix multiplication, QR, stencil computation,

FFT, and maximum flow. For the other half, the spiral cache
reduces the number of clock cycles only marginally. On the
Power†, the large L3 cache and the relatively fast backing
store of the original cache configuration cause the speedups
due to the spiral cache to be no larger than 1.3. It is notable,
however, that the spiral cache does not cause a performance
degradation for any of the applications on either system.

Conf. of Table 1 Spiral Cache Speedup
Appl.

PPC4 PPC† PPC4 PPC† PPC4 PPC†
matmul 456 235 196 195 2.33 1.20
qr 384 254 252 202 1.53 1.25
svd 26,532 22,760 23,362 21,457 1.14 1.06
stencil 1,021 284 301 285 3.39 1.00
lcs 33,886 24,388 31,901 23,351 1.06 1.04
fft 181 98 90 74 2.00 1.31
qsort 169 128 168 124 1.01 1.03
mstree 212 201 193 186 1.10 1.08
spath 222 179 190 164 1.17 1.09
maxflow 9,202 4,843 6,565 4,428 1.40 1.09

Table 2: Runtimes in 106 clock cycles of full-system simu-
lations on Power4 and Power†, and speedups of spiral cache
with respect to conventional cache configurations.

Table 3 shows the access distributions across the tiles of
the spiral cache for all applications, analogous to the plots in
Figure 6. In addition, Table 3 includes the hits in the L1D
data cache. Ideally, we would expect each tile of the 16-tile
spiral cache to serve the corresponding subset of consecutive,
much smaller tile equivalents in Figure 6. Closer inspection
shows that this is the case indeed, when accounting for the
smoothening effect of the much larger tile sizes of the spiral
cache. Interesting to note is the fact that the L1 data cache
serves about 2–4 times as many hits as front tile 1, which
serves several orders of magnitude more accesses than the
remaining tiles for most applications.

We conclude that the spiral cache approximates the ide-
alized access distributions of Figure 6 reasonably well. We
expect the quality of the approximation to improve for spiral
caches with larger numbers of smaller tiles, although at the
expense of increased access latencies in terms of number of
clock cycles. However, smaller tiles enable faster clock fre-
quencies, which may amortize an increased clock cycle count.

Our discussion in Section 2.3 revealed that most of our

9

Hits matmul qr svd stencil lcs fft qsort mstree spath maxflow
L1D 37189157 126988179 2570592214 197745484 9602360679 23385179 29647653 82590022 74901257 2073205658

1 17222184 64504882 1448785520 47306344 1909192120 11070294 10520020 36455638 30667193 21765473
2 1054855 73950 258997495 7031 326336 315749 31940 84765 166346 8821792
3 1942 71300 87187056 1513 10132 37422 11344 41705 39453 14769922
4 677 101273 21787153 660 716 64537 6026 31435 11594 19237301
5 745232 110546 7552582 365 384 5777 3269 26951 4725 22374561
6 815161 121649 6355760 430 740 3828 2752 17221 2589 20864737
7 123308 146926 6583627 626 15573 19453 2483 8655 1724 17142705

spiral 8 9847 141425 3105486 963 417968 467791 3253 4557 1095 8929621
tiles 9 1129 170390 755217 915 817811 77586 3033 2428 814 1707238

10 1206 203415 14114 933 987959 22405 3428 1447 693 34984
11 1929 186474 2016 266540 38984600 13473 3954 1345 735 1964
12 1795 168744 1414 4306417 71558467 28500 5952 1362 869 1371
13 1298 199165 1398 1414903 7241592 5777 5977 1941 1331 1839
14 1043 258688 1338 268489 330226 512 3755 4893 2650 1974
15 1070 161014 1229 1397 3091 196 985 3422 3032 2218
16 1363 25745 1053 408 1587 199 350 2676 2211 2159

Table 3: Access distributions (hits) of applications on 16-tile spiral cache, and L1 data cache hits.

ten applications are by no means cache friendly. We briefly
discuss the memory behavior of alternative cache oblivious
algorithms. We have implemented cache oblivious versions of
matrix multiplication, QR decomposition, SVD, stencil com-
putation, LCS, and FFT. The exponential access distribu-
tions across the spiral cache tiles in Table 5 are testament
to the quality of the cache oblivious algorithms. They also
demonstrate the compaction effect mentioned in Section 3.5,
which enables effective power management of the spiral cache.

Conf. of Table 1 Spiral Cache Speedup
Appl.

PPC4 PPC† PPC4 PPC† PPC4 PPC†
matmul 167 133 161 130 1.03 1.02
qr 284 240 248 187 1.14 1.28
svd 11,707 11,074 11,528 11,125 1.02 1.00
stencil 266 242 265 241 1.00 1.00
lcs 30,418 22,803 30,406 21,585 1.11 1.06
fft 91 74 47 55 1.93 1.33

Table 4: Runtimes in 106 clock cycles of cache oblivious algo-
rithms of full-system simulations on Power4 and Power†, and
speedups of spiral cache with respect to conventional cache
configurations.

The runtimes and speedups of the cache oblivious algo-
rithms are shown in Table 4. We note that the speedups of
the cache oblivious algorithms for the spiral cache with re-
spect to the conventional memory hierarchy are smaller than
for the naive algorithms. This is not unexpected, since cache
oblivious algorithms are designed to be performance portable
across all cache architectures. Nevertheless, the spiral cache
achieves speedups up to a factor of 2.

Figure 15 summarizes our empirical analysis with speedups
for each application, naive and cache oblivious algorithms, ex-
ecuted on the spiral cache and the conventional memory con-
figuration of Table 1. The runtimes of the naive algorithms
on the conventional memory configuration serve as reference.
For quicksort and the three graph algorithms we have one
implementation only, and compare the same program exe-
cuted on the conventional memory configuration with the ex-
ecution on the spiral cache. We obtain small speedups for
both systems, as can be expected from the access distribu-
tions in Table 3. All four applications are served primarily
out of the L1D cache and tile 1. Only the maximum flow
algorithm has a nonnegligible number of hits in tiles 2–10,
resulting in a slightly larger speedup. Incidentally, we have
observed speedups about a factor of 3 for related minimum-

Hits matmul qr svd stencil lcs fft
L1D 59252441 132585313 1932653873 200852122 9783362587 21992704

1 2896599 65442220 971945591 50451337 1912260446 11227062
2 73648 271045 12740856 19393 780321 264643
3 23222 61331 693827 3929 93361 114905
4 10254 29235 261658 941 16597 207169
5 6710 17970 129611 440 5722 69768
6 4727 12671 77997 411 5549 22853
7 3248 10006 62039 620 5609 5635
8 2684 7665 57397 769 4613 6098
9 2173 5985 56806 808 2558 7402

10 1805 4338 53525 955 1681 3834
11 1819 3497 45721 1049 1433 3898
12 2421 2707 37096 1114 1626 11511
13 2993 2447 29901 1051 2675 29209
14 2644 2287 28542 664 2550 31674
15 2451 2087 27955 383 1890 19792
16 2185 1874 29436 195 1314 11059

Table 5: Access distributions (hits) of cache oblivious algo-
rithms on 16-tile spiral cache.

cost flow problems of larger sizes (SPEC benchmark 429.mcf),
which exhibit notoriously poor cache behavior on conven-
tional memory hierarchies [26].

The remaining applications can be grouped into four classes
(1) those where neither the spiral cache nor a cache oblivious
algorithm improves performance, (2) where the spiral cache
and not the algorithm improve performance, (3) where not
the spiral cache but the cache oblivious algorithm improves
performance, and (4) those where both the spiral cache and
the cache oblivious algorithm offer a performance boost. The
LCS computation falls into the first class, which is apparently
not memory bound. The FFT falls into the fourth class. On
the Power4 system both the spiral cache and the cache obliv-
ious algorithm improve the performance by a factor of two,
and together result in a speedup close to 4. The same qual-
itative effect appears on the Power† system, although with
smaller speedups. The QR decomposition falls into the sec-
ond class. The SVD is an example for the third class, where
the spiral cache is ineffective but the cache oblivious algo-
rithm yields a speedup of about 2. The remaining applica-
tions, matrix multiplication and stencil computation, benefit
from both the spiral cache and the cache oblivious algorithm,
although the combination of both does not yield the ideal
product of the speedups as found for the FFT. Thus, these
applications fall between the second and third class.

We conclude from our full-system simulations that even a
relatively small spiral cache can offer performance improve-
ments up to a factor of 4. None of our simulations exhibits
a performance degradation due to the spiral cache. The re-

10

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

m
atm

ul

qr svd
stencil

lcs
fft

qsort

m
stree

spath

m
axflow

S
p

ee
d
u

p
 v

s.
 n

ai
v

e
al

g
o

ri
th

m
/c

o
n

v
en

ti
o

n
al

 c
ac

h
e

naive algorithm/spiral cache
cache oblivious/conventional cache

cache oblivious/spiral cache

 0.5

 1

 1.5

 2

 2.5

m
atm

ul

qr svd
stancil

lcs
fft

qsort

m
stree

spath

m
axflow

S
p

ee
d
u

p
 v

s.
 n

ai
v

e
al

g
o

ri
th

m
/c

o
n

v
en

ti
o

n
al

 c
ac

h
e

naive algorithm/spiral cache
cache oblivous/conventional cache

cache oblivious/spiral cache

Figure 15: Speedups of Power4 (left) and Power† (right) w.r.t. runtimes of naive algorithms executed on the conventional
cache configurations of Table 1. We have cache oblivious implementations for six of the ten applications.

duced access latencies provided by the move-to-front heuristic
and the pipelining capability contribute to larger performance
gains for the naive, iterative algorithms. However, our study
in Section 2.3 shows that this cannot be the case if the work-
ing sets do not fit into the spiral cache. In contrast, cache
oblivious algorithms complement the spiral cache nicely. The
pipelining capability of the spiral cache contributes improved
throughput to the performance gain, as demonstrated in Sec-
tion 4.1. The full potential of the spiral cache is expected
to unfold for significantly larger cache capacities and larger
working sets. Unfortunately, our current simulation infras-
tructure is not suited for exploring a significantly larger de-
sign space than presented above.

5. RELATED WORK
The spiral cache may be classified as a non-uniform cache
architecture (NUCA) [6, 12, 16, 17, 19, 20, 25]. The dis-
cussion of NUCA in [20] provides an introductory study of
the design space of such cache architectures including the dy-
namic placement of cache lines. A “generational promotion
policy” for data movement is proposed, which happens to be
the well-known the transposition heuristic [24]. As discussed
in Section 2.2, the transposition heuristic is not competitive,
causing particularly poor performance for certain traces, and
is generally not superior to the move-to-front heuristic. Fur-
thermore, the structure of the spiral cache enables a systolic
design, which does not suffer the buffering and switching over-
heads of the wormhole-routed network proposed for the D-
NUCA architecture in [20].

The NuRAPID cache [12] proposes an alternative NUCA
architecture that sequentializes tag and data accesses, and
decouples data placement from tag placement. The design
is an array of associative distance groups. The paper stud-
ies replacement heuristics across groups including transposi-
tion and move-to-front, there called“next-fastest”and“fastest
promotion policy.” The empirical evaluation shows that in
NuRAPID simulations transposition and move-to-front are
the fastest of the considered replacement policies, and the
transposition heuristic outperforms move-to-front by a negli-
gible margin. The NuRAPID cache does not permit pipelin-
ing of multiple accesses, leading the authors to conclude that
their sequential access design is justified by the marginal per-
formance benefits over the NUCA design [20]. We do not
share this conclusion. In contrast, the pipelining capability
of the spiral cache is a major reason for its performance, cf.

Section 4.1. However, the reported energy reduction of 77%
compared to the NUCA design is significant. This observa-
tion coincides with our preliminary evaluation of the energy
consumption of a hardware prototype of the spiral cache.

It is widely acknowledged that for fully or set-associative
caches the most effective replacement policy for data within
a set is least recently used (LRU) [18]. It is noteworthy that
in the context of caching, LRU and and move-to-front can
be viewed as instances of the same algorithm from the per-
spective of competitiveness results [13]. In this spirit, a spiral
cache with N tiles can be viewed as an N -way set-associative
cache. A set consists of the cache lines of the same index in
each tile, and the move-to-front heuristic implements an LRU
stack across the tiles. If we were to use a k-way set-associative
cache in each tile rather than a direct-mapped cache, we could
increase the associativity to a (kN)-way set associative cache.

In the past, several cache architectures have been proposed
that covered a subset of aspects of the spiral cache. Earlier
systolic designs [15, 21] achieve the same throughput than
the spiral cache, but incur worst-case latency for each ac-
cess: a request must travel to the far end of the memory,
and then traverse each block (or tile in our terminology) on
the way back toward the processor. In contrast, the spiral
cache is designed to avoid the high-latency problem. The
pipelined hierarchical memory architecture proposed in [9] is
an attempt to reduce access latencies while offering the high
throughput inherent in a pipelined design. This architecture
requires relatively large buffers to control the flow of data
through a 1D hierarchy of memory tiles. The spiral cache
does not need buffers for flow control, and is not limited to
1D designs. Just the opposite, the spiral cache exploits the
dimensionality of Euclidean space to reduce the worst-case
access latency.

6. CONCLUSIONS
We presented the spiral cache, a new self-organizing, tiled
cache architecture. The spiral cache is a pipelined systolic
array, capable of maintaining multiple memory operations in
flight. The design exploits the dimensionality of Euclidean
space, such that a 3D implementation with N tiles has a
worst-case access latency of Θ(3

√
N), compared to Θ(

√
N)

for a 2D implementation and Θ(N) for a 1D implementation.
The best-case access latency is that of one tile. Depending
on the structure of the application program, but in particular
for cache oblivious algorithms, the vast majority of accesses

11

incur best-case access latency, thanks to the move-to-front
placement policy.

We reported results from full-system simulations that indi-
cate the potential for building large spiral caches with small
access latencies. Many questions remain unanswered, how-
ever, especially regarding the exact power/latency tradeoffs
of the spiral cache. Because simulators can only provide rough
answers to these questions, we are currently in the process of
building a hardware prototype of the spiral cache.

Acknowledgements. We acknowledge our collaborators
Fadi Gebara, JB Kuang, Rahul Rao, and Jeremy Schaub of
our hardware design team, and Ahmed Gheith who helped us
integrating the spiral cache model into the Mambo simulator.

7. REFERENCES
[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The

Design and Analysis of Computer Algorithms.
Addison-Wesley, 1974.

[2] S. Albers, L. M. Favrholdt, and O. Giel. On Paging
with Locality of Reference. In 34th Annual ACM
Symposium on Theory of Computing, pages 258–267,
2002.

[3] S. Angelopoulos, R. Dorrigiv, and A. López-Ortiz. List
Update with Locality of Reference: MTF Outperforms
All Other Algorithms. Technical Report CS-2006-46,
University of Waterloo, Nov. 2006.

[4] R. Bachrach and R. El-Yaniv. Online List Accessing
Algorithms and Their Applications: Recent Empirical
Evidence. In 8th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 53–62, 1997.

[5] J.-L. Baer and W.-H. Wang. On the Inclusion
Properties for Multi-level Cache Hierarchies. In 15th
Annual International Symposium on Computer
Architecture, pages 73–80, Honolulu, HA, 1988.

[6] B. M. Beckmann and D. A. Wood. Managing Wire
Delay in Large Chip-Multiprocessor Caches. In 37th
Annual IEEE/ACM International Symposium on
Microarchitecture, pages 319–330, Dec. 2004.

[7] L. A. Belady. A study of replacement algorithms for
virtual storage computers. IBM Systems Journal,
5(2):78–101, 1966.

[8] J. L. Bentley and C. C. McGeoch. Amortized Analyses
of Self-Organizing Sequential Search Heuristics.
Communications of the ACM, 28(4):404–411, 1985.

[9] G. Bilardi, K. Ekanadham, and P. Pattnaik. Optimal
Organizations for Pipelined Hierarchical Memories. In
14th ACM Symposium on Parallel Algorithms and
Architectures, pages 109–116, 2002.

[10] J. R. Bitner. Heuristics That Dynamically Organize
Data Structures. SIAM Journal on Computing,
8(1):82–110, Feb. 1979.

[11] P. Bohrer, J. Peterson, M. Elnozahy, R. Rajamony,
A. Gheith, R. Rockhold, C. Lefurgy, H. Shafi, T. Nakra,
R. Simpson, E. Speight, K. Sudeep, E. V. Hensbergen,
and L. Zhang. Mambo—a Full System Simulator for
the PowerPC Architecture. ACM SIGMETRICS
Performance Evaluation Review, 31(4):8–12, 2004.

[12] Z. Chishti, M. D. Powell, and T. N. Vijaykumar.
Distance Associativity for High-Performance
Energy-Efficient Non-Uniform Cache Architectures. In
36th Annual IEEE/ACM International Symposium on

Microarchitecture, pages 55–66, 2003.

[13] M. Chrobak and J. Noga. Competitive Algorithms for
Multilevel Caching and Relaxed List Update. In 9th
Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 87–96, 1998.

[14] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.
Introduction to Algorithms. The MIT Press, 1990.

[15] A. G. Dickinson and C. J. Nicol. A Systolic
Architecture for High Speed Pipelined Memories. In
International Conference on Computer Design, pages
406–409, Cambridge, MA, Oct. 1993.

[16] H. Dybdahl and P. Stenström. An Adaptive
Shared/Private NUCA Cache Partitioning Scheme for
Chip Multiprocessors. In 13th International Symposium
on High Performance Computer Architecture, pages
2–12, Phoenix, AZ, Feb. 2007.

[17] P. Foglia, D. Mangano, and C. A. Prete. A NUCA
Model for Embedded Systems Cache Design. In 3rd
IEEE Workshop on Embedded Systems for Real-Time
Multimedia, pages 41–46, New York, NY, Sept. 2005.

[18] J. L. Hennessy and D. A. Patterson. Computer
Architecture: A Quantitative Approach. Morgan
Kaufmann, 3rd edition, 2006.

[19] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and
S. W. Keckler. A NUCA Substrate for Flexible CMP
Cache Sharing. In International Conference on
Supercomputing, pages 31–40, Boston, MA, June 2005.

[20] C. Kim, D. Burger, and S. W. Keckler. An Adaptive,
Non-Uniform Cache Structure for Wire-Delay
Dominated On-Chip Caches. In 10th International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 211–222, 2002.

[21] K. H. Kwon, G. J. Jeong, M. K. Lee, and S. H. Ahn. A
Scalable Memory Design. In 10th International
Conference on VLSI Design, pages 257–260, 1997.

[22] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger.
Evaluation Techniques for Storage Hierarchies. IBM
Systems Journal, 9(2):78–117, 1970.

[23] C. May, E. Silha, R. Simpson, and H. Warren. The
PowerPC Architecture: A Specification for a New
Family of RISC Processors. Morgan Kaufmann, 1994.

[24] J. McCabe. On Serial Files with Relocatable Records.
Operations Research, 13(4):609–618, July 1965.

[25] N. Muralimanohar, R. Balasubramonian, and
N. Jouppi. Optimizing NUCA Organizations and
Wiring Alternatives for Large Caches with CACTI 6.0.
In 40th Annual IEEE/ACM International Symposium
on Microarchitecture, pages 3–14, Chicago, IL, 2007.

[26] A. Phansalkar, A. Joshi, and L. K. John. Analysis of
Redundancy and Application Balance in the SPEC
CPU2006 Benchmark Suite. In 34th Annual
International Symposium on Computer Architecture,
pages 412–423, June 2007.

[27] R. Rivest. On Self-Organizing Sequential Search
Heuristics. Communications of the ACM, 19(2):63–67,
1976.

[28] D. D. Sleator and R. E. Tarjan. Amortized Efficiency of
List Update and Paging Rules. Communications of the
ACM, 28(2):202–208, Feb. 1985.

12

