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Abstract. Developers of situational applications – applications created
by a small group of users/developers to satisfy the specific needs of the
group – require two things from their software stack. First, they require
support for their rapidly changing designs; second, they require semantics
that are close to their own domain of expertise. For example, develop-
ers of situational applications prefer to use scripting languages because
the “duck typing” style of programming language allows them to ignore
issues related to class inheritance or interface implementation. In com-
parison to strongly-typed languages, developers can begin programming
more quickly, and can modify their program more rapidly in response to
changing requirements.
In this paper we explore whether middleware services can similarly pro-
vide developers of situational applications with these desired software
characteristics. Specifically, we present EDS, an Extensible Data-Service
designed to support applications whose design changes rapidly and with
semantics that are closer to the domain expertise of situational appli-
cation developers. We present the features of EDS, contrast it to other
data services and apis, and discuss the EDS implementation.

1 Introduction

1.1 Situational Applications

Situational applications have been defined as software that is “designed in and
for a particular social situation or context” [1]. The biggest difference between
situational and traditional applications stems from the fact that the requirements
of situational applications are driven by the needs of “a specific social group”, in
contrast to the requirements of traditional applications which are driven by the
needs of “a generic set of ’users’ ”. Traditional applications tend to evolve fairly
slowly because the (perceived) needs of “generic users” evolve fairly slowly, and
the risk-management needs of large organizations imply that a broad consensus
be reached before changes are made. The planning and design of traditional
applications is therefore more formal and takes longer than situational software.

In contrast, situational applications evolve as rapidly as the requirements
of the well-known, very concrete, set of users change, and developers of situ-
ational applications place a great premium on flexibility (typically operating



outside the usual I/T bureaucracy). Situational developers favor a client-centric
programming model (perhaps, because of the lower entry-barrier or because of
the proportionally greater focus on an application’s view). These developers are
much less risk-averse, and can reach consensus for change much more rapidly.

As a result of such differences, developers of situational applications prefer
to use a software stack with somewhat different characteristics than that used
for traditional applications. For example, developers of situational applications
prefer to use scripting languages [2] because the “duck typing” style of pro-
gramming language allows them to ignore issues related to class inheritance or
interface implementation. In comparison to statically-typed languages, develop-
ers can begin programming more quickly, and can modify their program more
rapidly in response to changing requirements. We contend that these preferences
apply further down the software stack as well, and thus raise important issues
for the middleware used by situational applications.

1.2 Middleware For Situational Applications

Some situational applications – e.g., a spread-sheet application used to manage
departmental resources – do not actually require middleware. More typically,
the situational applications used in enterprises do use middleware, although to
a lesser degree than traditional software. For example, a situational application
to manage departmental-sized purchase orders might use a database to store
its data, a directory service to look up users, and an authentication service to
validate users. The situational application is constructed by layering a primitive
work-flow on top of this middleware, adding some business logic specific to the
department’s policies, and creating some gui forms. For two reasons, existing
middleware apis and semantics may not be a good fit for developers of situational
applications.

Middleware services have been distilled, over time, by observing commonly re-
peated patterns in business applications. Middleware abstracts and concentrates
this expert knowledge into a powerful and sophisticated api that addresses a wide
range of use cases. Often, however, this creates a gap between the messy business
reality and the uncluttered abstraction required by the middleware model. For
example, to use a relational database effectively, data modelers must typically
transform an enterprise’s raw data into 3rd-normal form. Following this model-
ing, database tables are created with the appropriate schema, and the enterprise
data is stored in, and accessed from, the correct representation. However, as
discussed above, situational application developers place a premium on software
that provides the flexibility for rapidly changing requirements. Requiring a data
modeling phase before writing the application implies either that the applica-
tion will never get written, or (more typically) that messy hacks are coded by
the developer because they don’t properly exploit the middleware. In addition,
while these developers have the domain-specific knowledge needed to code the
business logic, they do not necessarily have the expert knowledge needed to use
the middleware’s framework. Their needs correspond to a small subset of the



use-cases supported by the middleware, and they have difficulty understanding
and using the “complicated” middleware.

The mismatch between situational application developers and traditional
middleware can be seen clearly in the context of Clay Shirky’s observation [1]:

Situated software isn’t a technological strategy so much as an at-
titude about closeness of fit between software and its group of users,
and a refusal to embrace scale, generality or completeness as unqualified
virtues.

Given that the strengths of middleware lie precisely in its “scale, generality, and
completeness”, it becomes obvious that situational application developers would
prefer to use middleware that is a closer fit to their needs.

In Section 2 we take a closer look at the characteristics of data-service mid-
dleware that better fit the needs of situational applications. We also discuss how
EDS relates to similar work in this area. In Section 3 we describe EDS in detail,
based on a scenario that illustrates how a situational application might use EDS
as a data service. The capabilities we describe (crud in Section 3.1, and support
for relationships in Section 3.2) are fully supported in our current EDS imple-
mentation (Section 3.3). Finally, in Section 4 we point out certain limitations
in EDS, and explain why those limitations may relate to intrinsic trade-offs in
middleware for situational applications. The choices we made in the design of
the EDS data-service middleware make it a good fit for developers of situational
applications.

2 Situational Applications, Schema Constraints, and
Data Services

A situational application developer prefers a minimal gap between her view of
application data and the view required by the data service for:

– storing application data reliably (e.g., with “ACID” [3] properties).
– retrieving application data.

Constraints imposed by the data service before the application can store data are
a hurdle to be overcome – even if the constraints are needed for a more powerful
data model. In our view, database schema are the most important of these data
service constraints. Depending on a the data service’s persistence model, schema
can constrain the developer to a greater or lesser extent.

Figure 1 shows a spectrum of database schema constraints, ranging from
the least constrained (on the far left) to most constrained (on the far right).
At the far left, the data service allows developers to store an array of bytes; no
constraints are imposed on what the developer stores. This form of data service is
typically provided by low-level operating-system drivers, or raw files, and is not
usually considered to be a data service, because it provides no support for data
retrieval. Clients of the data service are responsible for the task of organizing
and interpreting the bytes.
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Fig. 1. Characterizing a Data-Service in Terms of Loose/Tight Schema Constraints

Moving to the right, the schema may constrain developers to associate a
“key” with the raw data. This is more useful to the data service’s clients be-
cause data retrieval can now easily specify the desired data by using one key
rather than another. The application, however, is left to convert the data into
its original “type” (whether integer, string, or more complex structure). More
constrained schema require the developer to associate the data with a type that
is also stored by the data service and used to convert the data when it’s re-
trieved. The benefit of this is partially offset by the fact that developers must
now decide – before they can use the data service – whether a given piece of
data, for example, is “really” a string or a date. More constrained schema require
developers to specify the structure of a datum by naming its properties (e.g.,
“phone number”, “address”). This has the benefit of retrieving data in a form
closer to the application level. Business logic rarely manipulates a single typed
value: whether or not it manipulates “objects”, an application usually groups a
set of related properties (e.g., “employee”, “purchase order”) into a single struc-
ture. A data service can further constrain developers to also specify individual
property types, rather than simply specifying property names. Finally, as in the
case of the strict relational data model [4], developers are forbidden to insert du-
plicate data, and may be unable to insert data with property values that violate
“primary-key” or “foreign-key” constraints.

In short, Figure 1 shows that the data modeling benefits (e.g., property name
validation, type validation) provided by stronger schema constraints are offset by
forcing the developer to do the data modeling before she can even use the data
service. Equally important, every time that different sources of data are used by
an application, and every time that business logic changes its use of the data,
developers must ensure that the schema constraints have not been violated. It
must be stressed that traditional applications are happy with a trade-off that lies
towards the right side of this spectrum. It is only because situational applications
require greater flexibility that developers evaluate this trade-off differently.



2.1 Related Work

We discuss related work with reference to the spectrum of database schema con-
straints shown in Figure 1. Hardware (e.g., memory and disk) and raw files pro-
vide the least amount of constraint, the “Big Byte Array”. This level is primarily
useful as a building block for the more constrained levels. The next level of or-
ganization includes models which are analogous to hash tables (“Key→ BLOB”
(Binary Large OBject)). Work in this space includes Project Voldemort [5], Dy-
namo [6], and Kai [7]. Similar projects that support only non-persistent data
include Scalaris [8] and Memcached [9].

A number of projects support the multi-dimensional key → BLOB storage
model used by Bigtable [10], including Cassandra [11], HBase [12], and Hyper-
table [13]. Thrudb [14] supports a “Key → Typed Value” model, where values
can be strings, json [15] objects, XML, or Thrift [16] objects.

CouchDB [17] supports a “Key→ Name/Value Pairs” model similar to EDS.
Finally, the highly-constrained relational data model is supported by prod-

ucts such as DB2 [18] and MySQL [19]. The relational model is a very powerful
paradigm, originally based on set theory [20]. The relational model is capable of
describing virtually all the other common data models, including Key → value,
hierarchical, network, and many more complicated models. Relational databases
are typically accessed using ODBC [21] or one of its language-specific variants
(e.g., JDBC [22] for Java and PDO [23] for PHP). Numerous projects have
emerged to layer object-oriented technologies on top of relational databases [24],
although the approach used by most of these is mathematically dubious [4].
These include Enterprise JavaBeans (EJBs [25]) and frameworks such as Hiber-
nate [26].

Although the relational model is very powerful, and underlies many large
websites, situational developers (and many others) have found it too difficult
to master the use of relational technology. Relational databases are typically
accessed via sql [27], which is used to create, retrieve, update, and delete records,
as well as to define and modify database schema. The retrieve (query) subset of
sql is very powerful, and includes selection predicates, joins, unions, sorts, etc.

Unfortunately, the trade-off for the high functionality of sql is complexity.
For example, the IBM DB2 v9.5 sql reference manuals consist of 2064 pages in
two volumes. Since many applications do not require the power of the relational
model, most situational developers use (or invent) a simpler data model which is
farther to the left in our spectrum. Unfortunately, the tools and insights provided
by the relational model are then not available when needed.

Each point on the spectrum of Figure 1 offers a particular trade-off to devel-
opers. Loose schema constraints let developers to “get on with their work” and
evolve applications rapidly. This is achieved at the cost of having the data-service
provide less support to the developer. For example, loose schema constraints may
imply that the data-service cannot validate at runtime that the correct property
name is being used, nor can the data-service supply a typing system to validate
that only data with the correct type is being stored. Loose schema constraints
may imply that the data-service cannot perform certain optimizations because it



has no clues as to how disk storage should be organized or which columns should
be indexed. Our point here is that data-services with characteristics such as EDS
are especially suited to developers of situational applications. Just enough sup-
port is provided for data with finer internal structure than a single property,
without constraining developers to stick with a defined set of properties or to
stick with a defined set of types.

As mentioned above, CouchDB [17] resembles EDS in the way that it sup-
ports a “Key→ Name/Value Pairs” persistence model. However, there are some
notable differences between EDS and CouchDB:

– CouchDB is a document-oriented database, with rest access to documents
consisting of json objects. EDS uses json as a storage format, but provides
a Java api.

– EDS is built on top of an existing relational api and database, while CouchDB
works directly with the file system.

– EDS supports multiple tables (scopes), while CouchDB supports only one
scope.

– EDS leverages the query capabilities of the underlying relational database,
while CouchDB requires developers to supply JavaScript functions to imple-
ment query. We discuss this issue more thoroughly in Section 3.2.

– EDS supports join operations via the underlying relational database, while
CouchDB explicitly does not support join.

2.2 REST APIs

A number of database projects (e.g., CouchDB) make a point of being rest [28][29]
accessible. However, in our view rest is a mechanism for providing remote ac-
cess to a datastore, especially across the Internet and through firewalls, but is
orthogonal to fundamental issues in database api design. rest defines a trans-
port layer (http), and maps crud on top of the http verbs, but leaves most of
the semantics unspecified. Specifically, knowing that a database supports rest
will not provide enough information to interact with it. It does not tell the devel-
oper what data types are supported, what queries are available, or even whether
put or post is used for insert (see the comments on [30]). In fact, a rest api
can be used to access relational data [31].

Finally, the implementation of rest apis is quickly followed by the emer-
gence of client libraries which provide a programming api in the client’s native
language. rest architecture is thus independent of where a data-service lies on
the loose-constraint/tight-constraint spectrum of Figure 1. It is also independent
of how a data-service can be designed to support extensibility (e.g., how to add
relationships without prior data-modeling).

3 EDS: Extensible Data Service

EDS is a middleware data-service that provides situational applications with
an extensible persistence model. Developers don’t define schema, so there is no



� �
1 Tuple employeeFromJSON = Tuple.fromJSON(employeeJSON);

3 Tuple employeeFromMap = new Tuple

("employees", new HashMap(<String , Object > properties));

5

Tuple employeeFromProperties = new Tuple

7 ("employees", Property ... properties);�
Listing 1.1. Three apis for Creating Tuples

friction in dealing with evolving schema. Instead, the EDS data-service persists
data in the form of “key to name/value pairs” (see Figure 1) – and relieves
developers from creating the key.

The EDS api defines two data-types: tuples and result templates. (Note that
all of our code examples use EDS’s Java api.) Tuples are a collection of name/-
value pairs (“properties”). EDS uses the reserved scope property to isolate tuples
in one scope from tuples in another scope. Clients persist tuples to, and remove
tuples from, EDS; EDS returns tuples to clients. Semantically, EDS tuples are
interchangeable with json objects, and the tuple api therefore has a “tuple from
json” factory method. Given an “employeeJSON” string whose value is:

{"scope": "employees", "age": 42, "name": "John Doe", "manager": false}

the code in Listing 1.1 creates a Tuple with integer, string, and boolean valued
properties that will be associated with the employees scope. In this way, EDS
provides native support for storing and retrieving json objects. Because of the
interchangeability of json objects and Java Maps, tuples can also be created
from Java Maps (using json encoding to store the Map values) and from one or
more name/value pairs.

Result templates create tuples from other tuples, specifying that the created
tuples should contain a subset of other tuples. Syntactically, a result template
associates a scope property with an ordered collection of property names. These
property names are easily represented as a json array of strings, and EDS there-
fore includes a “result template from json” api. Given a “selectName” string
whose value is:

{"scope": "employees", ["name"]}

applying the result template created from “selectName” to the tuple created in
Listing 1.1, returns this tuple:

{"scope": "employees", "name": "John Doe"}

To give a concrete description of EDS features, we offer a development sce-
nario that illustrates the EDS api. This scenario exercises not only the familiar
crud portion of the api, but also illustrates the more advanced features of the



� �
1 // persist one or more tuples

Tuple [] = EDS.persist(employee1 , employee2);�
Listing 1.2. Persisting Tuples

api such as the built-in support for maintaining and retrieving tuple relation-
ships. Note that our current implementation (Section 3.3) supports every aspect
of the scenario below.

In our scenario, a user/developer starts coding a small human-resources ap-
plication (HRApp) to manage information about the users in her department. At
this point, she certainly isn’t interested in packaging behaviors with the data:
all she wants to do is store a set of properties about each person. The set of
properties is initially conceived to be: name, phone, house number, street and
department.

3.1 Support For crud

Using one of the apis shown in Listing 1.1 to create an employee1 and employee2
Tuples, the tuples are persisted as shown in Listing 1.2.

Note the following points:

1. The developer did not ask EDS to create a database.
2. The developer did not ask EDS to create an Employees table within that

database.
3. The developer did not ask EDS to create “name”, “phone”, “address” or

“department” column in the Employees database table.

Before persisting a tuple, EDS detects whether or not a database table and the
corresponding table columns exist. If they don’t, EDS will silently create them
before persisting the tuple. Less obviously, the developer did not have to define
employees identity, nor did she specify a primary key for the Employees table.
Instead, EDS silently added a uuid property to the persisted tuple: the value of
this property uniquely identifies the tuple, and can be used to trivially retrieve
the tuple. The developer is free to leverage the existence of the uuid if she so
desires, or ignore it.

Tuples are retrieved using the esearch (exact search) api which returns a
set of tuples (the result set) and which has two input parameters:

1. a tuple with properties that are matched against the persisted tuples: tuples
that match are added to the result set.

2. a result template that specifies which properties should be included in the
result set tuples.

The semantics of esearch are “search by example”: return all tuples that match
the example tuple, and format tuples in the result set as specified by the result
template.



� �
ResultTemplate resultTemplate =

2 new ResultTemplate ("employees");

Tuple searchTuple =

4 new Tuple("employees", employee.getProperty(Tuple._UUID));

Set <Tuple > retrievedTuples =

6 EDS.esearch(searchTuple , resultTemplate);�
Listing 1.3. Using a uuid to Retrieve a Tuple

� �
departmentValue = form.get("department");

2 final ResultTemplate resultTemplate =

new ResultTemplate ("employees");

4 final Tuple searchTuple = new Tuple

("employees", property("department", departmentValue));

6 final Set <Tuple > retrievedTuples =

EDS.esearch(searchTuple , resultTemplate);�
Listing 1.4. Retrieving all Tuples in a Department

� �
1 newDepartment = form.get("new department");

employeeName = form.get("name");

3 // retrieve employee that matches "employeeName"

employee = EDS.esearch (...).iterator ().next();

5 employee.add(property("department", newDepartment));

EDS.persist(employee);�
Listing 1.5. Updating an Employee

By saving a reference to the “employee”, HRApp can use its uuid to retrieve
the employee later (Listing 1.3). Here, the code asks EDS to return all employees
tuples whose uuid property matches the property of the previously persisted
employee. Since only one tuple can have that uuid, the result set will contain
exactly one tuple. Because the developer did not explicitly specify result template
properties, EDS returns values for all properties in the employees scope.

The developer now adds a gui through which employees can be retrieved.
The gui form collects search criteria from users, and then uses the criteria to
retrieve tuples from EDS. Because other departments are expressing interest in
HRApp, she decides to implement “search by department” (Listing 1.4). Here,
the result set will contain all Tuples in the specified department.

What started as a “store-and-retrieve” application is now getting used more
broadly, and the developer is therefore asked to accommodate the fact that the
department has experienced a “reorg”. She adds a gui with input fields for the
employee name and new department, and writes new code to update the specified
employee (Listing 1.5).

Note the following points:



� �
String department = form.get("department");

2 String manager = form.get("manager");

Set <Tuple > employeesInDepartment =

4 EDS.esearch (...);

for (Tuple employee : employeesInDepartment) {

6 employee.add(property("manager", manager));

EDS.persist(employee);

8 }�
Listing 1.6. Add a Manager Property

� �
Tuple layedOffEmployee = EDS.esearch (...);

2 EDS.remove(layedOffEmployee);�
Listing 1.7. Removing an Employee

1. esearch returns a Set of tuples, so we use an iterator to get the first tuple.

2. The persist api is used both for inserting new tuples and for updating exist-
ing tuples. EDS uses the (non-)existence of the uuid property to determine
whether the properties overwrite the tuple uniquely identified by the uuid
or whether to insert a new tuple.

3. The add api is used both to add new properties to a tuple and to update
the values of existing tuples.

As HRApp becomes more visible in the company, people begin to notice that
employees are not associated with their managers. That situation being unten-
able, our developer adds an input field to the gui, and adds the “manager”
property using the code in Listing 1.6. Here again, EDS supports the situational
application since schema changes are made implicitly rather than explicitly. Sim-
ilar flexibility is shown with respect to changing the type of the house number
property value. Originally, the example set that drove the requirements only
contained entries such as “23 Maple Lane”. Now, HRApp must deal with in-
put such as “39B Leibzig Ave”, and the developer realizes that house number
is string-valued, not integer-valued. The EDS-related code, however, does not
change despite the data-modeling change. The Tuple api is type-agnostic: al-
though the EDS runtime will detect that the property type has changed, this
information will be silently maintained in the json representation.

To complete the canonical set of crud operations that a data-service should
support, Listing 1.7 shows how a tuple is removed. As with the esearch api,
the remove api is applied to all tuples that match the input tuple parameter.
Since a tuple trivially matches itself, passing it to remove, removes it from the
data-service.



� �
janeTuple = new Tuple("employees", ... );

2 homePhoneTuple = new Tuple("phones", ...);

cellPhoneTuple = new Tuple("phones", ...);

4 EDS.persist(janeTuple , homePhoneTuple , cellPhoneTuple);�
Listing 1.8. Creating a Relationship Between an Employee and her Phones

3.2 Support For Tuple Relationships

An important EDS feature is its support for creating and retrieving relationships
between data items in a way that is consistent with development of situational
applications. To motivate the usefulness of this approach, consider the structure
of the “employee” tuple used in HRApp. The tuple groups related properties
such as name, address, and department. It seems natural – and we’d actually
expect – that our developer would initially include the phone property in the
“employee” tuple. But, what should the developer do when a new requirement
emerges to support multiple phone numbers: e.g., “work”, “cell”, “fax”, “home”?
A schema-less persistence model makes it very easy for the developer to simply
add a separate property for each new type of phone.

However, as shown by Codd [20], there are many advantages to “normalizing”
the employees and phones information. The most intuitive reason for normal-
izing data relates to the dry (Don’t Repeat Yourself) principle [32]: conglomer-
ating employees and phones information will result in duplicate information.
This should be avoided because it makes the current system harder to under-
stand, makes it harder to change the system, and increases the possibility that
the system will be inconsistent. The problem becomes even more serious if the
phone tuple includes information such as an office location, making it difficult
to update HRApp when an employee moves to a new office.

Data modelers therefore recommend that data such as employees and phones
be normalized, and that relationships between employees and their phones be
specified separately. EJBs, for example, identify seven types of relationships be-
tween entities, depending on the relationship cardinality and its direction. EDS
recognizes that this type of explicit relationship modeling is unsuited for situa-
tional programmers since it assumes that the developer took the time to realize
that employees may have multiple phones or that phone numbers may be as-
signed to offices. Other schema-less data-services (e.g., CouchDB) specify that
the data-service does not provide support for relationships in the base service.
Instead, developers are responsible for defining relationships at a higher level
than the base data-service. In CouchDB this is done with server-side JavaScript
functions, called “views” which CouchDB executes as data are inserted in order
to keep the relationships consistent.

Situational application developers do prefer an api with semantics that are
closer to their application view, and therefore avoid formal approaches such as
EJBs. In our view, these developers nevertheless prefer to delegate as much
function as possible to the middleware. While the existence of data relationships



is a business modeling decision, middleware ideally should assume the task of
implementing the relationship. In the EDS approach, therefore, developers do
not supply the relationship management code. Instead (see Listing 1.8), EDS
clients may implicitly specify that relationships exist between tuples from differ-
ent scopes as part of the persist operation. The code in Listing 1.8 corresponds
to Figure 2; it shows that “Jane Galt” has two phones – her cell-phone and her
home-phone.

EDS uses a link-table approach in which relationships between two scopes
are persisted in a separate database table. Link tables store uuid pairs where
each uuid in a given pair are the two ends of a single relationship. (Recall that
EDS uses a uuid as the primary key of the base scope table.) As discussed
before (Listing 1.5), EDS uses the same persist api both for creating new,
and updating existing, tuples. This is true with respect to relationships as well.
When EDS detects that the tuples being persisted are from two scopes, it checks
whether a relationship between them currently exists. If not, EDS will create a
new relationship.

Employees
UUID Name Address Department

565929Jane Galt 19 Skyline Drive Client Services
738959Floyd Ferris SSI Project X

Phones
UUID Type Number

891694Home 914-784-7100
894608Cell 914-555-7100
978268Work 914-555-7000

Employees-Phones
UUID1 UUID2

565929 891694
565929 894608
738959 978268

Fig. 2. Maintaining Relationships Between Employee and Phone Scopes



� �
// result set will contain two List elements: each List

2 // contains the ‘‘Jane ’’ employee tuple followed by one of

// her phones

4 final Set <List <Tuple >> janeResults =

EDS.esearch

6 (Arrays.asList(janeTuple),

Arrays.asList

8 (new ResultTemplate("employees"), new ResultTemplate(

"phones")));�
Listing 1.9. Use an Employee to Retrieve Her Phones

� �
final Set <List <Tuple >> departmentPhones =

2 EDS.esearch

(Arrays.asList

4 (new Tuple("employees",

Tuple.property("department", "Client

Services"))),

6 Arrays.asList(new ResultTemplate(phones)));�
Listing 1.10. Retrieve All Phones in a Department

EDS allows clients to retrieve related tuples across two scopes using an ex-
tension of the esearch api.

As shown in Listing 1.9, the developer specifies that EDS should search for
all tuples that match the “Jane” tuple, and also asks that the result set should
contain all employees properties as well as all phones properties. EDS inter-
prets this as a request to perform a join over the two scopes, and using the
information stored in the link-table, returns the employee and her phones. The
result of the esearch is a Set containing two Lists, each of which is comprised
of an employees tuple (the “Jane Galt” tuple) and a phones tuple (either the
“home” or “cell” tuple).

Listing 1.10 shows how the api is used to return all phones in the “Client
Services” department. Here EDS looks only for employees tuples whose depart-
ment property matches the specified value. Unlike Listing 1.9, the client asks that
EDS only include phones tuples in the result set. Because the esearch specifies
two scopes (an employees tuple in the search constraint, and a phones tuple
in the result template), EDS silently performs a join to retrieve related tuples
in the two scopes. The result of the esearch is a Set containing two Lists, each
of which contains a single phones tuple: one tuple is Jane’s “home phone”, the
other is Jane’s “cell phone”. (Recall that Sets are unordered, so the order of the
tuples is not specified by the api.)

The EDS relationship model is an undirected graph, whose nodes are tuples
and in which two nodes are connected iff a relationship exists between the two
tuples. The api thus does not require developers to distinguish between many



� �
final Set <List <Tuple >> janeEmployee =

2 EDS.esearch(Arrays.asList

(new Tuple("phones",

4 Tuple.property

("phone", "914 -784 -7100"))),

6 Arrays.asList(new ResultTemplate("employees")))

;�
Listing 1.11. Using a Phone Number to Retrieve an Employee

different types of relationships in order to create or retrieve relationships. List-
ing 1.11 illustrates how EDS’s relationship model allows developers to ignore
issues related to both relationship direction and relationship cardinality. Here,
the developers does a “reverse lookup” of employees using one of her phone
numbers. This esearch is the mirror-image of the previous one: the client spec-
ifies that a phones tuple be used to as the search criterion, but that the result
set contain only the related employees tuples. The single List of the esearch
result set contains the “Jane Galt” employees tuple since she is the employee
who is associated with the specified phone number.

3.3 Implementation

We have implemented EDS in Java, delegating responsibility for persistence to
a relational database (Apache Derby [33]). The persistence model that EDS
presents to clients thus has much looser schema constraints than the one EDS
uses internally. EDS itself is standard middleware – not a situational application
– and therefore benefits from the more rigorous constraints of the relational data
model. Internally, all EDS database tables use a uuid column as the primary key:
as described in Section 3.1, this makes it possible for EDS to use the identical
api for both creating and updating tuples. As described in Section 3.2, the uuid
approach allows EDS to get good performance on queries by benefiting from the
superior indexing capabilities of relational databases. All database columns used
internally by EDS are of type varchar: incoming property values are encoded
as json strings, and outgoing properties are decoded before returning them to
clients.

EDS uses the jdbc [22] meta-data api to determine whether the tables and
columns that correspond to the client’s scopes and property names exist. Ta-
bles and columns are created on-demand using the jdbc api to execute ddl
statements such as create table and alter table. As clients specify a re-
lationship between tuples in different scopes, link-tables are created with the
structure shown in Figure 2. When a client performs an esearch on two scopes,
EDS retrieves related tuples by doing a three-way join between the specified
two scopes and the associated link table.



Our current EDS implementation supports all of the scenarios discussed
above, including the crud api and retrieval of related tuples. At this point,
we provide only a Java api and do not yet provide a rest api to web-clients.

4 Analysis

We have focused in this paper on the programming api of EDS, and deliberately
ignored rest issues, for reasons discussed in 2.2. Since the programming apis are
compatible with json (the Tuple and ResultTemplate Java objects are directly
serializable to and from json), it would be straight-forward to provide a rest
transport and client library for EDS. This would enable this use of EDS in a
Web 2.0 (business logic on the client) environment [34].

In order to simplify the programming api and semantics, EDS provides less
functionality than a relational database. For example, since the schema is un-
constrained, there is no way to detect incorrect property names or types on
persist operations. Also, the types of queries available in EDS are very limited:
only exact matches on subsets of properties are supported. We have not (yet)
conceived of a more general-purpose query mechanism that does not head down
the slippery slope of creating our own query language (or adopting an existing
one). Since many of these complex query languages have been rejected by situ-
ational developers, this does not seem like a promising direction. For now, more
complicated queries must be implemented in application space.

EDS usefully supports situational application development in two ways. First,
because of the close fit between the dynamically typed languages commonly used
in such development and the dynamically typed data-service provided by EDS.
Scopes are transparently persisted for the client; properties are transparently
persisted or removed for the client; and changes in a property’s type are trans-
parently provided to the client. Second, EDS infers relationships between tuples
when they are persisted together. Queries which span two scopes use the rela-
tionship information from the persist operations to do a join across the scopes.

We think that implementing EDS on top of a relational database provides im-
portant advantages. First, the experimental aspects of EDS involve the api and
semantics, not the database implementation. Rewriting the database manager,
logging, transaction support, utilities, etc., will not teach us anything further
about the usefulness of the api and semantics, although they could improve per-
formance. In addition, the relational model provides a very strong base for the
implementation of EDS.

5 Future Work

Currently we are building an implementation of an EDS api on top of an
ldap [35] api. This presents some interesting challenges: for instance, ldap
properties may have multiple values. Also, ldap is tree structured, rather than
table structured (or multi-table structured). Addressing these issues should pro-
vide interesting insights into the design of the EDS api.



In addition, we are working with situational developers to validate our intu-
ition regarding the usefulness of the EDS api. An open question is what kind of
benchmark is appropriate to assess this question.
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