
RC24769 (W0903-082) March 20, 2009
Computer Science

IBM Research Report

Morphogenesis in Computer Networks

Vasileios Pappas, Dinesh C. Verma
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Abstract—Morphogenesis is the process that gives shapes to organisms from an embryonic stage using a

process of cell-division. Starting from a simple embryonic cell, the controlled division and transformation of

the cells into different types leads to the creation of a complex organism. The growth of complex organisms is

completely autonomic, and is of the best examples of self-organizing systems that can be found in nature. In

comparison, computer networks of today are much more static and require a significant human intervention

in order to take on the shape and size that is desired. However, emerging technology such as virtualization

and network computing enables an architecture where computer networks can also develop using

morphogenesis. In this paper, we present the benefits of morphogenesis in a computer network, and we

describe an architecture for a computer network which self-organizes itself using the principles of

morphogenesis.

Index Terms—morphogenesis, self-organization, autonomic networks, self-configuration.

I. INTRODUCTION

 The management and operations of distributed computer systems and networks is a complex labor-

intensive task that accounts for the lion’s share of costs in current computing environment [1]. A significant

component of the complexity arises from the heterogeneity that exists in the computing infrastructure. The

presence of a variety of different types of machines in a computing environment creates challenges related

to the configuration, error diagnosis and repair of the infrastructure that is put into place. In many

environments, e.g. in the case of military networks, a variety of instruments implies the need to carry

batteries and power equipment, which increases dead weight and increase power consumption.

Although a few vision papers[2][3] have been put forward for the development of self-organizing self-

configuring computer systems, an architecture for computer networks that exhibits such behavior remains

Morphogenesis in Computer Networks

Vasileios Pappas and Dinesh C. Verma, Fellow, IEEE

elusive. If one were to truly attain the vision of self-organization, networking infrastructure at a data center

or operational capabilities of a military outpost could be obtained simply by turning on generic machines at

the site, and the machines would take on the configuration and installation that is required to fulfill the

computing needs of that data center or the military outpost. This paper presents an architecture for computer

systems which enables them to realize this vision.

The inspiration for such self-organization is drawn from the ability of biological systems to grow and

differentiate themselves into self-organizing patterns [4]. A small acorn can grow into a mighty oak, and a

small zygote can differentiate itself to make a complicated human being. This phenomenon of

morphogenesis can be replicated to the domain of computer networks using the architecture described in

this paper. Our goal would be to obtain well-defined structure for the overall computer network, while

avoiding the phenomenon of emergent behavior [5], where unanticipated and unpredictable characteristics

are observed. Self-organization without emergence requires restricting the behavior of the system, since

even simple cellular automatons [6] can easily result in very complex patterns.

The architecture introduced in this paper would enable computer systems to have the desirable attributes

of self-organization and self-configuration, while still resulting in a system that is unlikely to show

emergent behavior. Proposed architecture enables constrained and controlled self-organization which is

fundamentally different from the uninhibited self-organization in complex systems [7][8]. The architecture

is realizable and attainable with current technology in computing systems.

 We begin by describing some scenarios that we would like to obtain as a result of this architecture. After

the description of the scenario in Section II, Section III describes the biological inspiration of the system.

Section IV describes the usage model of the system we develop, and Section V describes the

morphogenesis architecture of each node in the self-organizing network that enables morphogenesis. In

Section VI we experimentally evaluate the accuracy of our system. Finally, we present the related work and

Manuscript received March 15, 2009. Work was sponsored by U.S. Army Research Laboratory and the U.K. Ministry of Defence and accomplished under

Agreement Number W911NF-06-3-0001

we conclude with a summary and the open problems.

II. TARGET SCENARIOS

In this section, we look at some target scenarios and what the goal of the morphogenesis architecture

would be in each of the scenarios.

A. Commercial Data Center

A commercial data center in current environments is a complex network of devices. Among the different

types of devices that are found in the data center, one can enumerate IP routers, firewalls, Ethernet switches,

web servers, application servers, database servers, and storage devices such as disk arrays. Additionally,

management servers, accounting servers, customer help-desk systems as well as audit compliance systems

may be present to ensure smooth operation of the data center. Many of these devices are specialized

hardware or software functions, and can rarely be interchanged. In some cases, e.g. on servers, it is possible

to manually install database software instead of application software, but the process is usually slow and

cumbersome.

Ethernet

Switch
Web

Server

Web

Server

Web

Server

WS Load

Balancer

Ethernet

Switch

Database

Server

Database

Server

Database

Server

Database

Federator

Ethernet

Switch

Application

Server

Application

Server

Application

Server

AS Load

Balancer

Ethernet

Switch

Web

Cache

Web

Cache

Web

Cache

Cache Load

Balancer

Firewall Internet

Fig. 1. Typical Tiered Architecture of Data Centers

V. Pappas and D. Verma are with the IBM Watson Research, Hawthorne, NY, USA (telephone: 914-784-7466, e-mail: dverma@us.ibm.com).

A classic arrangement of a commercial data center is that of a tiered architecture where multiple

machines perform the same function in each tier. A typical tiered architecture of a web-hosting server is

shown in Figure 1 ,with the 0
th
 tier being a set of databases, the 1

st
 tier being a set of application servers,

the 2
nd
 tier being a set of web-servers, the 3

rd
 tier being a set of web-caching proxies, the 4

th
 tier being a

firewall that acts to protect the other tiers before connecting to the Internet. Each tier (except the firewall)

would typically have a load-balancer connected together with a network switch to the other machines in the

tier. In some data centers, there may be an additional server or some other application, e.g. LDAP Servers

located attached to the side of one of the tiers. Physically, each tier would get its interconnectivity using an

Ethernet switch. Note that multiple tiers can make use of the same physical switches but still being isolated

at the logical level with the use of virtual local area networks.

Other than the Ethernet switch, the machines that make up the data center consist of servers running

various application packages. They can be created dynamically by reconfiguring applications on a generic

machine. An Ethernet switch in a data center provides connectivity among a cluster of machines. Assuming

that the basic connectivity is available, we would like to achieve a scenario in which a group of generic

machines, (e.g. consisting of a base Linux operating system) are connected to different Ethernet switches

and booted up. Assuming that each of the machines is aware of the overall blueprint of the system that is

available, we would like the generic machines to automatically determine their position in the system,

determine their role and then configure themselves to be conformant within that role.

B. Military Camp Scenario

In a military camp, the network interconnecting different devices and machines may be a wireless

network instead of a wired network. This is because the physical establishment of a wireless network is

easier than that of a wired network in a camp which needs to be dismantled and established rapidly.

However, there are many computer systems and components with different persona and roles that need to

be established in the military camp.

A typical personal and role of the different servers making up the military are shown in Figure 2. In this

figure, the different devices are connected using a wireless network. The different machines are deployed in

the role of servers (e.g. to use for electronic mail) while others are used to run different applications such as

red/blue force tracking, managing a wireless sensor network or for planning military operations. While the

structure in the military camp is not in terms of cleanly delineated tiers such as that of the commercial data

center, there are distinct components of the system that perform various functions.

Planner

Firewall

Satellite Gateway

Blue Force/Red Force Trackers

Load-Balancer

WSN Gateway

Sensor NoC

Servers (Email, Inventory)

Router

WSN

Fig. 2. A typical environment in a military base camp

As in the case of the commercial data center, we would like to attain a scenario is which generic

machines are powered on in the base camp. The generic machines, when powered up, are going to

understand their position in the overall network, map that position to the role they need to play within the

network, and then configure themselves automatically to support and provide those functions.

There are many benefits of using morphogenesis in the design of computer systems and networks. If the

computing environment can configure itself automatically and take on the appropriate persona, the effort

required in configuring systems would be much reduced. In current environment, e.g. the military camp

scenario, the different devices tend to be relatively black boxes that cannot be easily transformed from one

to another. This causes problems in the management of logistics, e.g. one may have too many boxes doing

blue-force tracking but too few boxes running planning applications, and it is not trivial to convert one to

another. Furthermore, as conditions on the ground changes, a system that can change its persona can adjust

itself better to the dynamic environmental changes.

The goal of this paper is to define an architecture which will allow us to attain the vision outlined above

for the previous environments. The architecture should be usable in many different contexts other than the

previous two that we have described.

III. BIOLOGICALLY INSPIRED MORPHOGENESIS

In order to design morphogenesis in computer systems, we look upon biological cell division for

inspiration and insights into a similar function for computer systems. However, our intention is not to

mimic the complete biological process, but only to use high-level principles from its operation.

The blueprint for what an organism needs to become is contained in the first cell (embryo) and is copied

from that to all other cells that are formed by the process of cell-division. Each new cell determines its

position relative to other cells in the entire system and uses its position and environment to determine what

it needs to become (i.e. a skin cell, or a blood cell or nerve cell, etc). The determination of the position and

the type of cell each one needs to become is determined by a complex set of interactions among the

chemicals and the position of the cells.

Without mimicking the complexities of cellular division, we can use the following high-level concepts

from the natural morphogenesis process to develop the similar behavior in computer networks:

The Embryo: The embryo is a special cell which is configured with the blueprint of the entire system by

means of its genetic code. Similarly, in our development of the morphogenesis of the system, we will select

a special node as the embryo which will have the blueprint of the entire system.

The Genetic Code: The genetic code is a concise description of the overall distributed system that needs

to be created. Similarly, we will have a concise description of the overall system that ought to be formed.

The genetic code will be provided to the embryo node, which will be responsible for disseminating the

genetic code to all of the other elements.

Cell Division: The embryo creates new cells using the process of cell division. The structure is obtained

by means of the new cells determining their persona and changing themselves into that persona. In the

computer systems that we are designing, we would need to have a mechanism to add new cells or nodes.

One such process is the creation of new virtual machines on an existing physical node. Another process is

the introduction of new physical node.

Position Determination: In the morphogenesis process in biology, the position of the cell and its state

with respect to its neighbors is an important factor in determining its behavior. Therefore, each computer

node in the biologically inspired network needs to have a way to determine its position.

Blueprint Scaling: As the size of the living organism increases, the sizes of the individual organs and

body parts scale accordingly. The same blueprint that defines a toddler defines a full grown man as well.

Similarly, as the size of the network increases or decreases we would like to use the same blueprint that can

easily scale to various system sizes.

Personal Determination: The final step in the morphogenesis process is the determination of the persona

a computer node will take. The persona of a computer node is the set of applications, application data and

operating system that is used to provide its functionality.

The architecture that we describe in subsequent sections provides for an implementation of the above

concepts borrowed from biology.

IV. USAGE MODEL

In the usage model of the system that we have, each device is booted off as a generic device. By default,

each device is assumed to be a generic device and not an embryo. The system administrator can toggle a

switch or change configuration parameters of one device to mark a device as an embryo. The embryo is also

configured to obtain its genetic code. The embryo communicates with the other devices to establish

communication and to disseminate the genetic code.

For simplicity, we will be describing the system as consisting of exactly one embryo. However, a general

system may include many different embryos. A simple mechanism to support multiple embryos is to just

assume that a generic device would belong to the embryo that it first establishes contact with.

Once a generic device is powered up, it tries to discover other devices in its neighborhood with whom it

has connectivity. It waits till it finds an embryo in the discovered cells, or another node which has access to

the genetic code from an embryo. The generic device obtains the genetic code from such device. The

device in turn would provide the genetic code to any other device that it discovers in the system.

After the generic device has received its genetic code, it determines its position and then its persona by

examining the genetic code. Having obtained its persona, the device changes itself to the corresponding set

of software as dictated by the persona. Different personas can be prepackaged as different virtual machine

images, in which case the adoption of a persona from the generic device becomes just the instantiation of

the appropriate image on the generic device.

The operation of an embryo node is very similar to that of the generic device, except that it has its genetic

code from the very beginning. After being powered up, the embryo searches for other adjacent nodes in the

neighborhood to whom it provides the genetic code.

V. MORPHOGENESIS ARCHITECTURE

The key design considerations needed in order to support this architecture are (i) the representation of the

genetic code (ii) the position determination algorithm (iii) the mapping from position to persona (iv) the

discovery process to find new cells and (iv) the architecture of each generic device which enables it to take

on the desired persona.

A. Representation of Genetic Code

Although there are multiple approaches possible to represent the genetic code, we will take the approach

of defining the genetic code as a set of mathematical expressions. In specifying the genetic code as a set of

mathematical expressions, we assume that the position of a node is specified as a set of coordinates, {x1, x2,

…. xn}, and that a set of mathematical equations define the constraints that map any coordinate to a specific

persona. The use of location to define a role of a machine is taken from the observation that most organisms

follow a similar paradigm. Figure 3 below shows how the cross-section of a human body can be mapped

into a planar description of the regions where different types of personals are assigned to nodes based on

position.

(a) Body Cross-Section

Type B
Type B

Type C

Type D

Type A

(b) Simplified Region of Cell-Types

Fig. 3. Presence of Similar Regions in Biological Systems

If we consider the genetic code that represents the system created in Figure 3, we can use a mathematical

representation as shown below. A two-point coordinate system is used to represent the position {x1, x2} of

any point in the plane, and each position is mapped to a persona.

If r4< (x1
2 + x2

2)1/2 < r5

then persona = D

If r2< ((x1 - a3)
2+(x2 - b3)

2)1/2 < r3

then persona = C

If ((x1 - a1)
2+(x2 - b1)

2)1/2 < r1

then persona = B

If ((x1 - a2)
2+(x2 - b2)

2)1/2 < r1

then persona = B

If (-w < x1 < w) && (-h < x2 < 0)

then persona = A

If (-w < x1 < w) && (h1 < x2 < h2)

then persona = A

x x

Type C

Type D

Type A

(0,0)

(a1,b1)

(0,-w)

(a2,b2)

(a3,b3)
x

r1

r3

r1

r2

r5

r4

(0,w)

(-h,-w) (-h,w)

(h1,-w) (h1,w)

(h2,-w)
(h2,w)

Type B

Fig. 4. Example of Genetic Code Description

The same principle can be used to specify the genetic code for any type of computer system. As an

example, the genetic code for the commercial data center can be specified simply by using a two

dimensional coordinate {x1, x2} where x1 measures the distance of the system from the embryo and x2 is a

logical coordinate. The logical coordinate is used in order to assign more than one roles at the same

location, mainly in cases where there are multiple nodes at the same location. Each node randomly picks the

logical coordinate from a set of possible logical coordinates for that position. The method for location

determination is described in subsequent section. Let us assume that the embryo is marked as the firewall to

the Internet. The following mapping would be the genetic code specifying the characteristics of the

commercial data center.

Table 1. Datacenter genetic code Table 2. Military base camp genetic code

Similarly, a table mapping using a similar description could be used to represent the topology of the

system described in the military base camp. The genetic code representation as a mathematical expression is

general enough to capture a wide variety of end organisms that are targeted. The representation can be

captured in a computer readable manner and transmitted efficiently between different cells.

Distance Persona

(0,0) Firewall

(1,0) Load-balancer

(1,1) Red Force Tracker

(2,0) NoC

(2,1) Planner

(2,2) WSN Gateway

(3,0) Router

(3,1) Email Server

(3,2) Asset Inventory

Distance Persona

(0,0) Firewall

(1,0); (2,0); (3,0); Load-balancer

(1,1) Web Cache

(2,1) Web Server

(3,1) Application Server

(4,0) Database Federator

(4,1) Database

B. Position Determination Algorithm

The position of a node is determined by means of three independent metrics, the first measuring the

distance of the node from the embryo in terms of hops, the second (an optional component) measuring the

absolute difference in position of the node relative to the embryo, and the third being a customizable

definition of position that is broadcast by the embryo.

The distance of node from the embryo is relatively trivial to determine. Each node maintains a distance

counter for itself, the distance counter being the lowest among the distance counters of all its neighbors

incremented by 1. The simple distributed algorithm measures the smallest distance in hops between a node

and the embryo.

The absolute difference in position requires that the devices be capable of obtaining an absolute position

reading for themselves. This may be obtained by using a GPS system [9], or for indoor systems similar

triangulation [10] [11] techniques that can be used from different access points located inside a building.

The ability to read the absolute position is dependent on the capabilities of the generic device base software

infrastructure.

The third component of the position is a set of directions that comes from the embryo. This component

provides instructions from the embryo on how to compute any additional components of the position. The

distance from the embryo and the absolute difference in position provide the first few coordinates of the

position vector. The other coordinates can be computed logically by means of programmatic directions that

come with the embryo along with the genetic material. These programmatic instructions include

information such that exactly one of the equidistant nodes should take on a logical coordinate of zero, and

others take the logical coordinate of one, or that a coordinate may be selected randomly to be either 0 or 1

with an equal probability. These instructions come as executable software in the mode of active networks

[12], thereby providing the ability to compute position metrics dynamically by the embryo.

Taken together, these three mechanisms provide a position coordinate for each node where the first

coordinate marks the distance from the embryo, the second few mark the absolute difference in position and

the remainder are computed as per directions coming from the embryo.

Once the position and the genetic code are received from the embryo by the process of dissemination, the

computation of the persona from the position vector is a routine operation from the specified genetic code.

C. Blueprint Scaling Algorithm

The definition of the genetic code as a mathematical expression is done in a way that is agnostic of the

size of the network. That means that the same genetic code can be used to describe a small network,

confined in an area as small as a few square meters, as well a large network, in an area as large as a few

square kilometers. In essence the genetic code describes the configuration of the network in a unit-free way.

Then for each specific instantiation of the genetic code, nodes scale the mathematical expression of the

genetic code accordingly, so as to adjust the network configuration to the appropriate size.

The main challenge in scaling the mathematical expression is the knowledge of the actual area that is

covered by the network. For example if we consider the genetic code description of Figure 4, given in a

unit-free manner, and we know that the total area of the network where the code is going to be instantiated

is one square kilometer, then we can appropriately scale the mathematical expression. Unfortunately the

total area may not be known in advance. Even worse, the total area can vary considerably during the

lifetime of a network, as the network may expand or shrink during its lifetime.

To deal with these issues nodes continuously estimate the size of the network and scale the mathematical

expression accordingly. The estimation is done in a completely distributed manner with the use of local

measurements only. Each node i measures the number of nodes Ni that it can listen within its local

neighborhood, a circle that covers an area of Ac. Given these measurements node i computes the local

density Di, defined as Di = Ni/Ac. Assuming a homogeneous network, each node independently estimates

the density of the whole network, with node’s i estimate being Di. Given the total number of nodes N that

participate in the network is known in advance by every node, then the total area of the network estimated

by node i is: Ai = N/Di = Ac*N/Ni. Given this estimation of the total area, and the fact that the genetic code

is defined within one square unit area, each node computes each scaling parameter Si as follows:

 Si = Ai
1/2
 = (Ac*N/Ni)

1/2
.

This final expression shows that the scaling parameter is computed only with the use of local

information: the size of the listening area (Ac), which mainly depends on predefined radio parameters, the

number of local neighbors (Ni) that are within the listening area, and the total number of nodes (N), that is

known to every node in advance. In the case that precise location information is available, with the use of

GPS, the accurate determination of the neighbors’ location can further improve the density estimation. Note

that the above process yields different scaling results for each node. In the evaluation section we study

experimentally how substantial these differences are as well as their impact on the accuracy of the persona

determination algorithm.

D. Discovery Process

Unlike biological cells, computer nodes cannot subdivide. Thus, the discovery process relies on existence

of generic devices which are customized to obtain specific persona. The discovery process of each device

begins by discovering other devices that are on the same network.

As part of this discovery, an implementation of a zeroconf protocol would be needed to eliminate the

need for specialized servers to configure machines. Assuming that the generic devices support the IP

protocol, we propose a variation of the Apple mDNS protocol for zeroconfiguration. Each machine picks a

randomly generated domain name and an IP address randomly from the reserved private address space (e.g.

the subnet 10/8). The IP address picked is always selected to have a 0 in the last bit, so in effect the

machine is reserving a network address block capable of supporting two individual machines. The rationale

for reserving two addresses will be apparent when we look at the design of elements in a single generic

device.

 The device then starts listening on a reserved port, and sends a broadcast message on the local subnet on

the same reserved ports to other devices in the subnet. When the devices receiving the message respond, it

is able to identify other nodes. If it finds a conflict on the subnet with any other machine, it selects another

random name and address that is not already taken, and broadcasts its change of name to all of the nodes in

the subnet.

Once the node has discovered other devices and negotiated/finalized its domain name and network

address, it looks for any node that may have already been contacted by an embryo node. If any node it has

discovered has already found the embryo node, it obtains the genetic code, the location computation code

and distance from the node of the embryo. When the node finds any new node in turn, it transmits the

information over to that node as well.

In some environments, the discovery process needs to be secured since a morphogenesis approach like the

one described in this manner introduces obvious security vulnerabilities. A malicious node pretending to be

an embryo can easily subvert the operation of the entire system. In order to secure the discovery process, an

initial configuration needs to be done on all the generic devices. However, the configuration values are the

same for all of the nodes. The configuration parameter includes the public key for the embryo node which is

to be used for communication. Only location information and genetic code that comes signed with the

public key of the embryo node is accepted by any node.

Furthermore, a shared secret key is provided to each of the embryo to encrypt their communication with

each other during the discovery process. The shared secret key allows only properly configured generic

devices to communicate with each other and the embryo.

These two relatively simple security mechanisms can be used effectively to securely discover neighbors

and to start off the process of morphogenesis.

E. Structure of Generic Device

An essential element in the morphogenesis architecture is the structure of the generic device. The generic

device should be capable of taking on a generic application module and reformat itself accordingly. At the

same time, it should enable the operation and functioning of existing applications.

We use the concept of hypervisors [13] and virtual machines in order to implement a customizable

generic device. The generic device is a computing element that needs to be capable of taking on different

personas at different times. Each such node can be developed according to the architecture shown in the

next figure.

Operating System

Installer

Persona

Determiner

Image Repository

Hypervisor

Discovery &

AutoConfiguration

Configurator System

Personalized

System

Position

Determiner

Scaling

Determiner

Fig. 5. Architecture of the generic device

The node consists of a base hypervisor which is always operational. A hypervisor allows multiple virtual

machines to be running simultaneously on a single node. In our generic machine design, two virtual

machines are always active, one virtual machine (the configurator system) implementing the initial auto-

discovery and persona selection algorithm, while the other virtual machine (the personalized system)

implements the software that corresponds to the persona that the machine is required to operate on after

transforming itself. The existence of the two virtual machines is the reason the configuration performs the

zeroconfig process for a subnet capable of supporting two machines. The configuration system uses one of

the assigned network addresses for itself and the other addresses for the personalized system.

The configurator system has access to a privileged interface of the hypervisor, which allows it to specify

the images to be used for the personalized system. The configuration system is also loaded with the images

of the various possible personas the personalized system may take. Depending on the outcome of the

persona determination process, the configuration system provides the appropriate image to the hypervisor

for it to launch and start the personalized system.

The separation of the configurator system and the personalized system enables many existing images to

run on the machine without the danger of running into any type of interference from the configuration

system processes. Along with the structure of the generic node described in this manner, the protocols

described in the previous section would be able to support a system in which nodes automatically determine

their position, blueprint scaling parameter and associated persona and create the desired topology of the

overall system in a completely distributed manner.

VI. EVALUATION

 In this section we study experimentally the accuracy of the persona determination algorithm under

various conditions, such as the network size, the node density and node mobility. We assume that nodes are

equipped with a GPS chipset, or they have other means of accurately estimating their current location. On

the other hand, nodes do not need to know the location of any other node in the network (with the exception

of the embryo node) and thus they do not need to know their actual placement in the network with respect

to all other nodes. They use the blueprint scaling algorithm of Section V.C in order to estimate their relative

position in the network and consequently determine their persona.

 The accuracy of the persona determination algorithm is mainly a function of the accuracy of the scaling

parameter as it is estimated by the blueprint scaling algorithm. The scaling parameter is mainly a function

of the network density that each node estimates by using only local information, mainly the number of

nodes that it can listen to in an area of a certain radius. Next we investigate how accurate these density

measurements are under the following two varying conditions: the size of the sensing area and the number

of nodes in the network. In both experiments we create networks with an average density of 0.5 nodes per

square meter. The networks are created with the following procedure. Nodes are placed randomly in a

square area and each node is connected with all the other nodes that are within its sensing radius. Note that

the resulted network has the properties of a random geometric graph.

Fig. 6. Density estimations at different antenna radius sensitivity, for a network of 5000 nodes, in a square area of

100m width (actual density of 0.5)

Fig. 7. . Density estimations at different network sizes, with actual density being constant for all networks (actual

density of 0.5)

 Figure 6 gives the cumulative distribution function (CDF) of the density estimated by each node of a

random geometric graph of 5000 nodes in a square area of 10000m2, for different radius sizes. Given that

the average density is 0.5 we see that by increasing the radius the estimation accuracy improve

considerably. The main reason behind that is that as the radius increases the number of neighbors increases

as well, and thus the sampling size becomes larger, which leads to better density estimation. One side effect

of the increased radius size is that nodes close to the limits of the square area underestimate the network

density, given that there are no nodes outside of the square area. This can be seen in Figure 6 by the larger

number of estimation with a density less than 0.4 for the 10 radius curve, compared to the 7.5 and 5 radius

curves. The effects of this underestimation on the accuracy of the persona determination algorithm will be

more evident in an experiment presented later in this section.

 Figure 7 gives the density estimation results for various network sizes. The average density for all these

networks is 0.5 and is achieved by appropriately changing the size of the square area. The radius size of the

sensing area for all these experiments is 5m. The graph shows that as the size of the network increases the

estimation accuracy increases. Intuitively someone would expect that the accuracy should be the same given

that the average density and the sensing radius is the same for all network size. On the other hand, for

smaller network sizes, the square area becomes smaller and the percentage of nodes that are closer to the

border increases, which leads to a larger number of underestimations for the average density.

 From the previous results we conclude that the estimation accuracy of the scaling parameter from each

node increases as the size of the network increases, as the sensing radius becomes larger and as the

estimating node is further away from the edges of the network. Next we investigate the accuracy of the

persona determination algorithm when nodes are moving and when the network is expanding. We are

adopting the genetic code of Figure 4 for all of the following experiments. The following table gives the

actual values that we used for the parameters of the genetic code.

a1 a2 a3 b1 b2 b3 w h h1 h2 r1 r2 r3 r4 r5

0.120 -0.120 0.000 0.175 0.175 -0.150 0.025 0.300 0.150 0.250 0.100 0.150 0.200 0.350 0.400

Table 3. Parameter setting for the genetic code of figure 4

Fig. 8. One experimental instantiation of the genetic code of figure 4 in a network of 5000 nodes, using the

parameters of table 3

 Figure 8 presents graphically an instantiation of the genetic code at snapshot of time in a randomly

generated network. With visual inspection we can see that the persona assignments are very close to the

desired ones. Notable exceptions are the nodes that are close to the border of the square area. These nodes,

as explained before, underestimated the density of the network and in consequence overestimate the scaling

parameter. As a result they are under the impression that they are close to the embryo node than they really

are, which leads some of them to adopt persona D. The next table shows the target percentage of nodes that

should adopt one of the 4 possible personas (based on the parameter settings of table 1).

Persona A B C D

Nodes (%) 2.000 6.283 5.498 11.781

Figure 9 shows the percentage of nodes that have adopted one of the four personas as a function of time.

During the simulation time, nodes move freely around the square area, following a waypoint mobility

model. The graph also shows the targeted number of nodes for each persona. We can see that for personas

A, B and C the actual numbers of nodes are very close to the targeted ones through out the duration of the

simulation. For persona D, which is assigned to the nodes that are close to the border of the square area, the

actual number is above the targeted one due to the border effects in their density estimation.

Fig. 9. Distribution of personas as a function of time, in a network of 5000 mobile nodes

Fig. 10. Distribution of personas as a function of the area size, in a network of 5000 mobile nodes that expands

from a square area of 100m to an area of 200m

 Figure 10 provides similar results with the difference that during the simulation time the network expands

from a square area of size 100m to a square area of size 200m. As in the previous case nodes move

randomly within the square, by following the waypoint mobility model. While we observe similar results as

before, we should point out this graph demonstrates the ability of the persona determination algorithm to

adjust appropriately to network size changes. Throughout the simulation time the actual number of nodes

for each persona is close to the targeted one.

VII. RELATED WORK

 Self-organization principles applied to highly dynamic computing systems have been the focus of recent

research efforts in the mobile ad-hoc networks (MANET) and peer-to-peer (P2P) fields. In the MANET

routing domain, protocols such as AntHocNet [15] and SAMPLE [16] have used biological metaphors to

identify robust and efficient routes for packet delivery. The inspiration for AntHocNet comes from the

process of stigmergy employed by ants in their quest to identify shorter (or higher quality) paths while

foraging for food. The SAMPLE protocol makes use of collaborative reinforcement learning to coordinate

the solution to discrete optimization problems in multi-agent systems, in order to optimize desirable system

properties such as throughput or robustness. Both of these protocols apply the principles of short- and long-

term feedback, however their framework does not emphasize the possibly different roles that the nodes can

play in the MANET, as the network service under consideration (routing) is relatively homogeneous in

functionality among nodes.

 Localized structures and positive feedback loops are self-organizing properties also exhibited by P2P

systems such as Freenet [17], whose similarities to the emerging behavior and mechanisms of MANET

routing services are further highlighted in [18]. However, as in the case of self-organizing MANET routing

protocols, the network nodes are rather homogeneous, in contrast to the different roles and functionalities

encountered in more complex services such the ones we consider in this work.

 Adaptation by continuous monitoring of the environment, often referred to as “execution context”, and

composite services that are further decomposed into sets of more primitive ones offered by a plurality of

nodes, and for which a role selection process must be in place, have been recently studied in the nascent

field of modeling and composition of mobile web services [19] [20] [21] [22]. Various approaches and

formalisms are employed for the description, coordination and adaptation of the mobile services, however

the main assumption of self-organizing systems -- that of completely localized decision making -- is

typically not met: the orchestration, i.e., the binding of the composite service specification to nodes for

execution, monitoring and supervision, is performed by an orchestration service that assumes access to

global knowledge of the environment, the nodes, and their capabilities.

 Autonomous operation based on partial observability of the execution environment and adaptive behavior

that makes use of feedback have been advocated for use in multi-agent systems [23] [24]. Key abstractions

such as agents, interactions and organizational structures are used for designing and engineering complex

software systems in a manner that is more natural and closer to the conceptual model of the programming

task under examination than existing object-oriented or procedural approaches. The multi-agent field

embodies several of the concepts presented in this paper. However, we should note that sharing global

knowledge in a large software system is rather straightforward and imposes minimal overhead, compared to

a similar task in a MANET environment, in which the underlying physical infrastructure is significantly

more dynamic.

 Design of network services based on principles that have been inspired by the operation of biological and

social systems is also described in the adaptive networking architecture for service emergence (ANA-SE) in

[25] and [26]. As in multi-agent systems, the main abstraction in this proposal is autonomous entities called

cyber-entities. Emergent services created from such autonomous cyber-entities are able to interact with one

another and adapt to the dynamics of the environment. The main difference between ANA-SE and our

approach is that the former models services with agents that move around between nodes, so when they

move their intelligence/memory comes with them, whereas in our work we decompose the services into

roles, and let the nodes choose what role to play.

 Closed to the idea of morphogenesis presented in this paper is the work by Kruger and Dressler [27], [28]

and [29], in which they have designed self-organizing networks inspired by the interaction of individual

cells. The applications that they consider are network security and wireless sensor networks. The biological

inspiration of their work mainly focuses on the similarities between the signaling that happens in biological

cells and between nodes in technological networks, as well as the feedback loops introduced due to these

signaling mechanisms. In contrast our work while also inspired by biological cells, focuses mainly on the

developmental aspects of cells, as described by the process of morphogenesis and its application on the

design of networks where nodes can independently and distributedly can differentiate their roles.

VIII. CONCLUSIONS AND FUTURE WORK

The architecture described in this paper is part of the enabling architecture that can be used to develop a

variety of computing networks. The extent to which the system can model a variety of systems depends on

the richness of the mathematical expression that is used to represent the genetic code. In the initial

architecture of the system, we have opted to use simple deterministic mathematical equations to represent

the genetic code. The representation can be extended to include stochastic and probabilistic functions to

determine the persona of individual machines. The extent to which such functions can augment the types of

distributed system that can be represented is the subjective of active investigation in the ITA [14] program.

The architecture as described above can be implemented readily on by modifying traditional hypervisors

such as VMWare or Xen to support the capabilities of the configurator machines. The distributed

algorithms required to attain the architecture are relatively simple and can be implemented readily on

current platforms. Thus, the architecture provides a simple, but highly effective scheme to obtain self-

configuration behavior in a machine.

There are a few potential extensions to the architecture that can be made to enhance its capability. Instead

of having a single personalized system on a physical node, it is possible to have more than one personalized

system running on a single node. That allows for a single node to be able to take on the desired topology of

the distributed system, or multiple nods to collaborate together to obtain the desired topology depending on

which configuration is feasible at any time. The scalability of the system can also be increased by using an

image server to provide the images for the personalized system, rather than storing all images on a local

machine.

The architecture that we have presented works well when the final desired node is relatively static.

However, in the context of a mobile ad-hoc network, the resulting system may tend to be unstable due to

frequent changes in persona assignments. More research is needed to determine how this system could be

made more stable in a mobile dynamic environment.

As we gain more experience with the architecture and mathematical models of the morphogenesis

approach, the self-organizing distributed network would become a reality and ease the burden of

configuring and installing a large variety of machines and appliances in the current IT environment.

REFERENCES

[1] http://www.gartner.com/4_decision_tools/measurement/measure_it_articles/july01/mit_spending_history1.html

[2] A. Ganek and T. Corbi, “The Dawning of the Autonomic Computing Era”, IBM Systems Journal, vol. 42, no. 1, January

2003.

[3] J. O. Kephart and D.M Chess, ``The vision of autonomic computing’’, , IEEE Computer, 36(1), 41-50, Jan 2003.

[4] S. Camazine, J.-L. Deneubourg, N.R. Franks, J. Sneyd, G. Theraula, and E. Bonabeau, Self-Organization in Biological

Systems: (Princeton Studies in Complexity), 2003.

[5] S. Forrest, Ed., . Emergent Computation: Self-organizing, Collective and Cooperative Phenomena in Natural & Artificial

Computing Networks, MIT Press, 1991.

[6] S. Wolfram, Cellular automata as simple self-organizing systems, 1992.

[7] M. Prokopenko, Ed., Advances in Applied Self-organizing Systems, Springer, 2007.

[8] F. Dressler Self-Organization in Sensor and Actor Networks, Wiley, 2008.

[9] E. Kaplan and C. Hegarty, "Understanding GPS: Principles And Applications", Artech House, 2006.

[10] N. Bulusu, J. Heidemann and D. Estrin, "GPS-less low-cost outdoor localization for very small devices", IEEE Personal

Communications, vol 7. no. 5, pp. 28-34, Oct. 2000.

[11] H. Chu and R. Jan, "A GPS-less, outdoor, self-positioning method for wireless sensor networks", Ad-hoc Networks, vol. 5,

no. 5, pp. 547-557, July 2007.

[12] D. Tennenhouse and D. Wetherall, Towards an active network architecture, ACM SIGCOMM Computer Communication

Review, vol 37, no 5, October 2007.

[13] Sapuntzakis C. and M. S. Lam. ‘‘Virtual appliances in the Collective: A Road to Hassle-free Computing,’’ Proceedings of

the 9th Hot Topics in Operating System, May, 2003.

[14] G. Cirincione and J. Gowens, “The International Technology Alliance In Network And Information Science A U.S.-U.K.

Collaborative Venture”, IEEE Comms. Mag., Vol 45, Issue 3, pp. 14-18, March 2007.

[15] G. Di Caro, F. Ducatelle, and L. M. Gambardella. AntHocNet: An adaptive nature-inspired algorithm for routing in mobile

ad hoc networks. European Transactions on Telecommunications, Special Issue on Self-organization in Mobile Networking,

16(5):443-455, 2005.

[16] E. Curran and J. Dowling. Sample: Statistical network link modeling in an on-demand probabilistic routing protocol for ad

hoc networks. International Conference on Wireless on Demand Network Systems and Service, 0:200-205, 2005.

[17] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A distributed anonymous information storage and retrieval

system. Lecture Notes in Computer Science, 2009:46, 2001.

[18] B. Biskupski, J. Dowling, and J. Sacha. Properties and mechanisms of self-organizing MANET and P2P systems. ACM

Trans. Auton. Adapt. Syst., 2(1):1, 2007.

[19] M. de Leoni, M. Mecella, and G. D. Giacomo. Highly dynamic adaptation in process management systems through execution

monitoring. Lecture Notes in Computer Science, 4714:182-197, 2007.

[20] G. Canfora, M. Di Penta, R. Esposito, and M. L. Villani. A framework for qos-aware binding and re-binding of composite

web services. J. Syst. Softw., 81(10):1754-1769, 2008.

[21] G. De Giacomo, M. de Leoni, M. Mecella, and F. Patrizi. Automatic workflows composition of mobile services. IEEE

International Conference on Web Services, 2007. ICWS 2007, pages 823-830, July 2007.

[22] Z. Maamar, Q. Z. Sheng, and B. Benatallah. On composite web services provisioning in an environment of fixed and mobile

computing resources. Information Technology and Management Journal, Special Issue on Workflow and e-Business, 5:2004,

2004.

[23] P. F. Carles Sierr and N. R. Jennings. A service-oriented negotiation model between autonomous agents. In Human and

Artificial Societies, LNAI, pages 201-219. Springer-Verlag, 1999.

[24] N. R. Jennings. An agent-based approach for building complex software systems. Commun. ACM, 44(4):35{41, 2001.

[25] T. Itao, T. Nakamura, M. Matsuo, and T. Suda. Adaptive networking architecture for service emergence. IEEE/IPSJ

International Symposium on Applications and the Internet Workshops, 0:9, 2001.

[26] T. Nakano and T. Suda. Self-organizing network services with evolutionary adaptation. IEEE Transactions on Neural

Networks, 16(5):1269-1278, 2005.

[27] B. Kruger, F. Dressler, Molecular Processes as a Basis for Autonomous Networking, in: Symposium on Challenges in the

Internet and Interdisciplinary Research (IPSI), 2004.

[28] F. Dressler, B. Kruger, G. Fuchs, R. German, Self-Organization in Sensor Networks using Bio-Inspired Mechanisms, in:

Proc. ACM/GI/ITG ARCS Workshop on Self-Organization and Emergence, 2005, pp. 139-144.

[29] F. Dressler, I. Dietrich, R. German, B. Kruger, Efficient operation in sensor and actor networks inspired by cellular

signaling cascades, in: Proc. Autonomics, 2007, pp. 1-10.

