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Abstract—Morphogenesis is the process that gives shapes to organisms from an embryonic stage using a 

process of cell-division. Starting from a simple embryonic cell, the controlled division and transformation of 

the cells into different types leads to the creation of a complex organism. The growth of complex organisms is 

completely autonomic, and is of the best examples of self-organizing systems that can be found in nature. In 

comparison, computer networks of today are much more static and require a significant human intervention 

in order to take on the shape and size that is desired. However, emerging technology such as virtualization 

and network computing enables an architecture where computer networks can also develop using 

morphogenesis. In this paper, we present the benefits of morphogenesis in a computer network, and we 

describe an architecture for a computer network which self-organizes itself using the principles of 

morphogenesis.  

 

Index Terms—morphogenesis, self-organization, autonomic networks, self-configuration.   

I. INTRODUCTION 

 The management and operations of distributed computer systems and networks is a complex labor-

intensive task that accounts for the lion’s share of costs in current computing environment [1]. A significant 

component of the complexity arises from the heterogeneity that exists in the computing infrastructure. The 

presence of a variety of different types of machines in a computing environment creates challenges related 

to the configuration, error diagnosis and repair of the infrastructure that is put into place. In many 

environments, e.g. in the case of military networks, a variety of instruments implies the need to carry 

batteries and power equipment, which increases dead weight and increase power consumption.      

Although a few vision papers[2][3] have been put forward for the development of self-organizing self-

configuring computer systems, an architecture for computer networks that exhibits such behavior remains 
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elusive. If one were to truly attain the vision of self-organization, networking infrastructure at a data center 

or operational capabilities of a military outpost could be obtained simply by turning on generic machines at 

the site, and the machines would take on the configuration and installation that is required to fulfill the 

computing needs of that data center or the military outpost. This paper presents an architecture for computer 

systems which enables them to realize this vision.  

The inspiration for such self-organization is drawn from the ability of biological systems to grow and 

differentiate themselves into self-organizing patterns [4]. A small acorn can grow into a mighty oak, and a 

small zygote can differentiate itself to make a complicated human being. This phenomenon of 

morphogenesis can be replicated to the domain of computer networks using the architecture described in 

this paper. Our goal would be to obtain well-defined structure for the overall computer network, while 

avoiding the phenomenon of emergent behavior [5], where unanticipated and unpredictable characteristics 

are observed. Self-organization without emergence requires restricting the behavior of the system, since 

even simple cellular automatons [6] can easily result in very complex patterns.  

The architecture introduced in this paper would enable computer systems to have the desirable attributes 

of self-organization and self-configuration, while still resulting in a system that is unlikely to show 

emergent behavior. Proposed architecture enables constrained and controlled self-organization which is 

fundamentally different from the uninhibited self-organization in complex systems [7][8]. The architecture 

is realizable and attainable with current technology in computing systems.  

 We begin by describing some scenarios that we would like to obtain as a result of this architecture. After 

the description of the scenario in Section II, Section III describes the biological inspiration of the system. 

Section IV describes the usage model of the system we develop, and Section V describes the 

morphogenesis architecture of each node in the self-organizing network that enables morphogenesis. In 

Section VI we experimentally evaluate the accuracy of our system. Finally, we present the related work and 
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we conclude with a summary and the open problems.  

II. TARGET SCENARIOS 

In this section, we look at some target scenarios and what the goal of the morphogenesis architecture 

would be in each of the scenarios.  

A. Commercial Data Center 

A commercial data center in current environments is a complex network of devices. Among the different 

types of devices that are found in the data center, one can enumerate IP routers, firewalls, Ethernet switches, 

web servers, application servers, database servers, and storage devices such as disk arrays. Additionally, 

management servers, accounting servers, customer help-desk systems as well as audit compliance systems 

may be present to ensure smooth operation of the data center. Many of these devices are specialized 

hardware or software functions, and can rarely be interchanged. In some cases, e.g. on servers, it is possible 

to manually install database software instead of application software, but the process is usually slow and 

cumbersome.   
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Fig. 1. Typical Tiered Architecture of Data Centers 
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A classic arrangement of a commercial data center is that of a tiered architecture where multiple 

machines perform the same function in each tier. A typical tiered architecture of a web-hosting server is 

shown in Figure 1 ,with  the 0
th
 tier being a set of databases, the 1

st
 tier being a set of application servers, 

the 2
nd
 tier being a set of web-servers, the 3

rd
 tier being a set of web-caching proxies, the 4

th
 tier being a 

firewall that acts to protect the other tiers before connecting to the Internet. Each tier (except the firewall) 

would typically have a load-balancer connected together with a network switch to the other machines in the 

tier. In some data centers, there may be an additional server or some other application, e.g. LDAP Servers 

located attached to the side of one of the tiers. Physically, each tier would get its interconnectivity using an 

Ethernet switch. Note that multiple tiers can make use of the same physical switches but still being isolated 

at the logical level with the use of virtual local area networks.   

Other than the Ethernet switch, the machines that make up the data center consist of servers running 

various application packages. They can be created dynamically by reconfiguring applications on a generic 

machine. An Ethernet switch in a data center provides connectivity among a cluster of machines. Assuming 

that the basic connectivity is available, we would like to achieve a scenario in which a group of generic 

machines, (e.g. consisting of a base Linux operating system) are connected to different Ethernet switches 

and booted up. Assuming that each of the machines is aware of the overall blueprint of the system that is 

available, we would like the generic machines to automatically determine their position in the system, 

determine their role and then configure themselves to be conformant within that role.  

B. Military Camp Scenario  

In a military camp, the network interconnecting different devices and machines may be a wireless 

network instead of a wired network. This is because the physical establishment of a wireless network is 

easier than that of a wired network in a camp which needs to be dismantled and established rapidly. 

However, there are many computer systems and components with different persona and roles that need to 

be established in the military camp.     



 

A typical personal and role of the different servers making up the military are shown in Figure 2. In this 

figure, the different devices are connected using a wireless network. The different machines are deployed in 

the role of servers (e.g. to use for electronic mail) while others are used to run different applications such as 

red/blue force tracking, managing a wireless sensor network or for planning military operations. While the 

structure in the military camp is not in terms of cleanly delineated tiers such as that of the commercial data 

center, there are distinct components of the system that perform various functions.  
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Fig. 2. A typical environment in a military base camp 

As in the case of the commercial data center, we would like to attain a scenario is which generic 

machines are powered on in the base camp. The generic machines, when powered up, are going to 

understand their position in the overall network, map that position to the role they need to play within the 

network, and then configure themselves automatically to support and provide those functions.  

There are many benefits of using morphogenesis in the design of computer systems and networks. If the 

computing environment can configure itself automatically and take on the appropriate persona, the effort 

required in configuring systems would be much reduced. In current environment, e.g. the military camp 

scenario, the different devices tend to be relatively black boxes that cannot be easily transformed from one 

to another. This causes problems in the management of logistics, e.g. one may have too many boxes doing 



 

blue-force tracking but too few boxes running planning applications, and it is not trivial to convert one to 

another. Furthermore, as conditions on the ground changes, a system that can change its persona can adjust 

itself better to the dynamic environmental changes.  

The goal of this paper is to define an architecture which will allow us to attain the vision outlined above 

for the previous environments. The architecture should be usable in many different contexts other than the 

previous two that we have described.   

III. BIOLOGICALLY INSPIRED MORPHOGENESIS  

In order to design morphogenesis in computer systems, we look upon biological cell division for 

inspiration and insights into a similar function for computer systems. However, our intention is not to 

mimic the complete biological process, but only to use high-level principles from its operation.  

The blueprint for what an organism needs to become is contained in the first cell (embryo) and is copied 

from that to all other cells that are formed by the process of cell-division. Each new cell determines its 

position relative to other cells in the entire system and uses its position and environment to determine what 

it needs to become (i.e. a skin cell, or a blood cell or nerve cell, etc). The determination of the position and 

the type of cell each one needs to become is determined by a complex set of interactions among the 

chemicals and the position of the cells.  

Without mimicking the complexities of cellular division, we can use the following high-level concepts 

from the natural morphogenesis process to develop the similar behavior in computer networks:  

The Embryo: The embryo is a special cell which is configured with the blueprint of the entire system by 

means of its genetic code. Similarly, in our development of the morphogenesis of the system, we will select 

a special node as the embryo which will have the blueprint of the entire system.  

The Genetic Code: The genetic code is a concise description of the overall distributed system that needs 

to be created. Similarly, we will have a concise description of the overall system that ought to be formed. 

The genetic code will be provided to the embryo node, which will be responsible for disseminating the 



 

genetic code to all of the other elements.  

Cell Division: The embryo creates new cells using the process of cell division. The structure is obtained 

by means of the new cells determining their persona and changing themselves into that persona. In the 

computer systems that we are designing, we would need to have a mechanism to add new cells or nodes. 

One such process is the creation of new virtual machines on an existing physical node. Another process is 

the introduction of new physical node. 

Position Determination: In the morphogenesis process in biology, the position of the cell and its state 

with respect to its neighbors is an important factor in determining its behavior. Therefore, each computer 

node in the biologically inspired network needs to have a way to determine its position.  

Blueprint Scaling: As the size of the living organism increases, the sizes of the individual organs and 

body parts scale accordingly. The same blueprint that defines a toddler defines a full grown man as well. 

Similarly, as the size of the network increases or decreases we would like to use the same blueprint that can 

easily scale to various system sizes.       

Personal Determination:  The final step in the morphogenesis process is the determination of the persona 

a computer node will take. The persona of a computer node is the set of applications, application data and 

operating system that is used to provide its functionality.  

The architecture that we describe in subsequent sections provides for an implementation of the above 

concepts borrowed from biology.  

IV. USAGE MODEL  

In the usage model of the system that we have, each device is booted off as a generic device. By default, 

each device is assumed to be a generic device and not an embryo. The system administrator can toggle a 

switch or change configuration parameters of one device to mark a device as an embryo. The embryo is also 

configured to obtain its genetic code. The embryo communicates with the other devices to establish 

communication and to disseminate the genetic code.  



 

For simplicity, we will be describing the system as consisting of exactly one embryo. However, a general 

system may include many different embryos. A simple mechanism to support multiple embryos is to just 

assume that a generic device would belong to the embryo that it first establishes contact with.  

Once a generic device is powered up, it tries to discover other devices in its neighborhood with whom it 

has connectivity. It waits till it finds an embryo in the discovered cells, or another node which has access to 

the genetic code from an embryo. The generic device obtains the genetic code from such device.  The 

device in turn would provide the genetic code to any other device that it discovers in the system.  

After the generic device has received its genetic code, it determines its position and then its persona by 

examining the genetic code. Having obtained its persona, the device changes itself to the corresponding set 

of software as dictated by the persona.  Different personas can be prepackaged as different virtual machine 

images, in which case the adoption of a persona from the generic device becomes just the instantiation of 

the appropriate image on the generic device.  

The operation of an embryo node is very similar to that of the generic device, except that it has its genetic 

code from the very beginning. After being powered up, the embryo searches for other adjacent nodes in the 

neighborhood to whom it provides the genetic code.   

V. MORPHOGENESIS ARCHITECTURE  

The key design considerations needed in order to support this architecture are (i) the representation of the 

genetic code (ii) the position determination algorithm (iii) the mapping from position to persona (iv) the 

discovery process to find new cells and (iv) the architecture of each generic device which enables it to take 

on the desired persona.  

A. Representation of Genetic Code  

Although there are multiple approaches possible to represent the genetic code, we will take the approach 

of defining the genetic code as a set of mathematical expressions. In specifying the genetic code as a set of 

mathematical expressions, we assume that the position of a node is specified as a set of coordinates, {x1, x2, 



 

…. xn}, and that a set of mathematical equations define the constraints that map any coordinate to a specific 

persona. The use of location to define a role of a machine is taken from the observation that most organisms 

follow a similar paradigm. Figure 3 below shows how the cross-section of a human body can be mapped 

into a planar description of the regions where different types of personals are assigned to nodes based on 

position.  
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Fig. 3. Presence of Similar Regions in Biological Systems 

 

If we consider the genetic code that represents the system created in Figure 3, we can use a mathematical 

representation as shown below. A two-point coordinate system is used to represent the position {x1, x2} of 

any point in the plane, and each position is mapped to a persona.   
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Fig. 4. Example of Genetic Code Description  

 



 

The same principle can be used to specify the genetic code for any type of computer system. As an 

example, the genetic code for the commercial data center can be specified simply by using a two 

dimensional coordinate {x1, x2} where x1 measures the distance of the system from the embryo and x2 is a 

logical coordinate. The logical coordinate is used in order to assign more than one roles at the same 

location, mainly in cases where there are multiple nodes at the same location. Each node randomly picks the 

logical coordinate from a set of possible logical coordinates for that position. The method for location 

determination is described in subsequent section. Let us assume that the embryo is marked as the firewall to 

the Internet. The following mapping would be the genetic code specifying the characteristics of the 

commercial data center.  

 

 

                                                                              

 

 

 

 

 

 

Table 1. Datacenter genetic code                         Table 2. Military base camp genetic code 

 

Similarly, a table mapping using a similar description could be used to represent the topology of the 

system described in the military base camp. The genetic code representation as a mathematical expression is 

general enough to capture a wide variety of end organisms that are targeted. The representation can be 

captured in a computer readable manner and transmitted efficiently between different cells.  
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B. Position Determination Algorithm  

The position of a node is determined by means of three independent metrics, the first measuring the 

distance of the node from the embryo in terms of hops, the second (an optional component) measuring the 

absolute difference in position of the node relative to the embryo, and the third being a customizable 

definition of position that is broadcast by the embryo.  

The distance of node from the embryo is relatively trivial to determine. Each node maintains a distance 

counter for itself, the distance counter being the lowest among the distance counters of all its neighbors 

incremented by 1. The simple distributed algorithm measures the smallest distance in hops between a node 

and the embryo.  

The absolute difference in position requires that the devices be capable of obtaining an absolute position 

reading for themselves. This may be obtained by using a GPS system [9], or for indoor systems similar 

triangulation [10] [11] techniques that can be used from different access points located inside a building. 

The ability to read the absolute position is dependent on the capabilities of the generic device base software 

infrastructure.  

The third component of the position is a set of directions that comes from the embryo. This component 

provides instructions from the embryo on how to compute any additional components of the position.  The 

distance from the embryo and the absolute difference in position provide the first few coordinates of the 

position vector. The other coordinates can be computed logically by means of programmatic directions that 

come with the embryo along with the genetic material. These programmatic instructions include 

information such that exactly one of the equidistant nodes should take on a logical coordinate of zero, and 

others take the logical coordinate of one, or that a coordinate may be selected randomly to be either 0 or 1 

with an equal probability. These instructions come as executable software in the mode of active networks 

[12], thereby providing the ability to compute position metrics dynamically by the embryo.  

Taken together, these three mechanisms provide a position coordinate for each node where the first 



 

coordinate marks the distance from the embryo, the second few mark the absolute difference in position and 

the remainder are computed as per directions coming from the embryo.  

Once the position and the genetic code are received from the embryo by the process of dissemination, the 

computation of the persona from the position vector is a routine operation from the specified genetic code.  

C. Blueprint Scaling Algorithm 

The definition of the genetic code as a mathematical expression is done in a way that is agnostic of the 

size of the network. That means that the same genetic code can be used to describe a small network, 

confined in an area as small as a few square meters, as well a large network, in an area as large as a few 

square kilometers. In essence the genetic code describes the configuration of the network in a unit-free way. 

Then for each specific instantiation of the genetic code, nodes scale the mathematical expression of the 

genetic code accordingly, so as to adjust the network configuration to the appropriate size.  

The main challenge in scaling the mathematical expression is the knowledge of the actual area that is 

covered by the network. For example if we consider the genetic code description of Figure 4, given in a 

unit-free manner, and we know that the total area of the network where the code is going to be instantiated 

is one square kilometer, then we can appropriately scale the mathematical expression. Unfortunately the 

total area may not be known in advance. Even worse, the total area can vary considerably during the 

lifetime of a network, as the network may expand or shrink during its lifetime.   

To deal with these issues nodes continuously estimate the size of the network and scale the mathematical 

expression accordingly. The estimation is done in a completely distributed manner with the use of local 

measurements only. Each node i measures the number of nodes Ni that it can listen within its local 

neighborhood, a circle that covers an area of Ac. Given these measurements node i computes the local 

density Di, defined as Di = Ni/Ac. Assuming a homogeneous network, each node independently estimates 

the density of the whole network, with node’s i estimate being Di. Given the total number of nodes N that 

participate in the network is known in advance by every node, then the total area of the network estimated 



 

by node i is: Ai = N/Di = Ac*N/Ni. Given this estimation of the total area, and the fact that the genetic code 

is defined within one square unit area, each node computes each scaling parameter Si as follows:  

  Si = Ai
1/2
 = (Ac*N/Ni)

1/2
.  

This final expression shows that the scaling parameter is computed only with the use of local 

information: the size of the listening area (Ac), which mainly depends on predefined radio parameters, the 

number of local neighbors (Ni) that are within the listening area, and the total number of nodes (N), that is 

known to every node in advance. In the case that precise location information is available, with the use of 

GPS, the accurate determination of the neighbors’ location can further improve the density estimation. Note 

that the above process yields different scaling results for each node. In the evaluation section we study 

experimentally how substantial these differences are as well as their impact on the accuracy of the persona 

determination algorithm.      

D. Discovery Process 

Unlike biological cells, computer nodes cannot subdivide. Thus, the discovery process relies on existence 

of generic devices which are customized to obtain specific persona. The discovery process of each device 

begins by discovering other devices that are on the same network.  

As part of this discovery, an implementation of a zeroconf protocol would be needed to eliminate the 

need for specialized servers to configure machines. Assuming that the generic devices support the IP 

protocol, we propose a variation of the Apple mDNS protocol for zeroconfiguration. Each machine picks a 

randomly generated domain name and an IP address randomly from the reserved private address space (e.g. 

the subnet 10/8). The IP address picked is always selected to have a 0 in the last bit, so in effect the 

machine is reserving a network address block capable of supporting two individual machines. The rationale 

for reserving two addresses will be apparent when we look at the design of elements in a single generic 

device.  

 The device then starts listening on a reserved port, and sends a broadcast message on the local subnet on 



 

the same reserved ports to other devices in the subnet. When the devices receiving the message respond, it 

is able to identify other nodes. If it finds a conflict on the subnet with any other machine, it selects another 

random name and address that is not already taken, and broadcasts its change of name to all of the nodes in 

the subnet.  

Once the node has discovered other devices and negotiated/finalized its domain name and network 

address, it looks for any node that may have already been contacted by an embryo node. If any node it has 

discovered has already found the embryo node, it obtains the genetic code, the location computation code 

and distance from the node of the embryo. When the node finds any new node in turn, it transmits the 

information over to that node as well.  

In some environments, the discovery process needs to be secured since a morphogenesis approach like the 

one described in this manner introduces obvious security vulnerabilities. A malicious node pretending to be 

an embryo can easily subvert the operation of the entire system. In order to secure the discovery process, an 

initial configuration needs to be done on all the generic devices. However, the configuration values are the 

same for all of the nodes. The configuration parameter includes the public key for the embryo node which is 

to be used for communication. Only location information and genetic code that comes signed with the 

public key of the embryo node is accepted by any node.  

Furthermore, a shared secret key is provided to each of the embryo to encrypt their communication with 

each other during the discovery process. The shared secret key allows only properly configured generic 

devices to communicate with each other and the embryo.   

These two relatively simple security mechanisms can be used effectively to securely discover neighbors 

and to start off the process of morphogenesis.  

E. Structure of Generic Device  

An essential element in the morphogenesis architecture is the structure of the generic device. The generic 

device should be capable of taking on a generic application module and reformat itself accordingly. At the 



 

same time, it should enable the operation and functioning of existing applications.  

We use the concept of hypervisors [13] and virtual machines in order to implement a customizable 

generic device.   The generic device is a computing element that needs to be capable of taking on different 

personas at different times. Each such node can be developed according to the architecture shown in the 

next figure.  
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Fig. 5. Architecture of the generic device 

 

The node consists of a base hypervisor which is always operational. A hypervisor allows multiple virtual 

machines to be running simultaneously on a single node. In our generic machine design, two virtual 

machines are always active, one virtual machine (the configurator system) implementing the initial auto-

discovery and persona selection algorithm, while the other virtual machine (the personalized system) 

implements the software that corresponds to the persona that the machine is required to operate on after 

transforming itself.  The existence of the two virtual machines is the reason the configuration performs the 

zeroconfig process for a subnet capable of supporting two machines. The configuration system uses one of 

the assigned network addresses for itself and the other addresses for the personalized system.  

The configurator system has access to a privileged interface of the hypervisor, which allows it to specify 

the images to be used for the personalized system. The configuration system is also loaded with the images 



 

of the various possible personas the personalized system may take. Depending on the outcome of the 

persona determination process, the configuration system provides the appropriate image to the hypervisor 

for it to launch and start the personalized system.  

The separation of the configurator system and the personalized system enables many existing images to 

run on the machine without the danger of running into any type of interference from the configuration 

system processes. Along with the structure of the generic node described in this manner, the protocols 

described in the previous section would be able to support a system in which nodes automatically determine 

their position, blueprint scaling parameter and associated persona and create the desired topology of the 

overall system in a completely distributed manner.  

VI. EVALUATION 

 In this section we study experimentally the accuracy of the persona determination algorithm under 

various conditions, such as the network size, the node density and node mobility. We assume that nodes are 

equipped with a GPS chipset, or they have other means of accurately estimating their current location. On 

the other hand, nodes do not need to know the location of any other node in the network (with the exception 

of the embryo node) and thus they do not need to know their actual placement in the network with respect 

to all other nodes. They use the blueprint scaling algorithm of Section V.C in order to estimate their relative 

position in the network and consequently determine their persona.     

 The accuracy of the persona determination algorithm is mainly a function of the accuracy of the scaling 

parameter as it is estimated by the blueprint scaling algorithm. The scaling parameter is mainly a function 

of the network density that each node estimates by using only local information, mainly the number of 

nodes that it can listen to in an area of a certain radius. Next we investigate how accurate these density 

measurements are under the following two varying conditions: the size of the sensing area and the number 

of nodes in the network. In both experiments we create networks with an average density of 0.5 nodes per 

square meter. The networks are created with the following procedure. Nodes are placed randomly in a 



 

square area and each node is connected with all the other nodes that are within its sensing radius. Note that 

the resulted network has the properties of a random geometric graph. 

 

 

Fig. 6. Density estimations at different antenna radius sensitivity, for a network of 5000 nodes, in a square area of 

100m width (actual density of 0.5) 

 

 

Fig. 7. . Density estimations at different network sizes, with actual density being constant for all networks (actual 

density of 0.5) 

 

 Figure 6 gives the cumulative distribution function (CDF) of the density estimated by each node of a 

random geometric graph of 5000 nodes in a square area of 10000m2, for different radius sizes. Given that 

the average density is 0.5 we see that by increasing the radius the estimation accuracy improve 



 

considerably. The main reason behind that is that as the radius increases the number of neighbors increases 

as well, and thus the sampling size becomes larger, which leads to better density estimation. One side effect 

of the increased radius size is that nodes close to the limits of the square area underestimate the network 

density, given that there are no nodes outside of the square area. This can be seen in Figure 6 by the larger 

number of estimation with a density less than 0.4 for the 10 radius curve, compared to the 7.5 and 5 radius 

curves. The effects of this underestimation on the accuracy of the persona determination algorithm will be 

more evident in an experiment presented later in this section.    

 Figure 7 gives the density estimation results for various network sizes. The average density for all these 

networks is 0.5 and is achieved by appropriately changing the size of the square area. The radius size of the 

sensing area for all these experiments is 5m. The graph shows that as the size of the network increases the 

estimation accuracy increases. Intuitively someone would expect that the accuracy should be the same given 

that the average density and the sensing radius is the same for all network size. On the other hand, for 

smaller network sizes, the square area becomes smaller and the percentage of nodes that are closer to the 

border increases, which leads to a larger number of underestimations for the average density. 

 From the previous results we conclude that the estimation accuracy of the scaling parameter from each 

node increases as the size of the network increases, as the sensing radius becomes larger and as the 

estimating node is further away from the edges of the network. Next we investigate the accuracy of the 

persona determination algorithm when nodes are moving and when the network is expanding. We are 

adopting the genetic code of Figure 4 for all of the following experiments. The following table gives the 

actual values that we used for the parameters of the genetic code.   

 

a1 a2 a3 b1 b2 b3 w h h1 h2 r1 r2 r3 r4 r5 

0.120 -0.120 0.000 0.175 0.175 -0.150 0.025 0.300 0.150 0.250 0.100 0.150 0.200 0.350 0.400 

 

Table 3. Parameter setting for the genetic code of figure 4 



 

 

 

Fig. 8. One experimental instantiation of the genetic code of figure 4 in a network of 5000 nodes, using the 

parameters of table 3 

 

 Figure 8 presents graphically an instantiation of the genetic code at snapshot of time in a randomly 

generated network. With visual inspection we can see that the persona assignments are very close to the 

desired ones. Notable exceptions are the nodes that are close to the border of the square area. These nodes, 

as explained before, underestimated the density of the network and in consequence overestimate the scaling 

parameter. As a result they are under the impression that they are close to the embryo node than they really 

are, which leads some of them to adopt persona D. The next table shows the target percentage of nodes that 

should adopt one of the 4 possible personas (based on the parameter settings of table 1).    

 

Persona A B C D 

Nodes (%) 2.000 6.283 5.498 11.781 

 

Figure 9 shows the percentage of nodes that have adopted one of the four personas as a function of time. 

During the simulation time, nodes move freely around the square area, following a waypoint mobility 

model. The graph also shows the targeted number of nodes for each persona. We can see that for personas 



 

A, B and C the actual numbers of nodes are very close to the targeted ones through out the duration of the 

simulation. For persona D, which is assigned to the nodes that are close to the border of the square area, the 

actual number is above the targeted one due to the border effects in their density estimation.  

 

 

Fig. 9. Distribution of personas as a function of time, in a network of 5000 mobile nodes 

 

 

Fig. 10. Distribution of personas as a function of the area size, in a network of 5000 mobile nodes that expands 

from a square area of 100m to an area of 200m 

 

 Figure 10 provides similar results with the difference that during the simulation time the network expands 

from a square area of size 100m to a square area of size 200m. As in the previous case nodes move 

randomly within the square, by following the waypoint mobility model. While we observe similar results as 



 

before, we should point out this graph demonstrates the ability of the persona determination algorithm to 

adjust appropriately to network size changes. Throughout the simulation time the actual number of nodes 

for each persona is close to the targeted one.   

VII. RELATED WORK 

 Self-organization principles applied to highly dynamic computing systems have been the focus of recent 

research efforts in the mobile ad-hoc networks (MANET) and peer-to-peer (P2P) fields. In the MANET 

routing domain, protocols such as AntHocNet [15] and SAMPLE [16] have used biological metaphors to 

identify robust and efficient routes for packet delivery. The inspiration for AntHocNet comes from the 

process of stigmergy employed by ants in their quest to identify shorter (or higher quality) paths while 

foraging for food. The SAMPLE protocol makes use of collaborative reinforcement learning to coordinate 

the solution to discrete optimization problems in multi-agent systems, in order to optimize desirable system 

properties such as throughput or robustness. Both of these protocols apply the principles of short- and long-

term feedback, however their framework does not emphasize the possibly different roles that the nodes can 

play in the MANET, as the network service under consideration (routing) is relatively homogeneous in 

functionality among nodes. 

 Localized structures and positive feedback loops are self-organizing properties also exhibited by P2P 

systems such as Freenet [17], whose similarities to the emerging behavior and mechanisms of MANET 

routing services are further highlighted in [18]. However, as in the case of self-organizing MANET routing 

protocols, the network nodes are rather homogeneous, in contrast to the different roles and functionalities 

encountered in more complex services such the ones we consider in this work. 

 Adaptation by continuous monitoring of the environment, often referred to as “execution context”, and 

composite services that are further decomposed into sets of more primitive ones offered by a plurality of 

nodes, and for which a role selection process must be in place, have been recently studied in the nascent 

field of modeling and composition of mobile web services [19] [20] [21] [22]. Various approaches and 



 

formalisms are employed for the description, coordination and adaptation of the mobile services, however 

the main assumption of self-organizing systems -- that of completely localized decision making -- is 

typically not met: the orchestration, i.e., the binding of the composite service specification to nodes for 

execution, monitoring and supervision, is performed by an orchestration service that assumes access to 

global knowledge of the environment, the nodes, and their capabilities. 

 Autonomous operation based on partial observability of the execution environment and adaptive behavior 

that makes use of feedback have been advocated for use in multi-agent systems [23] [24]. Key abstractions 

such as agents, interactions and organizational structures are used for designing and engineering complex 

software systems in a manner that is more natural and closer to the conceptual model of the programming 

task under examination than existing object-oriented or procedural approaches. The multi-agent field 

embodies several of the concepts presented in this paper. However, we should note that sharing global 

knowledge in a large software system is rather straightforward and imposes minimal overhead, compared to 

a similar task in a MANET environment, in which the underlying physical infrastructure is significantly 

more dynamic. 

 Design of network services based on principles that have been inspired by the operation of biological and 

social systems is also described in the adaptive networking architecture for service emergence (ANA-SE) in 

[25] and [26]. As in multi-agent systems, the main abstraction in this proposal is autonomous entities called 

cyber-entities. Emergent services created from such autonomous cyber-entities are able to interact with one 

another and adapt to the dynamics of the environment. The main difference between ANA-SE and our 

approach is that the former models services with agents that move around between nodes, so when they 

move their intelligence/memory comes with them, whereas in our work we decompose the services into 

roles, and let the nodes choose what role to play. 

 Closed to the idea of morphogenesis presented in this paper is the work by Kruger and Dressler [27], [28] 

and [29], in which they have designed self-organizing networks inspired by the interaction of individual 

cells. The applications that they consider are network security and wireless sensor networks. The biological 



 

inspiration of their work mainly focuses on the similarities between the signaling that happens in biological 

cells and between nodes in technological networks, as well as the feedback loops introduced due to these 

signaling mechanisms. In contrast our work while also inspired by biological cells, focuses mainly on the 

developmental aspects of cells, as described by the process of morphogenesis and its application on the 

design of networks where nodes can independently and distributedly can differentiate their roles.      

VIII. CONCLUSIONS AND FUTURE WORK 

The architecture described in this paper is part of the enabling architecture that can be used to develop a 

variety of computing networks. The extent to which the system can model a variety of systems depends on 

the richness of the mathematical expression that is used to represent the genetic code. In the initial 

architecture of the system, we have opted to use simple deterministic mathematical equations to represent 

the genetic code. The representation can be extended to include stochastic and probabilistic functions to 

determine the persona of individual machines. The extent to which such functions can augment the types of 

distributed system that can be represented is the subjective of active investigation in the ITA [14] program.  

The architecture as described above can be implemented readily on by modifying traditional hypervisors 

such as VMWare or Xen to support the capabilities of the configurator machines. The distributed 

algorithms required to attain the architecture are relatively simple and can be implemented readily on 

current platforms. Thus, the architecture provides a simple, but highly effective scheme to obtain self-

configuration behavior in a machine.  

There are a few potential extensions to the architecture that can be made to enhance its capability. Instead 

of having a single personalized system on a physical node, it is possible to have more than one personalized 

system running on a single node. That allows for a single node to be able to take on the desired topology of 

the distributed system, or multiple nods to collaborate together to obtain the desired topology depending on 

which configuration is feasible at any time. The scalability of the system can also be increased by using an 

image server to provide the images for the personalized system, rather than storing all images on a local 



 

machine.   

The architecture that we have presented works well when the final desired node is relatively static. 

However, in the context of a mobile ad-hoc network, the resulting system may tend to be unstable due to 

frequent changes in persona assignments. More research is needed to determine how this system could be 

made more stable in a mobile dynamic environment.  

As we gain more experience with the architecture and mathematical models of the morphogenesis 

approach, the self-organizing distributed network would become a reality and ease the burden of 

configuring and installing a large variety of machines and appliances in the current IT environment.   
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