
RC24773 (W0902-020) February 5, 2009
Computer Science

IBM Research Report

A Trust Management Framework for
Service-Oriented Environments

William Conner1, Arun Iyengar2, Thomas Mikalsen2, Isabelle Rouvellou2,
Klara Nahrstedt1

1Department of Computer Science
University of Illinois

Urbana, IL 61801
USA

2IBM Research Division
Thomas J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598

USA

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

A Trust Management Framework for Service-Oriented
Environments

William Conner†
wconner@uiuc.edu

Arun Iyengar∗
aruni@us.ibm.com

Thomas Mikalsen∗

tommi@us.ibm.com

Isabelle Rouvellou∗

rouvellou@us.ibm.com
Klara Nahrstedt†
klara@uiuc.edu

† Department of Computer Science, University of Illinois at Urbana-Champaign
Urbana, Illinois, USA

∗ IBM Research Division, T. J. Watson Research Center
Yorktown Heights, New York, USA

ABSTRACT
Many reputation management systems have been developed
under the assumption that each entity in the system will use
a variant of the same scoring function. Much of the previous
work in reputation management has focused on providing
robustness and improving performance for a given reputa-
tion scheme. In this paper, we present a reputation-based
trust management framework that supports the synthesis
of trust-related feedback from many different entities while
also providing each entity with the flexibility to apply dif-
ferent scoring functions over the same feedback data for cus-
tomized trust evaluations. We also propose a novel scheme
to cache trust values based on recent client activity. To eval-
uate our approach, we implemented our trust management
service and tested it on a realistic application scenario in
both LAN and WAN distributed environments. Our results
indicate that our trust management service can effectively
support multiple scoring functions with low overhead and
high availability.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems; K.6.5 [Management of Computing and Infor-
mation Systems]: Security and Protection

General Terms
Experimentation, Performance, Security

Keywords
Reputation, service-oriented architectures, trust management

1. INTRODUCTION
In open distributed environments, reputation-based trust

management systems enable one party to evaluate the trust
of another unknown party based on the feedback that the
unknown party has received during its previous transactions
with others [6, 22]. The reputation of the unknown party can

.

determine whether or not it meets a minimum trust thresh-
old for future interactions. For example, many participants
in online auction sites decide whether or not to enter into
transactions with buyers or sellers based on their reputa-
tions [1]. Over the past few years, many reputation systems
have emerged for applications ranging from e-commerce to
Web service selection to peer-to-peer file sharing [6, 12, 22,
21, 23, 14, 17, 8, 15].

Although previous work on existing reputation systems
has explored the efficacy and robustness of particular rep-
utation scoring functions as well as algorithms for reputa-
tion management in completely decentralized environments,
very little attention has been given to supporting the synthe-
sis of feedback from multiple entities while also supporting
the use of different reputation scoring functions by differ-
ent entities over the same feedback data. Such flexibility
in choosing reputation scoring functions would be desirable
in an open infrastructure-centric environment hosting many
services with different requirements for trust.

For example, consider an infrastructure hosting many dif-
ferent services [3, 2]. In such an environment, each service
might have its own individual reputation-based trust met-
rics that it wants to apply to external clients when deciding
whether or not to process a request or perform a service on
behalf of a client. Similar to completely decentralized en-
vironments, infrastructure-centric environments might also
require scalability. However, infrastructure-centric environ-
ments do not have the additional requirement for complete
decentralization, which presents the opportunity for reputation-
based trust management to be offered as an infrastructure
service distributed over multiple nodes.

To enable services to make customized trust level assess-
ments of incoming requests from clients based on shared
feedback about that client’s previous interactions with other
services, we have designed and implemented a reputation-
based trust management framework. Our trust management
framework stores feedback on previous service interactions
with clients and allows services to compute their own cus-
tomized reputation scoring functions over the feedback col-
lected. Specifically, we make the following contributions:

1. Support for multiple trust evaluation metrics: Since
different services might apply different trust evaluation
metrics, we developed a trust management service that

supports multiple reputation scoring functions over the
same trust-related feedback shared from multiple ser-
vices.

2. Trust evaluation caching : To reduce communication
overhead in our trust management framework, we de-
veloped algorithms for caching trust evaluation results
using Bloom histograms. Our experimental results
show that our trust value caching can significantly im-
prove performance.

3. Usable API for application developers: The API for
our trust management service provides methods for re-
porting feedback and evaluating trust over the synthe-
sized trust data. The trust management service frees
application developers from writing their own trust
management software components.

4. Service implementation, deployment, and evaluation:
Our trust management service has been implemented
and deployed in both LAN and WAN distributed en-
vironments comprising several nodes with a realistic
Web services application scenario.

In the next section, we present the design of our trust man-
agement framework. Section 3 describes the implementation
of a prototype for our trust management service. Section 4
presents our experimental evaluation, which indicates that
our trust management service can be effectively integrated
into a realistic application with low overhead and high avail-
ability. Related work appears in Section 5. Finally, our
conclusions are presented in the last section.

2. TRUST MANAGEMENT FRAMEWORK
In this section, we first present an overview of our trust

management framework for combining feedback from multi-
ple services while still supporting custom trust level evalua-
tions by each individual service. After providing a high-level
overview, we then present our assumptions and the individ-
ual components of our trust management framework.

2.1 Overview
In a large-scale infrastructure hosting many different ser-

vices (such as [3, 2]), assessing the level of trust in incom-
ing requests can enhance the protection of the services by
identifying requests from clients with poor transaction histo-
ries. In an open system without credentials issued to clients,
reputation-based trust management allows services to make
trust level assessments based on the previous behavior of a
client. Specifically, services within the infrastructure should
be able to deny requests from clients with a history of initi-
ating bad transactions at one or more other services.

Our trust management service (TMS) synthesizes trust-
related feedback reported from multiple services based on
their previous interactions with clients. Unlike many repu-
tation systems that consider a single distributed application
with a single reputation-based trust metric, the TMS allows
each service to make trust level assessments with its own
individual custom reputation scoring function.

The TMS API consists of two methods. The first pa-
rameter to both methods is the client’s identifier. The sec-
ond parameter to report(), which is described in Section
2.3, contains transaction feedback. The second parameter
to evaluate() is the reputation scoring function that the

Figure 1: Trust Management Framework

caller wants to apply for the client’s trust evaluation. Trust
level evaluations are described in Section 2.4.

report(Client id, InvocationRecord feedback);

evaluate(Client id, ScoringFunction function);

Since our trust management framework must support a
large infrastructure, we have also designed the TMS to span
multiple distributed nodes to support scalability and high
availability. Due to the potential increase in communication
and processing overhead during trust evaluations, we have
also developed efficient algorithms to support the caching of
trust level evaluations to reduce overhead. An overall view of
a large-scale service infrastructure using the TMS appears
in Figure 1. In Figure 1, external clients make requests
to service nodes. These service nodes, which host one or
more services, will use the TMS API to report feedback and
request trust evaluations from the TMS nodes.

2.2 Assumptions
In our trust management framework, we make several as-

sumptions. The first assumption that we make is that clients
do not mask their malicious behavior by spreading it across
an unlimited number of identities (i.e., no Sybil attacks [9]).
This assumption is common to many reputation manage-
ment systems [21, 8]. The second assumption that we make
is that there is secure communication between the services
and the trust management service instances. For secure
communication between services, the infrastructure hosting
the services can issue digital certificates to each service and
trust management service instance to enable public key cryp-
tography for confidentiality and authentication. This would
prevent clients from impersonating a legitimate service to
report false feedback or initiate a flood of trust evaluation
requests. Since our framework is reputation-based, our at-
tack model only considers attacks that can be characterized
by negative feedback (e.g., a client not paying for an ordered
item). Other attacks, such as SQL injection or buffer over-
flow, are beyond the scope of this work. Lastly, we assume
that the possibility of services intentionally reporting bad
feedback is handled by the scoring functions as described in
Section 2.9.

2.3 Collecting Feedback
In our trust management framework, the past behavior of

a client is represented as a collection of service invocation
history records. Each service invocation history record con-
sists of the following fields: client C that initiated the trans-
action, service S invoked by C during the transaction, nor-

Table 1: Service Invocation History Records
Service Example Record
Online auction OA (C1,OA,−0.4,{amount=20.50})
Video hosting V H (C2,V H,+1.0,{length=90})
Bookseller B (C3,B,0.0,{items=3,amount=30.00})

malized feedback Fdbk on the transaction (i.e., a feedback
value ranging from −1 being the most negative to +1 being
the most positive), and zero or more optional attributes in a
(possibly empty) set of attributes Attrs. Since transactions
for different services might have very different trust-related
attributes, we have chosen to include optional attributes to
provide additional contextual information that can be used
later by the scoring functions. For example, an online auc-
tion service might record the dollar amount of a transaction
corresponding to the winning bid. A video hosting service
might record the length of the video in seconds. An on-
line bookseller might record both the total dollar amount of
an online purchase and the number of items to be shipped.
Some service invocation history records for these three sce-
narios appear in Table 1.

Service invocation history records are created and reported
using the following steps.

1. If a client C completes a transaction with service S,
then S will create a service invocation history record
H = (C, S, Fdbk, Attrs).1

a. Fdbk is the normalized transaction feedback value.

b. Attrs is the set of optional attributes.

2. Once service invocation history record H has been cre-
ated, service S will report H to the TMS.

In the service infrastructure, each service has a partial
view of client behavior based on its local interactions with
each client. By reporting feedback to the TMS, each service
can report feedback on these local interactions to the TMS.
Each client’s aggregate behavior will then be available for
trust level evaluations by all services.

2.3.1 Composite Scenarios
In a service-oriented environment, a single transaction ini-

tiated by a client might actually invoke many different ser-
vices rather than a single service. The list of composite
services invoked during a transaction might provide some
additional context for certain trust level assessments. For
example, a scoring function might only want to consider
feedback for transactions passing through some service W
although no transactions actually terminate at W .

The TMS can handle such composite scenarios by using
a special attribute called path that contains the sequence
of invoked services during the transaction. The last service
in path, which will report feedback for the transaction, will
appear as the service S in the service invocation history
record. An example of a path attribute from a transaction
that invoked three services S1, S2, and S3 would be path =
S1 → S2 → S3.
1The record H will not be created until Fdbk and Attrs
can be completely determined. For example, there might be
a delay between a client requesting a service and detecting
that the client did not send payment to the service, which
would affect feedback for the transaction.

2.4 Assessing Trust
Since each service hosted within the infrastructure might

have its own individual notion of trust for external clients,
services supply their custom reputation scoring functions to
be evaluated by the TMS using the service invocation his-
tory records stored at the TMS. In addition to the client
identifier C and feedback value Fdbk, the reputation scor-
ing functions can consider many other parameters in the
service invocation history records including the service S re-
porting the feedback as well as any of the attributes Attrs.
Based on the reputation score computed, services can de-
termine whether or not the reputation of the client making
the request exceeds its minimal trust threshold to grant the
request. The following steps are performed by services to
evaluate the trust level of external clients.

1. Whenever a service S receives a request from some
client C, it can send its custom reputation scoring
function FS defined over a collection of service invo-
cation history records along with the client identifier
C to the TMS.

2. Upon receiving (C,FS) from some service S, the TMS
will compute FS over the collection of C’s service in-
vocation history records and return the resulting rep-
utation score RepC = FS(C) to S.

3. S will decide whether or not to grant the service re-
quest to C based on its own minimum trust thresh-
old TS and RepC computed from FS (i.e., grant if
RepC ≥ TS).

Since feedback on all client transactions is stored at the
TMS, each service can apply its own reputation scoring func-
tion to an aggregate view of a client’s overall behavior rather
than being restricted to a partial view based on the service’s
local interactions.

2.5 Customizing Reputation
Since many reputation systems only consider a single ap-

plication with a single reputation metric, one of our primary
goals was to allow services to compute their own customized
reputation scoring functions over the trust-related feedback
data collected by the TMS. This would allow services with
different trust requirements to make different trust level as-
sessments for a client with the same given behavior. Exam-
ple 1 illustrates how two different scoring functions can be
used to make different trust level assessments by two ser-
vices W and X over the same transaction history data for
some client C, who has previously invoked services M , N ,
and P .

In Example 1, although the minimum trust threshold TX

for X is lower than TW for W , the service W would actually
grant a future request from C while service X would deny
the request. The reason for these two different trust level
assessments for the same transaction history is that each ser-
vice uses scoring functions that place emphasis on different
transaction attributes. Specifically, service W is only inter-
ested in transactions initiated by C that invoked M at some
point in the service path attribute. In contrast, service X
weights transaction feedback by the monetary amount of the
transaction specified with the amount attribute. This scor-
ing function FX has some similarities to PeerTrust, which
we explain in more detail in Section 3.3.2 [21].

Example 1. Customization

FW (C) =
P

trans.Fdbk for all trans initiated by C
where M ε trans.Attrs.path
FX(C) =

P
trans.Attrs.amount · trans.Fdbk

for all trans initiated by C

Minimum trust threshold TW = 1
Minimum trust threshold TX = 0

TMS record H1 : (C, M, 1, {amount = 10.00,
path = J → K → L → M})
TMS record H2 : (C, N,−1, {amount = 20.00})
TMS record H3 : (C, P, 0.5, {path = M → P})

FW (C) = 1 + 0.5 = 1.5,
so W will grant request to C
FX(C) = 10(1) + 20(−1) = −10,
so X will deny request to C

2.6 Load Balancing
Due to the potentially large number of clients and transac-

tions, it will be necessary for multiple nodes to collectively
provide the trust management service. In our trust man-
agement framework, we use consistent hashing to uniquely
map all of the service invocation history records for a par-
ticular client to a particular node running an instance of
the trust management service. Consistent hashing has pre-
viously been used for some distributed hash tables [16, 19,
18, 11, 24].

Assuming that each service knows all the service names
and corresponding identifiers for the trust management ser-
vice instances in the infrastructure, the services can use some
discovery service (e.g., UDDI) to locate a given trust man-
agement service instance. In our trust management frame-
work, the following steps are performed for load balancing
during feedback collection or trust level evaluation.

1. Whenever service S wants to report feedback or re-
quest a trust level assessment for some client C, it
will locally determine the trust management service
instance identifier tid = hash(C) where hash is a con-
sistent hash based on a cryptographic hash function
(e.g., SHA-1 or MD5).

2. The feedback report or trust level assessment request
from S will be sent to trust management service tid,
which is the trust management service instance respon-
sible for C’s service invocation history records.

3. Trust management service instance tid will manage
service invocation history records similar to the meth-
ods discussed in Sections 2.3 and 2.4.

2.7 Availability
In order to support high availability, the trust manage-

ment service must handle the possibility of one or more trust
management service instances crashing. If a node hosting an
instance of the trust management service becomes unavail-
able, then all of the service invocation history records man-
aged by that node will also become unavailable for trust level
evaluations. Also, any service invocation history records
that should be reported to some crashed instance would be
lost during the downtime.

Replication can be used to enhance availability. In a sys-
tem with N trust management service instances, each trust
management service instance tid will replicate all newly re-
ported service invocation history records on up to K nodes
where K ≤ N − 1. If replication is used and we assume
that nodes are ordered tid = 0, ..., N − 1, the K nodes that
will receive the replicas from tid are (tid + i) mod N for
i = 1, ..., K. This is similar to the replication scheme used
in at least one particular distributed hash table [19].

In the trust management service, whenever a service S
wants to report a service invocation history record or re-
quest a trust score evaluation for some client C, then it will
first make an attempt with the primary trust management
service instance tid for that client C. If the remote call for
the report or evaluation from S to tid times out, then S will
contact the replicas in order (tid+ i) mod N for i = 1, ..., K
as necessary until a TMS node responds. Whenever a pre-
viously unavailable trust management service instance be-
comes available, it will contact its K replicas to recover any
lost data that was reported to its replicas during its down-
time.

2.8 Trust Level Caching
Although supporting arbitrary reputation scoring func-

tions defined over service invocation history records allows
services to have greater flexibility in evaluating the trust
level of external clients compared to many existing approaches,
it could also increase the overall average response time of a
service if that service evaluates the reputation of a client on
each incoming request.

In order to improve performance, we describe an approach
in this section that allows services to use previously eval-
uated trust assessment values until a client has initiated
enough transactions to change its trust level assessment.
Unlike the simple trust caching scheme used in [21], the
TMS only requires fresh trust evaluations when necessary
based on the amount of recent client activity. To determine
the recent activity of a client, the trust management service
instances periodically share data synopses with services in
the infrastructure. Each data synopsis is an approximation
of the number of new service invocation history records gen-
erated by each client. Specifically, we use Bloom histograms
for the approximation [20]. In the next subsection, we will
describe the Bloom histograms data structure. In the follow-
ing subsection, we will describe how approximate trust level
assessment is accomplished by using previously computed
trust values.

2.8.1 Bloom Histograms
Bloom histograms were originally developed to approxi-

mate XML path frequency distributions during cost-based
XML query optimization [20]. Essentially, Bloom histograms
are histograms where each bin has associated membership
information represented as a Bloom filter [7]. As we describe
in the next section, we use Bloom histograms to approximate
recent client activity with a compact representation.

The histograms that we use in our variation of Bloom
histograms consist of an array of cells where each cell has a
frequency count for the number of values that fall within the
range of that cell. Each histogram cell’s range is specified
by an upper bound with cell membership approximated by
a Bloom filter associated with each cell.

A Bloom filter is a compact representation of set member-

Example 2. Approximation

Minimum trust threshold TWS = 0
FWS(C) =

P
trans.Fdbk for all trans initiated by C

Case 1: Suppose Rep1(C) = 100 and X = 5
Case 2: Suppose Rep2(C) = −100 and X = 5

ship [7]. Bloom filters consist of m bits initially set to 0 with
k hash functions that hash inputs into the range [0, m− 1].
To insert an element x into the Bloom filter, we set each
bit indexed by hash function hashi(x) for i = 1, ..., k to the
value 1. An element x is considered to be a member of a
Bloom filter if each bit indexed by hashi(x) for i = 1, ..., k
is equal to 1. The possibility of false positives exists in
Bloom filters, but false negatives are impossible. Specifi-
cally, a Bloom filter with m bits and k hash functions storing
n elements has a false positive probability of (1 − ekn/m)k

during a membership test [7, 10].

2.8.2 Approximating Trust Levels
The Bloom histograms used by the TMS approximate the

frequency distribution of the number of new service invoca-
tion records generated by clients during the last P transac-
tions at some trust management service instance. Assume
some service WS and some client C. Depending on the
scoring function used by WS and the number of new trans-
actions initiated by C, it might not be necessary to compute
a new trust score for C. For example, if eBay is the scoring
function used by WS, then the maximum positive feedback
that C can receive is +1 per transaction and the maximum
negative feedback that C can receive is −1 per transaction.
Therefore, the scenarios in Example 2 would not require WS
to re-evaluate C’s trust level using scoring function FWS if
C has initiated X new transactions since its last evaluation.

In the first case from Example 2, C’s current trust level
would be 95 in the worst case, which exceeds the minimum
threshold to grant the request. Similarly, in the second case,
C’s current trust level would be −95 in the best case, which
would not exceed the minimum threshold to grant the re-
quest. Since the reputation score evaluation will lead to the
same trust assessment by WS using the previous trust score,
then there is no need to re-evaluate the score for C given its
current trust level and the number of new transactions since
its last trust level evaluation.

Given X recent transactions from some client and its cur-
rent reputation score, best-case and worst-case estimators
can determine the best/worst possible scores by simulating
the scoring function with the best/worst possible feedback
for the past X transactions. We implemented best-case and
worst-case estimators for three different scoring functions,
which are described in Section 3. These estimators allow
services to determine when a new trust evaluation needs to
be initiated for a client.

Using Bloom histograms to estimate the number of trans-
actions initiated by each client, each service can decide whether
or not to re-evaluate the trust level of a particular client.
Since each client is uniquely assigned to one TMS instance,
then that TMS instance can locally determine the number
of new transactions initiated by that client based on the re-
ported service invocation history records. For each group of
P service invocation history records, the TMS instance will

Example 3. Constructing Bloom Histogram

Recent Service Invocation History Records (Step 1)
(C1, WS, Fdbk, {}), (C2, WS, Fdbk, {}), (C2, WS, Fdbk, {})
(C3, WS, Fdbk, {}), (C3, WS, Fdbk, {}), (C3, WS, Fdbk, {}),
(C4, WS, Fdbk, {}), (C4, WS, Fdbk, {}), (C4, WS, Fdbk, {}),
(C4, WS, Fdbk, {})

Frequency Table (Step 2)
(Client:C1, Count:1)
(Client:C2, Count:2)
(Client:C3, Count:3)
(Client:C4, Count:4)

Bloom Histogram (Step 3)
(Elements:BF ({C1, C2}), Upper bound:2)
(Elements:BF ({C3, C4}), Upper bound:4)

generate a frequency table mapping each client appearing
in those P records to the number of transactions initiated
by that client. Here, P refers to the transaction period at
the TMS. The Bloom histogram is then computed from the
frequency table. Example 3 illustrates how a collection of
service invocation history records can be transformed into
a Bloom histogram. Assume for a set of elements S that
BF (S) represents the Bloom filter for the elements in S.

After every P transactions reported at a TMS instance,
that TMS instance will send Bloom histograms to services
that have recently requested trust score evaluations. Each
service will maintain the most recent reputation score for
each client seen as well as an estimate of the amount of
recent activity for that client based on Bloom histogram
updates from the TMS.

To estimate the amount of recent activity for each client
with a previously evaluated trust value, upon receiving a
new Bloom histogram update from the TMS, each service
will check for client membership in the Bloom histogram
bins in order starting with the highest upper bound going
down to the lowest upper bound.

The Bloom histogram bins are checked from highest up-
per bound to lowest upper bound so that Bloom filter false
positives in the Bloom histogram bins will lead a service
to overestimate recent client activity rather than underesti-
mate. Overestimation might lead to unnecessary trust level
evaluations, which could increase the load on the TMS, but
it will not help malicious clients mask their behavior by un-
derestimating their recent activity.

2.9 Handling Malicious Services
In our trust management framework, malicious client be-

havior is addressed by services providing negative feedback
ratings on previous interactions with those clients. Another
concern is handling malicious services. For example, ma-
licious services might collude to deliberately provide inac-
curate feedback in order to boost the reputation of bad
clients or hurt the reputation of good clients. Malicious
services might also suppress their feedback to be disrup-
tive. To handle inaccurate feedback, some reputation met-
rics consider the credibility of the feedback sources explicitly
or implicitly [21, 15]. In the case of feedback suppression,
PeerTrust is an example of a reputation metric that captures
community-context factors, such as willingness to provide

feedback [21]. Since the TMS is flexible enough to support
customized reputation metrics, services can optionally add
components from existing reputation metrics to their own
custom scoring function to handle feedback credibility and
suppression. A default implementation of popular predicates
(e.g., PeerTrust credibility) can be provided by the TMS to
make scoring function customization easier.

3. PROTOTYPE IMPLEMENTATION
We implemented a prototype of our trust management

service and evaluated it within a realistic composite Web
service application scenario. In our prototype implementa-
tion, we included multiple reputation scoring functions. In
the next three subsections, we will describe the application
scenario, our specific prototype implementation details, and
the various scoring functions used.

3.1 Supply Chain Management
With input from multiple companies (including IBM, In-

tel, Oracle, SAP, and others), the Web Services Interoper-
ability Organization defined a standard Supply Chain Man-
agement (SCM) application [5]. The SCM application con-
sists of the following components: consumers (i.e., ”clients”
in our framework), retailers, warehouses, and manufactur-
ers. Each retailer, warehouse, and manufacturer corresponds
to a Web service. The consumer submits an order consist-
ing of line items to the retailer. Each line item identifies a
product and the corresponding quantity to be ordered. The
retailer goes through each line item and finds a warehouse
with sufficient stock to ship the line item. This warehouse
will then ship the line item to the consumer. Each ware-
house has some minimum inventory level for each product
and will order additional items from the manufacturer when-
ever inventory levels fall below this threshold for a particular
product.

We used Java Remote Method Invocation (RMI) to build
our prototype SCM application for both simulations on a
single machine and distributed experiments involving mul-
tiple nodes in LAN and WAN environments. A production-
quality SCM implementation could use other technologies,
such as the Java Web Services Developer Pack.

3.2 Trust Management Service
Our current version of the TMS is also implemented using

Java RMI with an interface that provides the two functions
for our TMS API described in Section 2.1. The first function
allows services to report service invocation history records
to the TMS by passing a client identifier and a Java object
representation of a service invocation history as a param-
eter. The service invocation history record information is
then stored by the TMS. The second function allows ser-
vices to perform reputation-based trust level assessments by
requesting that the TMS evaluate a client’s reputation by
passing a client identifier and a Java object representation
of their custom scoring function as parameters.

In order to evaluate our trust management service, we en-
hanced our implementation of the basic SCM application by
providing the TMS as an additional service. All of the ser-
vices in the SCM application were modified to pass along
service invocation history records in addition to their reg-
ular functionality. For our prototype, we assumed that all
client requests for a particular line item would lead to one of
the following outcomes: (1) all requested items shipped in

exchange for payment, (2) all requested items appeared in
catalog, but not all items could be successfully shipped, and
(3) some items requested do not even appear in the catalog.
These outcomes correspond to positive, neutral, and nega-
tive feedback, respectively. The reason that shipped items
are considered positive is because a payment has been made.
Items unavailable for shipment that appeared in the cata-
log are considered neutral because no payments are made,
but the customer is not at fault for selecting items that ap-
peared in the catalog. Negative transactions are considered
to be those transactions where the customer is trying to pur-
chase items that do not exist in the catalog, because such
repeated activity might indicate a client attempting to waste
resources within the services infrastructure.

Although our prototype only considers one particular type
of attack for our performance evaluation (i.e., clients inten-
tionally ordering non-existent items to waste infrastructure
resources), the TMS design is general enough to be easily
extended for other types of attacks for different applications
(e.g., posting spam on some user-generated content hosting
service or non-payment to an e-commerce site).

3.3 Scoring Functions
Since our trust management framework is designed to sup-

port different services using different reputation metrics, we
implemented three reputation scoring functions for our pro-
totype. Each function is described in this section.

3.3.1 eBay
Both buyers and sellers are allowed to provide feedback

on their auction transactions with other buyers and sellers
on eBay [1]. The eBay scoring function is a summation
of positive (+1), neutral (0), and negative (−1) feedback
values used for the online auction site. Users with higher
eBay scores are considered to have higher reputations. The
eBay feedback ratings are added up to determine a client’s
overall reputation according to the eBay scoring function.
This overall reputation can be used by potential buyers and
sellers to determine whether or not to purchase/sell an item
from/to another eBay user.

3.3.2 PeerTrust
PeerTrust is a reputation management system for peer-to-

peer networks [21]. The PeerTrust model presents a trust
metric based on the following five features: feedback from
other peers, number of transactions completed, credibility of
feedback, transaction context factor, and community con-
text factor. The transaction context factor represents the
importance of the transaction (e.g., transactions involving
more money should receive more weight). The community
context factor represents ”community-specific” information
that should be taken into account (e.g., willingness to pro-
vide feedback to benefit the overall community).

The general trust metric T (u) for some peer u appears in
the following Equation 1 from [21].

T (u) = α ·
I(u)X
i=1

S(u, i) ·Cr(p(u, i)) ·TF (u, i)+β ·CF (u) (1)

I(u) represents the total number of transactions performed
by some peer u with other peers in a given time window and
p(u, i) represents the other peer in the ith transaction of

peer u. S(u, i) denotes the normalized amount of user sat-
isfaction peer u receives from p(u, i) in its ith transaction.
Cr(v) denotes the credibility of feedback received from peer
v. TF (u, i) denotes the adaptive transaction context factor
for peer u’s ith transaction and CF (u) denotes the adaptive
community factor. The variables α and β are weight factors.

Our particular implementation of PeerTrust treats each
service as a peer. We ignored the community factor CF (u)
(i.e., we set β = 0 from Equation 1). This is the basic metric
with transaction context mentioned in [21]. We also assumed
that the credibility Cr(v) of each service was static and equal
to 1. The possibility of malicious services providing bad
feedback can be handled by adjusting the credibility factor.

3.3.3 Exponentially Weighted Moving Average
In order to test a new user-defined custom scoring func-

tion, we developed a third reputation metric, which is an
exponentially weighted moving average (EWMA) of the se-
ries of feedback ratings xi for a particular client with an
adaptive smoothing constant θ:

x−2 = x−1 = 1

Rep0 = 0

Repi+1 = (1− θ)xi + θRepi

where θ =

(
0.75 if xi, xi−1, xx−2 < minfeedback

0.95, otherwise

The intuition behind using the adaptive smoothing con-
stant θ in the above EWMA is that we want a user’s reputa-
tion to quickly degrade in response to three or more consec-
utive transactions below the minimum threshold feedback
value minfeedback. On the other hand, we want reputations
to increase slowly in response to a series of good transactions
that fall at or above minfeedback. Although EWMA is very
aggressive in reducing client reputations quickly, users with
consistently good transactions are more easily identified.

4. EXPERIMENTAL EVALUATION
To evaluate our trust management service, we ran sev-

eral experiments in both LAN and WAN distributed envi-
ronments using nodes from the Trusted ILLIAC cluster [13]
and the PlanetLab wide area network testbed [4]. We also
ran several simulations of our prototype on a single machine.
We will first provide some Trusted ILLIAC and PlanetLab
results that explore the effects of the trust management ser-
vice on request latency and throughput for a real application
distributed over both local-area network and wide-area net-
work environments. Next, we will present simulation results
to measure the effects of Bloom histogram-based trust evalu-
ation caching on communication savings as well as its effects
on the accuracy for different scoring functions. Finally, we
will present simulation results to evaluate the availability of
the TMS when one or more nodes crash.

4.1 Latency and Throughput
In order to evaluate the effect of the trust management

service on the end-to-end latency and throughput of a real
application, we deployed our implementation of the SCM
application on both the Trusted ILLIAC cluster and Plan-
etLab testbed. Figure 2 depicts our deployment of the TMS
with the SCM application. The Trusted ILLIAC cluster

Retailer

Nodes

Trusted ILLIAC:4

PlanetLab:3

Warehouse

Nodes

Trusted ILLIAC:4

PlanetLab:3

Manufacturer

Nodes

Trusted ILLIAC:4

PlanetLab:3

TMS Nodes

Varied from 0 to 3 for both scenarios

100

Emulated

Clients

order() ship() replenish()

report()

evaluate()

Figure 2: SCM with TMS Deployment

represents services deployed in LAN environments, such as
data centers. PlanetLab represents services distributed over
WAN environments, such as the Internet. For each exper-
iment, we added between zero and three instances of the
trust management service to the SCM application. We con-
sidered the following modes: no TMS, TMS without caching,
and TMS with caching. When the TMS was used, the scor-
ing function was eBay. Our Trusted ILLIAC experiments
consisted of between twelve and fifteen nodes. Our Plan-
etLab experiments consisted of between nine and twelve
nodes. All PlanetLab nodes were located at different insti-
tutions throughout the United States. The exact number of
nodes involved in each experiment depended on the number
of TMS nodes, which varied from zero to three.

In the SCM application, when the TMS was used without
caching, the retailer would invoke a TMS node to evaluate
each incoming request from the client before ordering a ship-
ment from the warehouse. When the TMS was used with
Bloom histogram-based caching, the retailer would evalu-
ate incoming requests only when necessary according to the
methods described in Section 2.8. The transaction period
(defined in Section 2.8.2) was 100 for all experiments where
TMS caching was used. The Bloom histograms for these
experiments had 5 bins with 32 bits per bin (i.e., 20 bytes
total) and 4 hash functions.

To evaluate end-to-end latency and overall system through-
put on a realistic application, we had 100 client threads from
a single machine make one hundred random requests for
items to the SCM application hosted on either the Trusted
ILLIAC or PlanetLab. The Trusted ILLIAC deployment of
the SCM application ran four retailers, four warehouses, and
four manufacturers. The PlanetLab deployment of the SCM
application ran three retailers, three warehouses, and three
manufacturers. The number of TMS service instances var-
ied between zero and three. For these experiments, we also
examined the effect of using multiple TMS nodes both with
and without caching.

The results in Figure 3 indicate that the additional la-
tency when the TMS is used is not significant in LAN envi-
ronments. In contrast, there is additional latency when the
TMS is used in WAN environments. However, Figure 3 also
indicates that caching can significantly reduce the end-to-
end latency in WAN environments. Increasing the number
of TMS nodes also seems to significantly reduce the latency
in WAN environments.

As we expected, using the TMS decreases throughput in
our experiments (shown in Figure 4), but increasing the
number of TMS nodes and caching trust values lead to per-
formance improvements for both the Trusted ILLIAC (i.e.,

20

4000

 100

 1000

0 1 2 3

A
ve

ra
ge

 L
at

en
cy

 (
m

ill
is

ec
on

ds
)

Number of TMS Nodes

No TMS - LAN
No Caching - LAN

Caching - LAN
No TMS - WAN

No Caching - WAN
Caching - WAN

Figure 3: Latency (LAN and WAN)

20

5000

 100

 1000

0 1 2 3

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
ec

on
d)

Number of TMS Nodes

No TMS - LAN
No Caching - LAN

Caching - LAN
No TMS - WAN

No Caching - WAN
Caching - WAN

Figure 4: Throughput (LAN and WAN)

LAN) and PlanetLab (i.e., WAN) deployments. Our experi-
mental results show that even a small number of TMS nodes
can come close to the performance of using no TMS nodes
at all. Due to our load balancing scheme described in Sec-
tion 2.6, if the TMS had been more of a bottleneck in our
experiments, then we would have expected to see greater
performance improvements with the addition of each TMS
node.

4.2 Different Scoring Functions
To compare trust level assessments and the effects of Bloom

histogram-based caching for different scoring functions, we
ran simulations with all three scoring functions. For our
simulations, we created an SCM application scenario with
ten retailers, ten warehouses, ten manufacturers, and ten in-
stances of the trust management service. Each simulation
also had 1000 clients where each client has an activity proba-
bility AP and issued approximately AP ·100 transactions to
randomly chosen retailers. Each simulation used the same
random transaction workload.

Each transaction in the simulations had an optional at-
tribute amount that corresponds to the total monetary amount
of the transaction based on the line items and their corre-
sponding prices in the catalog for the SCM application. The
attribute amount is only used by the PeerTrust scoring func-
tion as a transaction context factor. To create different types
of behavior, each client is assigned a probability Malprob for
issuing a malicious transaction. As described in Section 3.2,

a malicious transaction attempts to order items that do not
appear in the catalog.

To study the effect that different scoring functions might
have on trust level assessments for the same collection of ser-
vice invocation history records, we determined the request
rejection rate for different scoring functions in different client
behavior categories. Each client behavior category falls into
ten bins characterized by their average Malprob. As shown
in Figure 5, the rejection rate for each scoring function in-
creases as the probability of issuing a malicious transaction
increases for the different categories. However, Figure 5 also
shows that different scoring functions might lead to different
trust level assessments, which supports our goal of provid-
ing flexibility in our trust management framework for ser-
vices with different trust requirements. For example, since
EWMA aggressively lowers a client’s reputation after con-
secutive negative transactions, its rejection rate is higher
than the other two scoring functions as shown in Figure 5.

Since trust level caching (as described in Section 2.8) would
be expected to reduce the number of requests for trust level
evaluations (i.e., reduce communication overhead) at the
cost of a possible reduction in accuracy, we explore the ef-
fects that different transaction periods at the TMS nodes
might have on different scoring functions. Shorter transac-
tion periods at the TMS nodes should give services more
up-to-date information regarding recent client activity. In
general, we expect shorter periods to lead to better accu-
racy at the cost of more trust level evaluations and more
Bloom histogram updates. Similar to our distributed exper-
iments, we used Bloom histograms containing 5 bins with 32
bits per bin (i.e., only 20 bytes total) and 4 hash functions.

The total number of updates sent from the TMS nodes
to other nodes during the simulations for different periods
appears in Figure 6. The transaction period represents the
number of transactions that a TMS node will receive be-
tween sending Bloom histogram updates to the services.

In Figures 7 and 8, we show the trade-off between commu-
nication overhead and the accuracy of trust level evaluations
for three different scoring functions when Bloom histogram-
based caching is used. For each transaction period, we con-
sider the following metrics for different scoring functions:
false grant rate, false denial rate, and trust evaluation rate.
The false grant rate is the fraction of requests granted based
on cached trust values when the request should be denied
based on the actual trust value. The false denial rate is
the fraction of requests denied based on cached trust val-
ues when the request should be granted based on the ac-
tual trust value. The trust evaluation rate is the fraction
of requests that trigger a new trust level evaluation based
on best-case/worst-case estimators for a particular scoring
function and the client’s recent activity as described in Sec-
tion 2.8.2. Ideally, the rate for false grants and denials
should be low for good accuracy. The trust evaluation rate
should also be low to reduce communication overhead.

Our results indicate that shorter transaction periods lead
to higher accuracy (shown in Figure 7) at the cost of higher
communication overhead (shown in Figure 8). In Figure 8,
EWMA has a higher trust evaluation rate than the other two
functions due to its aggressive response to negative feedback.
In Figure 7, the false grant and denial rate of all three scoring
functions is extremely low until the transaction period equals
2000. Even when the transaction period is 2000 or above,
the false grant and denial rates do not exceed 3% for any of

 0

 0.2

 0.4

 0.6

 0.8

 1

0.05 0.25 0.45 0.65 0.85

R
ej

ec
tio

n
R

at
e

Average Malicious Probability

eBay
PeerTrust

EWMA

Figure 5: Rejection Rates

 0

 2000

 4000

 6000

 8000

 10000

50 100 200 500 1000 2000 5000

N
um

be
r

of
 U

pd
at

es

Transaction Period

Figure 6: Bloom Histogram Updates

the three scoring functions used (i.e., eBay, PeerTrust, and
EWMA).

Our simulation results demonstrate how three different
scoring functions, which were implemented in our prototype,
can lead to three different rejection rates for the same work-
load. Of the three scoring functions, EWMA had the most
aggressive rejection rate. Our simulation results also indi-
cate that Bloom histogram-based caching can effectively re-
duce communication overhead with a slight reduction in ac-
curacy for three different scoring functions. Bloom histogram-
based caching reduced communication overhead more for
eBay and PeerTrust, than for EWMA.

4.3 High Availability
To test the availability of the TMS, we simulated the

same workload from Section 4.2 with the addition of ran-
dom TMS node crashes. In each simulation, we varied the
degree of replication as described in Section 2.7. As in our
earlier simulations, the number of TMS nodes was ten. A
TMS invocation (i.e., report() or evaluate()) is consid-
ered a success if at least one replica responds. Otherwise,
if no replicas are available, then the invocation is consid-
ered a failure. Our results appear in Table 2 where K is

0.01

0.02

0.03

50 100 200 500 1000 2000 5000

F
al

se
 G

ra
nt

/D
en

ia
l R

at
e

Transaction Period

eBay - False Grants
eBay - False Denials

PeerTrust - False Grants
PeerTrust - False Denials

EWMA - False Grants
EWMA - False Denials

Figure 7: False Grant and Denial Rates

 0

 0.2

 0.4

 0.6

 0.8

 1

50 100 200 500 1000 2000 5000

E
va

lu
at

io
n

R
at

e

Transaction Period

eBay
PeerTrust

EWMA

Figure 8: Trust Evaluation Rates

Table 2: Robustness to TMS Node Crashes
K Prob Crashes Failures Records
0 0.2 2 13857 47571
0 0.4 4 28617 42667
0 0.6 5 36922 39955
1 0.2 2 0 92635
1 0.4 4 13857 85024
1 0.6 5 13860 84581
2 0.2 2 0 134884
2 0.4 4 0 133330
2 0.6 5 0 133097

the degree of replication, Prob is the probability of a TMS
node crashing, Crashes is the number of actual TMS node
crashes during the simulation, Failures is the number of
failed TMS invocations, and Records is the total number of
TMS records maintained in the system.

As shown in Table 2, even a small degree of replication
can tolerate a substantial number of TMS nodes crashing.
For example, a single replica can handle up to 2 out of 10
TMS nodes crashing without any failures. Two replicas can
handle up to 5 out of 10 TMS nodes crashing without any
failures. As expected, the number of records that must be
maintained increases as the degree of replication increases.

5. RELATED WORK
Much previous research has been done on reputation man-

agement systems in applications ranging from online auc-
tions to Web service selection to peer-to-peer networks. eBay
is one of the best known examples of a reputation manage-
ment system for an online auction site [1]. eBay allows buy-
ers and sellers to rate each other after each transaction as
we described in Section 3.3.1. The eBay scoring function is
vulnerable to strategic behavior as pointed out in [21].

Reputation management systems have also been devel-
oped for the problem of clients wanting to select the most
reputable Web services. Zeng et al. proposed a Web service
quality model where reputation is one of their five quality
attributes considered [23]. Verity, which measures the con-
sistency in service providers to deliver the QoS level specified
in their contracts, has been proposed as a metric to evalu-
ate the reputation of Web services [14]. The robustness of
reputation systems for Web service selection has also been
considered [17]. Unlike existing work on Web service se-
lection, our work looks at reputation from the perspective
of services that want to avoid granting requests to untrust-
worthy clients rather than helping clients select the most
reputable Web services.

The prevalence of bogus content being disseminated in
peer-to-peer file sharing applications has also led to much re-
search on reputation management systems for peer-to-peer
networks. XRep runs a polling protocol that allows peers
to judge the reputations of resources as well as resource
providers [8]. EigenTrust relies on the notion of transitive
trust [15]. PeerTrust includes a trust metric that considers
five features described in Section 3.3.2 [21]. Unlike a peer-to-
peer network running a single application, an infrastructure
hosting many services will potentially run many different
applications with each one having its own criteria for trust.

6. CONCLUSION
Our reputation-based trust management framework sup-

ports the synthesis of trust-related feedback from multiple
services hosted within an infrastructure while still provid-
ing the flexibility for each service to apply its own reputa-
tion scoring function. Rather than assuming a single global
trust metric like many existing reputation systems, we allow
each service to use its own trust metrics to meet its local
trust requirements. Since our framework supports multiple
reputation scoring functions, our trust management service
complements existing work on reputation management sys-
tems. We have evaluated our approach in both LAN and
WAN environments with a realistic application. We also
compared different scoring functions within our framework.
Our results indicate that different scoring functions can be
effectively supported within our framework with little addi-
tional performance overhead and high availability.

7. ACKNOWLEDGMENTS
Part of this work was completed during a summer intern-

ship at IBM Research. This work was also supported by
NSF grant CNS 05-51665. Any opinions, findings, and con-
clusions are those of the authors and do not necessarily re-
flect the views of the above agencies.

8. REFERENCES
[1] ebay. In http://www.ebay.com.

[2] Google app engine. In
http://code.google.com/appengine/.

[3] Ibm application hosting. In http://www-
935.ibm.com/services/us/index.wss/offerfamily/ebhs/
a1000394.

[4] Planetlab. In http://www.planet-lab.org.

[5] Sample applications working group of the web services
interoperability organization. In http://www.ws-
i.org/deliverables/workinggroup.aspx?wg=sampleapps.

[6] K. Aberer and Z. Despotovic. Managing trust in a
peer-2-peer information system. In Conference on
Information and Knowledge Management, 2001.

[7] B. Bloom. Space/time trade-offs in hash coding with
allowable errors. Communications of the ACM, 13(7),
July 1970.

[8] E. Damiani, S. D. C. di Vimercati, S. Paraboschi,
P. Samarati, and F. Violante. A reputation-based
approach for choosing reliable resources in
peer-to-peer networks. In ACM Conference on
Computer and Communications Security, 2002.

[9] J. Douceur. The sybil attack. In International
Workshop on Peer-to-Peer Systems, 2002.

[10] L. Fan, P. Cao, J. Almeida, and A. Broder. Summary
cache: A scalable wide-area web cache sharing
protocol. In SIGCOMM, 1998.

[11] I. Gupta, K. Birman, P. Linga, A. Demers, and R. van
Renesse. Kelips: Building an efficient and stable p2p
dht through increased memory and background
overhead. In International Workshop on Peer-to-Peer
Systems, 2003.

[12] M. Gupta, P. Judge, and M. Ammar. A reputation
system for peer-to-peer networks. In International
Workshop on Network and Operating Systems Support
for Audio and Video, 2003.

[13] R. Iyer. Application-aware reliability and security:
The trusted illiac approach. In IEEE International
Symposium on Network Computing and Applications,
2006.

[14] S. Kalepu, S. Krishnaswamy, and S. Loke. Reputation
= f(user ranking, compliance, verity). In International
Conference on Web Services, 2004.

[15] S. Kamvar, M. Schlosser, and H. Garcia-Molina. The
eigentrust algorithm for reputation management in
p2p networks. In International World Wide Web
Conference, 2003.

[16] D. Karger, E. Lehman, F. Leighton, M. Levine,
D. Lewin, and R. Panigrahy. Consistent hasing and
random trees: Distributed caching protocols for
relieving hot spots on the world wide web. In ACM
Symposium on Theory of Computing, 1997.

[17] S. Park, L. Liu, C. Pu, M. Srivatsa, and J. Zhang.
Resilient trust management for web service
integration. In International Conference on Web
Services, 2005.

[18] A. Rowstron and P. Druschel. Pastry: Scalable,
decentralized object location, and routing for
large-scale peer-to-peer systems. In International
Middleware Conference, 2001.

[19] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger,
M. Kaashoek, F. Dabek, and H. Balakrishnan. Chord:
A scalable peer-to-peer lookup protocol for internet
applications. IEEE/ACM Transactions on
Networking, 11(1), February 2003.

[20] W. Wang, H. Jiang, H. Lu, and J. Yu. Bloom
histogram: Path selectivity estimation for xml data
with updates. In International Conference on Very
Large Data Bases, 2004.

[21] L. Xiong and L. Liu. Peertrust: Supporting
reputation-based trust for peer-to-peer electronic
communities. IEEE Transactions on Knowledge and
Data Engineering, 16(7), July 2004.

[22] G. Zacharia, A. Moukas, and P. Maes. Collaborative
reputation mechanism in electronic marketplaces. In
Hawaii International Conference on System Sciences,
1999.

[23] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam,
and Q. Sheng. Quality driven web services
composition. In International World Wide Web
Conference, 2003.

[24] B. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph,
and J. Kubiatowicz. Tapestry: a resilient global-scale
overlay for service deployment. IEEE Journal on
Selected Areas in Communications, 22(1), January
2004.

