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Submodular Maximization Over Multiple Matroids

via Generalized Exchange Properties

Jon Lee ∗ Maxim Sviridenko † Jan Vondrák ‡

March 25, 2009

Abstract

Submodular-function maximization is a central problem in combinatorial optimiza-
tion, generalizing many important NP-hard problems including Max Cut in digraphs,
graphs and hypergraphs, certain constraint satisfaction problems, maximum-entropy
sampling, and maximum facility-location problems. Our main result is that for any
k ≥ 2 and any ε > 0, there is a natural local-search algorithm which has approxi-
mation guarantee of 1/(k + ε) for the problem of maximizing a monotone submodular
function subject to k matroid constraints. This improves a 1/(k + 1)-approximation of
Nemhauser, Wolsey and Fisher, obtained more than 30 years ago. Also, our analysis
can be applied to the problem of maximizing a linear objective function and even a
general non-monotone submodular function subject to k matroid constraints. We show
that in these cases the approximation guarantees of our algorithms are 1/(k − 1 + ε)
and 1/(k + 1 + 1/k + ε), respectively.

Introduction

In this paper, we consider the problem of maximizing a non-negative submodular function f ,
defined on a (finite) ground set N , subject to matroid constraints. A function f : 2N → R is
submodular if for all S, T ⊆ N , f(S∪T )+f(S∩T ) ≤ f(S)+f(T ). Throughout, we assume
that our submodular function f is given by a value oracle; i.e., for a given set S ⊆ N ,
an algorithm can query an oracle to find the value f(S). Furthermore, all submodular
functions that we deal with are assumed to be non-negative. Without loss of generality, we
take the ground set N to be [n] := {1, 2, · · · , n}.

We assume some familiarity with matroids [16] and associated algorithmics [18]. Briefly,
we denote a matroid M by an ordered pair (N,I), where N is the ground set of M and
I is the set of independent sets of M. For a given matroid M, the associated matroid
constraint is S ∈ I(M). In our usage, we deal with k matroids Mi = (N,Ii), i = 1, . . . , k,
on the common ground set N .

∗IBM T.J. Watson Research Center, jonlee@us.ibm.com
†IBM T.J. Watson Research Center, sviri@us.ibm.com
‡Princeton University, jvondrak@math.princeton.edu
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It is no coincidence that we use N for the ground set of our submodular function f
as well as for the ground set of our matroids Mi = (N,Ii), i = 1, . . . , k. Indeed, our
optimization problem is

max
{

f(S) : S ∈ ∩k
i=1Ii

}

.

Where necessary, we make some use of other standard matroid notation: For a matroid
M = (N,I), we denote its rank function by rM and its dual by M∗ . A base of M is a
J ∈ I having cardinality rM(N). For a set S ⊂ N , we let M\S, M/S, and M|S denote
deletion of S, contraction of S, and restriction to S, respectively. We recall:

• rM(S) := max {|J | : J ⊆ S , J ∈ I}.

• M∗ has ground set N and independent sets {X ∈ N : N \X contains a base ofM}

• M\S (M delete S) has ground set N \S and independent sets {X ⊆ N \S : X ∈ I}

• Let J be a maximal subset of S that is independent in M Then M/S (M contract
S) has ground set N \ S and independent sets {X ⊆ N \ S : X ∪ J ∈ I}

• M|S (M restricted to S) is simply M\(N/ \ S) (M delete N \ S)

Previous Results. Optimizing submodular functions is a central topic in optimization
[12]. While submodular minimization is a polynomially solvable problem [10, 19], the max-
imization variants are usually NP-hard because they include either Max Cut, some variant
of facility location, or set packing problems.

There are essentially two algorithmic techniques that work for submodular maximiza-
tion. The greedy algorithm was first applied to a wide range of submodular maximization
problems in the late-70’s and early-80’s [3, 4, 5, 13, 14]. The most relevant result for our
purposes is the proof that the greedy algorithm has approximation guarantee of 1/(k + 1)
for the problem of maximizing a monotone submodular function subject to k matroid con-
straints [14]. Until recently, this algorithm had the best established performance guarantee
for the problem with general matroid constraints. Recently, Vondrák [20] designed the
continuous greedy algorithm that achieves a (1− 1/e)-approximation for the problem with
k = 1, i.e. subject to a single matroid constraint. This result is optimal in the oracle model
even for the case of a uniform matroid constraint [15], and also optimal unless P = NP for
the special case of the maximum coverage problem [6].

The second algorithmic technique that works for submodular maximization is local
search. Cornuéjols et al. [4] show that a local-search algorithm achieves a constant-factor
approximation guarantee for the maximum uncapacitated facility-location problem which
is a special case of submodular maximization. Note that in this case the greedy approach
has a better performance guarantee. The maximum k-dimensional matching problem is a
problem of maximizing a linear objective function subject to k special partition matroid
constraints. The approximation guarantees for maximum k-dimensional matching are es-
tablished with local-search algorithms and have performance guarantees 2/(k +ε) for linear
function with {0, 1}-coefficients, and 2/(k + 1 + ε) for a general linear function, even in the
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more general settings of set packing [9] and independent set problems in (k + 1)-claw free
graphs [1]. Unfortunately, general matroid constraints seem to complicate the matter; the
best approximation guarantee for the problem of maximizing a linear function subject to k
general-matroid constraints is 1/k [17].

The result of [14] can be improved in the case when all k constraints correspond to
partition matroids. A simple local-search algorithm has approximation guarantee of 1/(k +
ε) [11] for this variant of the problem. The analysis strongly uses the properties of partition
matroids. It is based on the realtively simple augmenting-paths exchange properties of
partition matroids that do not hold in general.

Local-search algorithms were also designed for non-monotone submodular maximization
[7, 11]. The best approximation guarantee known for unconstrained submodular maximiza-
tion is 2/5− ε [7]. For the problem with k general matroids the best known approximation
is 1/(k + 2 + 1/k + ε) [11].

Our Results and Techniques. In this paper we analyze a natural local-search algo-
rithm: Given a feasible solution, i.e. a set S that is independent in each of the k matroids,
our local-search algorithm tries to add at most p elements and delete at most kp elements
from S. If there is such a local move that generates a feasible solution that improves the
objective value, our algorithm repeats the local-search procedure with that new solution,
until no improvement is possible. Our main result is that for k ≥ 2, every locally-optimal
feasible solution S satisfies the inequality

(

k +
1

p

)

· f(S) ≥ f(S ∪ C) +

(

k − 1 +
1

p

)

· f(S ∩ C),

for every feasible solution C.
We also provide an approximate variant of the local-search procedure that finds an

approximate locally-optimal solution in polynomial time, while losing a factor of 1 + ε in
the left-hand side of the above inequality (Lemma 3.3) for arbitrary ε > 0. Therefore, we
obtain a polynomial-time local-search algorithm with approximation guarantee 1/(k + ε)
for the problem of maximizing a monotone increasing submodular function subject to k
matroid constraints. This algorithm gives a 1/(k − 1 + ε)-approximation in the case when
the objective function is linear.

The main technical contributions of this paper are two new exchange properties for
matroids. One is a generalization of the classical Rota Exchange Property (Lemma 2.8)
and another is a generalization of the exchange property for partition matroids based on
augmenting paths (Lemma 2.4). We believe that both properties and proofs are interesting
in their own right.

In the case of a general non-monotone submodular objective functions, one round of
local search is not enough, but applying the local search iteratively, as in [11], one can
obtain an approximation algorithm with performance guarantee of 1/(k+1+1/(k−1)+ε).

In §1, we establish some useful properties concerning exact k-covers and submodular
functions. In §2, we establish some exchange properties for matroids. In §3, we describe
and analyze our local-search algorithm.
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1 Some Useful Properties of Submodular Functions

Lemma 1.1. Let f be a non-negative submodular function on N . Let S′ ⊆ S ⊆ N , and
let {Tl}

t
l=1 be a collection of subsets of S \ S′ such that each element of S \ S′ appears in

exactly k of these subsets. Then

t
∑

l=1

[f(S)− f (S \ Tl)] ≤ k
(

f(S)− f(S′)
)

.

Proof. Let s = |S| and c = |S′|. Without loss of generality, we can assume that S′ =
{1, 2, · · · , c} = [c] and S = {1, 2, · · · , s} = [s] Then for any T ⊆ S \ S′, by submodularity:
f(S)− f(S \ T ) ≤

∑

p∈T [f([p])− f([p− 1])]. Using this we obtain

t
∑

l=1

[f(S)− f (S \ Tl)] ≤
t
∑

l=1

∑

p∈Tl

[f([p])− f([p− 1])]

= k

s
∑

i=c+1

[f([i])− f([i− 1])]

= k
(

f(S)− f(S′)
)

.

The second equality follows from S \ C = {c + 1, · · · , s} and the fact that each element of
S \ C appears in exactly k of the sets {Tl}

t
l=1. The last equality is due to a telescoping

summation. ⊓⊔

Lemma 1.2. Let f be a non-negative submodular function on N . Let S ⊆ N and C ⊆ N ,
and let {Tl}

t
l=1 be a collection of subsets of C \ S such that each element of C \ S appears

in exactly k of these subsets. Then

t
∑

l=1

[f(S ∪ Tl)− f (S)] ≥ k (f(S ∪ C)− f(S)) .

Proof. Let s = |S| and c = |C \ S|. Without loss of generality, we can assume that S =
{1, 2, · · · , s} and that C \S = {s+1, 2, · · · , c}. Then for any Tl ⊆ C \S, by submodularity:
f(S ∪ Tl)− f(S) ≥

∑

p∈Tl
[f(S ∪ {p})− f(S)]. Using this we obtain

t
∑

l=1

[f(S ∪ Tl)− f (S)] ≥
t
∑

l=1

∑

p∈Tl

[f(S ∪ {p})− f (S)]

= k
∑

p∈C\S

[f(S ∪ {p}) − f (S)]

≥ k [f(S ∪ C)− f (S)] .

The last inequality follows from submodularity. ⊓⊔
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2 New Exchange Properties of Matroids

2.1 Two matroids

An exchange digraph is a well-known construct for devising efficient algorithms for exact
maximization of modular functions on a pair of matroids on a common ground set (for
example, see [18]). We are interested in submodular maximization, k matroids and approx-
imation algorithms; nevertheless, we are able to make use of such exchange digraphs, once
we establish some new properties of them.

Let M1 = (N,I1) and M2 = (N,I2) be a pair of matroids on ground set N . For
I ∈ I1 ∩ I2, we define a pair of digraphs DM1

(I) and DM2
(I) on node set N as follows:

• For each i ∈ I, j ∈ N \ I such that I − i + j ∈ I1, we have an arc (i, j) of DM1
(I);

• For each i ∈ I, j ∈ N \ I such that I − i + j ∈ I2, we have an arc (j, i) of DM2
(I).

The arcs in DM1
(I) encode valid swaps inM1, and the arcs in DM2

(I) encode valid swaps
in M2.

In what follows, we assume that I is our current solution and J is the optimal solution.
We also assume that |I| = |J |. If not, we extend I or J by dummy elements so that we
maintain independence in both matroids (more details later). We use two known lemmas
from matroid theory.

Lemma 2.1 ([18, Corollary 39.12a]). If |I| = |J | and I, J ∈ Ii (i = 1 or 2), then DMi
(I)

contains a perfect matching between I \ J and J \ I.

Lemma 2.2 ([18, Theorem 39.13]). Let |I| = |J |, I ∈ Ii, and assume that DMi
(I) has a

unique perfect matching between I \ J and J \ I. Then J ∈ Ii.

Next, we define a digraph DM1,M2
(I) on node set N as the union of DM1

(I) and
DM2

(I). A dicycle in DM1,M2
(I) corresponds to a chain of feasible swaps. However,

observe that it is not necessarily the case that the entire cycle gives a valid exchange in
both matroids.

If |I| = |J | and I, J ∈ I1 ∩I2, this means we have two perfect matchings on I∆J which
together form a collection of dicycles in DM1,M2

(I). However, only the uniqueness of a
perfect matching assures us that we can legally perform the exchange. This motivates the
following definition.

Definition 2.3. We call a dicycle C in DM1,M2
(I) irreducible if C ∩DM1

(I) is the unique
perfect matching in DM1

(I) and C ∩ DM2
(I) is the unique perfect matching in DM2

(I),
covering the vertex set V (C). Otherwise, we call C reducible.

The following, which is our main technical lemma, allows us to consider only irreducible
cycles. The proof follows closely the ideas of matroid intersection (see [18, Lemma 41.5α]).
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Lemma 2.4. Let M1 = (N,I1) and M2 = (N,I2) be two matroids on ground set N .
Suppose that I, J ∈ I1∩I2 and |I| = |J |. Then there is s ≥ 0 and a collection of irreducible
dicycles {C1, . . . , Cm} (possibly with repetition) in DM1,M2

(I), using only elements of I∆J ,
so that each element of I∆J appears in exactly 2s of the dicycles.

Proof. Consider DM1,M2
(I) = DM1

(I) ∪ DM2
(I). By Lemma 2.1, there exists a perfect

matching between I \ J and J \ I, both in DM1
(I) and DM2

(I). Let us denote these two
perfect matchings by M1,M2. The union M1 ∪M2 forms a subgraph of out-degree 1 and
in-degree 1 on I∆J . Therefore, it decomposes into a collection of dicycles C1, . . . , Cm. If
they are all irreducible, we are done.

If Ci is not irreducible, it means that either M ′
1 = Ci ∩DM1

(I) or M ′
2 = Ci ∩DM2

(I)
is not a unique perfect matching on V (Ci). Let us assume, without loss of generality,
that there is another perfect matching M ′′

1 in DM1
(I). We consider the disjoint union

M ′
1 + M ′′

1 + M ′
2 + M ′

2, duplicating arcs where necessary. This is a subgraph of out-degree 2
and in-degree 2 on V (Ci), which decomposes into dicycles Ci1, . . . , Cit, covering each vertex
of Ci exactly twice:

V (Ci1) + V (Ci2) + . . . + V (Cit) = 2V (Ci).

Because M ′
1 6= M ′′

1 , we have a chord of Ci in M ′′
1 , and we can choose the first dicycle so that

it does not cover all of V (Ci). So we can assume that we have t ≥ 3 dicycles, and at most
one of them covers all of V (Ci). If there is such a dicycle among Ci1, . . . , Cit, we remove it
and duplicate the remaining dicycles. Either way, we end up with a collection of dicycles
Ci1, . . . , Cit′ such that each of them is shorter than Ci and together they cover each vertex
of Ci exactly twice.

We repeat this procedure for each reducible dicycle Ci. For irreducible dicycles Ci, we
just duplicate Ci to obtain Ci1 = Ci2 = Ci. This completes one stage of our procedure.
After the completion of the first stage, we have a collection of dicycles {Cij} covering each
vertex in I∆J exactly twice.

As long as there exists a reducible dicycle in our current collection of dicycles, we
perform another stage of our procedure. This means decomposing all reducible dicycles
and duplicating all irreducible dicycles. In each stage, we double the number of dicycles
covering each element of I∆J . To see that this cannot be repeated indefinitely, observe that
every stage decreases the size of the longest reducible dicycle. All dicycles of length 2 are
irreducible, and therefore the procedure terminates after a finite number of stages s. Then,
all cycles are irreducible and together they cover each element of I∆J exactly 2s times. ⊓⊔

We remark that of course the procedure in the proof of Lemma 2.4 is very inefficient,
but it is not part of our algorithm — it is only used for this proof.

Next, we extend this Lemma 2.4 to sets I, J of different size, which forces us to deal
with dipaths as well as dicycles.

Definition 2.5. We call a dipath or dicycle A feasible in DM1,M2
(I), if

• I∆V (A) ∈ I1 ∩ I2, and
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• For any sub-dipath A′ ⊂ A such that each endpoint of A′ is either an endpoint of A
or an element of I, we also have I∆V (A′) ∈ I1 ∩ I2.

First, we establish that irreducible dicycles are feasible.

Lemma 2.6. Any irreducible dicycle in DM1,M2
(I) is also feasible in DM1,M2

(I).

Proof. An irreducible dicycle C consists of two matchings M1 ∪M2, which are the unique
perfect matchings on V (C), in DM1

(I) and DM2
(I) respectively. Therefore, we have

I∆V (C) ∈ I1 ∩ I2 by Lemma 2.2.
Consider any sub-dipath A′ ⊂ C whose endpoints are in I. (C has no endpoints, so the

other case in Definition 2.5 does not apply.) This means that A′ has even length. Suppose
that a1 ∈ V (A′) is the endpoint incident to an edge in M1 ∩A′ and a2 ∈ V (A′) is the other
endpoint, incident to an edge in M2 ∩ A′. Note that any subset of M1 or M2 is again a
unique perfect matching on its respective vertex set, because otherwise we could produce a
different perfect matching on V (C). We can view I∆V (A′) in two possible ways:

• I∆V (A′) = (I−a1)∆(V (A′)−a1); because V (A′)−a1 has a unique perfect matching
M2 ∩A′ in DM2

(I), this shows that I∆V (A′) ∈ I2.

• I∆V (A′) = (I−a2)∆(V (A′)−a2); because V (A′)−a2 has a unique perfect matching
M1 ∩A′ in DM1

(I), this shows that I∆V (A′) ∈ I1.
⊓⊔

Finally, we establish the following property of possible exchanges between arbitrary
solutions I, J (not necessarily of the same size).

Lemma 2.7. Let M1 = (N,I1) and M2 = (N,I2) be two matroids and let I, J ∈ I1 ∩
I2. Then there is s ≥ 0 and a collection of dipaths/dicycles {A1, . . . , Am} (possibly with
repetition), feasible in DM1,M2

(I), using only elements of I∆J , so that each element of
I∆J appears in exactly 2s dipaths/dicycles Ai.

Proof. If |I| = |J |, we are done by Lemmas 2.4 and 2.6. If |I| 6= |J |, we extend the matroids
by new “dummy elements” E, independent of everything else (in both matroids), and add
them to I or J , to obtain sets of equal size |Ĩ| = |J̃ |. We denote the extended matroids
by M̃1 = (N ∪ E, Ĩ1),M̃2 = (N ∪ E, Ĩ2). We consider the graph DM̃1,M̃2

(Ĩ). Observe
that the dummy elements do not affect independence among other elements, so the graphs
DM1,M2

(I) and DM̃1,M̃2
(Ĩ) are identical on I ∪ J .

Applying Lemma 2.4 to Ĩ , J̃ , we obtain a collection of irreducible dicycles {C1, . . . , Cm}
on Ĩ∆J̃ such that each element appears in exactly 2s dicycles. Let Ai = Ci \E. Obviously,
the sets V (Ai) cover I∆J exactly 2s times. We claim that each Ai is either a feasible dicycle,
a feasible dipath, or a collection of feasible dipaths (in the original digraph DM1,M2

(I)).
First, assume that Ci ∩E = ∅. Then Ai = Ci is an irreducible cycle in DM1,M2

(I) (the
dummy elements are irrelevant). By Lemma 2.6, we know that Ai = Ci is a feasible dicycle.

Next, assume that Ci ∩E 6= ∅. Ci is still a feasible dicycle, but in the extended digraph
DM̃1,M̃2

(Ĩ). We remove the dummy elements from Ci to obtain Ai = Ci \ E, a dipath or
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a collection of dipaths. Consider any sub-dipath A′ of Ai, possibly A′ = Ai, satisfying the
assumptions of Definition 2.5. Ai does not contain any dummy elements. If both endpoints
of A′ are in I, it follows from the feasibility of Ci that Ĩ∆V (A′) ∈ Ĩ1 ∩ Ĩ2, and hence
I∆V (A′) = (Ĩ∆V (A′)) \E ∈ I1 ∩ I2.

If an endpoint of A′ is outside of I, then it must be an endpoint of Ai. This means that
it has a dummy neighbor in Ĩ∩Ci that we deleted. (Note that this case can occur only if we
added dummy elements to I, i.e. |I| < |J |.) In that case, extend the path to A′′, by adding
the dummy neighbor(s) at either end. We obtain a dipath from Ĩ to Ĩ. By the feasibility
of Ci, we have Ĩ∆V (A′′) ∈ Ĩ1 ∩ Ĩ2, and therefore I∆V (A′) = (Ĩ∆V (A′′)) \E ∈ I1 ∩I2. ⊓⊔

2.2 A generalized Rota-exchange property

Next, we establish a very useful exchange property for a pair of bases of a single matroid.

Lemma 2.8. Let M = (N,I) be a matroid and A,B bases in M. Let A1, . . . , Am be
subsets of A such that each element of A appears in exactly q of them. Then there are sets
B1, . . . , Bm ⊆ B such that each element of B appears in exactly q of them, and for each i

Ai ∪ (B \Bi) ∈ I.

Remark 2.9. A very special case of Lemma 2.8, namely when m = 2 and q = 1, attracted
significant interest when it was conjectured by G.-C. Rota and proved in [2, 8, 21]; see [18,
(39.58)].

Proof. (Lemma 2.8) We can assume for convenience that A and B are disjoint (otherwise
we can make {Bi} equal to {Ai} on the intersection A ∩ B and continue with a matroid
where A ∩B is contracted).

For each i, we define a matroid Ni = (M/Ai)|B, where we contract Ai and restrict to
B. In other words, S ⊆ B is independent in Ni exactly when Ai∪S ∈ I. The rank function
of Ni is

rNi
(S) = rM(Ai ∪ S)− rM(Ai) = rM/Ai

(S).

Let N ∗
i be the dual matroid to Ni. Recall that the ground set is now B. By definition,

T ⊆ B is a spanning set inN ∗
i if and only if B\T is independent inNi, i.e. if Ai∪(B\T ) ∈ I.

The bases of N ∗
i are minimal such sets T ; these are the candidate sets for Bi , which can be

exchanged for Ai . The rank function of the dual matroid N ∗
i is (by [18, (Theorem 39.3)])

r∗Ni
(T ) = |T | − rNi

(B) + rNi
(B \ T )

= |T | − rM(Ai ∪B) + rM(Ai ∪ (B \ T ))

= |T | − |B|+ rM(Ai ∪ (B \ T ))

= rM/(B\T )(Ai) .

Observe that the rank of N ∗
i is r∗Ni

(B) = |Ai| .
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Now, let us consider a new ground set B̂ = B×[q]. We view the elements {(i, j) : j ∈ [q]}
as parallel copies of i. For a set T ⊆ B̂, we define its “projection” to B as

π(T ) = {i ∈ B | ∃j ∈ [q] with (i, j) ∈ T}.

A natural extension of N ∗
i to B̂ is a matroid N̂ ∗

i where a set T is independent if π(T ) is
independent in N ∗

i . The rank function of N̂ ∗
i is

rN̂ ∗
i
(T ) = rN ∗

i
(π(T )) = rM/(B\π(T ))(Ai) . (1)

The question now is whether B̂ can be partitioned into B′
1, . . . , B

′
m so that B′

i is a base
in N̂ ∗

i . If this is true, then we are done, because each Bi = π(B′
i) would be a base of N ∗

i

and each element of B would appear in q sets Bi.
To prove this, consider the union of our matroids, N̂ ∗ := N̂ ∗

1 ∨ N̂
∗
2 ∨ . . . ∨ N̂ ∗

m. By the
matroid union theorem ([18, (Corollary 42.1a)]), its rank function is

rN̂ ∗(B̂) = min
T⊆B̂

(

|B̂ \ T |+
m
∑

i=1

rN̂ ∗
i
(T )

)

.

We claim that for any T ⊆ B̂,

m
∑

i=1

rN̂ ∗
i
(T ) =

m
∑

i=1

rM/(B\π(T ))(Ai) ≥ q · rM/(B\π(T ))(A) = q|π(T )| . (2)

The first equality follows from our rank formula (1), and the last equality holds because both
A and B are bases of M. To prove the inequality, without loss of generality, assume that
A = {1, 2, . . . , n} = [n], and let g(S) := rM/(B\π(T ))(S), which is a monotone submodular
function with g(∅) = 0. We have

m
∑

i=1

g(Ai) =

m
∑

i=1

∑

j∈Ai

[g(Ai ∩ [j])− g(Ai ∩ [j − 1])]

≥
m
∑

i=1

∑

j∈Ai

[g([j]) − g([j − 1])]

= q
∑

j∈A

[g([j]) − g([j − 1])]

= q · f(A) ,

using submodularity and the fact that each element of A appears in exactly q sets Ai . This
proves (2), and we get

∑m
i=1 rN̂ ∗

i
(T ) ≥ q|π(T )| ≥ |T | for any T ⊆ B̂. We conclude that the

rank function of N̂ ∗ is

r̂∗(B̂) = min
T⊆B̂

(

|B̂ \ T |+
m
∑

i=1

rN̂ ∗
i
(T )

)

= |B̂| .
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This means that B̂ can be partitioned into sets B′
1, . . . , B

′
m where B′

i is independent in N̂ ∗
i .

However, the ranks of B̂ in the N̂ ∗
i sum up to

∑m
i=1 rN̂ ∗

i
(B̂) =

∑m
i=1 |Ai| = |B̂|, so the only

way this can be possible is if each B′
i is a base of N̂ ∗

i . Then, each Bi = π(B′
i) is a base of

N ∗
i and these are the sets demanded by the lemma. ⊓⊔

Finally, we present a version of Lemma 2.8 where the two sets are not necessarily bases.

Lemma 2.10. Let M = (N,I) be a matroid and I, J ∈ I. Let I1, . . . , Im be subsets of I
such that each element of I appears in at most q of them. Then there are sets J1, . . . , Jm ⊆ J
such that each element of J appears in at most q of them, and for each i

Ii ∪ (J \ Ji) ∈ I.

Proof. We reduce this statement to Lemma 2.8. Let A,B be bases such that I ⊆ A and
J ⊆ B. Also, we extend Ii arbitrarily to Ai, Ii ⊆ Ai ⊆ A, so that each element of A appears
in exactly q of them. By Lemma 2.8, there are sets Bi ⊆ B such that each element of B
appears in exactly q of them, and Ai∪ (B \Bi) ∈ I for each i. We define Ji = J ∩Bi. Then,
each element of J appears in at most q sets Ji, and

Ii ∪ (J \ Ji) ⊆ Ai ∪ (B \Bi) ∈ I.

⊓⊔

3 Local-Search Algorithm

As is usual, our local-search algorithm works in iterations. At each iteration, given a current
feasible solution S ∈ ∩k

j=1Ij our algorithm looks for an improved solution by looking at a
polynomial number of options to change S. If the algorithm finds a better solution it moves
to the next iteration, otherwise the algorithm stops. Specifically, given a current solution
S ∈ ∩k

j=1Ij , the local moves that we consider are:

p-exchange operation: If there is S′ such that

(i) |S′ \ S| ≤ p, |S \ S′| ≤ kp, and

(ii) f(S′) > f(S),

then S ← S′.

The p-exchange operation for S′ ⊆ S is called a delete operation. Our main result is the
following lower bound on the value of the locally-optimal solution.

Lemma 3.1. For every k ≥ 2 and every C ∈ ∩k
j=1Ij , a locally-optimal solution S under

p-exchanges, satisfies
(

k +
1

p

)

· f(S) ≥ f(S ∪ C) +

(

k − 1 +
1

p

)

· f(S ∩C).
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Proof. Our proof is based on the new exchange properties of matroids: Lemmas 2.7 and
2.10. By applying Lemma 2.7 to the independent sets C and S in matroidsM1 andM2 , we
obtain a collection of dipaths/dicycles {A1, . . . , Am} (possibly with repetition), feasible in
DM1,M2

(S), using only elements of C∆S, so that each element of C∆S appears in exactly
2s paths/cycles Ai .

We would like to define the sets of vertices corresponding to the exchanges in our local-
search algorithm, based on the sets of vertices in paths/cycles {A1, . . . , Am}. The problem is
that these paths/cycles can be much longer than the maximal cardinality of a set allowable
in a p-exchange operation. To handle this, we index vertices of the set of C \ S in each
path/cycle Ai for i = 1, . . . ,m, in such a way that vertices along any path or cycle are
numbered consecutively. The vertices of S\C remain unlabeled. Because one vertex appears
in 2s paths/cycles, it might get different labels corresponding to different appearances of
that vertex. So one vertex could have up to 2s different labels.

We also define p+1 copies of the index sets {A1, . . . , Am}. For each copy q = 0, · · · , p of
labeled {A1, . . . , Am}, we throw away appearances of vertices from C \ S that were labeled
by q modulo p+1 from each Ai. By throwing away some appearances of the vertices, we are
changing our set of paths in each copy of the original sets {A1, . . . , Am}. Let {Aq1, . . . , Aqmq}
be the resulting collection of paths for q = 0, . . . , p. Now each path Aqi contains at most p
vertices from C \ S and at most p + 1 vertices from S \ C.

Because our original collection of paths/cycles was feasible in DM1,M2
(S) (see definition

2.5), each of the paths in the new collections correspond to feasible exchanges for matroids
M1 and M2, i.e. S∆V (Aqi) ∈ I1 ∩ I2 . Consider now the collection of paths {Aqi|q =
0, . . . , p, i = 1, . . . ,mq}. By construction, each element of the set S \ C appears in exactly
(p+1)2s paths, and each element of C \S appears in exactly p2s paths, because each vertex
has 2s(p + 1) appearances in total, and each appearance is thrown away exactly once. Let
Lqi = S ∩V (Aqi) denote the set of vertices in the path Aqi belonging to the locally-optimal
solution S, and let Wqi = C ∩ V (Aqi) denote the set of vertices in the path Aqi belonging
to the set C.

For each matroid Mi for i = 3, . . . , k, independent sets S ∈ Ii and C ∈ Ii, and
collection of sets {Wqi | q = 0, . . . , p; i = 1, . . . ,mq} (note that some of these sets might
be empty), we apply Lemma 2.10. For convenience, we re-index the collection of sets
{Wqi | q = 0, . . . , p, i = 1, . . . ,mq}. Let W1, . . . ,Wt be that collection, after re-indexing,
for t =

∑p
q=0 mq. By Lemma 2.10, for each i = 3, . . . , k there exist a collection of sets

X ′
1i, . . . ,X

′
ti such that Wj ∪ (S \X ′

ji) ∈ Ii. Moreover, each element of S appears in at most
p2s of the sets from collection X ′

1i, . . . ,X
′
ti.

We consider the set of p-exchanges that correspond to adding the elements of the set
Wj to the set S and removing the set of elements Λj = Lj ∪ (∪k

i=3X
′
ji) for j = 1, . . . , t. Note

that, |Λj | ≤ (p + 1) + (k − 2)p = (k − 1)p + 1 ≤ kp. By Lemmas 2.7 and 2.10, the sets

Wj ∪ (S \ Λj)

are independent in each of the matroidsM1, · · · ,Mk. By the fact that S is a locally-optimal
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solution, we have

f(S) ≥ f
((

S \ Λj

)

∪Wj

)

, ∀j = 1, . . . , t. (3)

Using inequalities (3) together with submodularity for j = 1, . . . , t, we have

f(S ∪Wj)− f(S) ≤ f ((S \ Λj) ∪Wj)− f (S \ Λj) ≤ f(S)− f (S \ Λj) . (4)

Moreover, we know that each element of the set C \ S appears in exactly p2s sets Wj , and
each element e ∈ S \ C appears in ne ≤ (p + 1)2s + (k − 2)p2s sets Λj .

Consider the sum of t inequalities (4), and add (p + 1)2s + (k − 2)p2s − ne inequalities

f(S) ≥ f(S \ {e}) (5)

for each element e ∈ S \ C. These inequalities correspond to the delete operations. We
obtain

t
∑

j=1

[f(S ∪Wj)− f(S)] ≤
t
∑

j=1

[f(S)− f (S \ Λj)] +

∑

e∈S\C

((p + 1)2s + (k − 2)p2s − ne) [f(S \ {e}) − f(S)] . (6)

Applying Lemma 1.1 to the right-hand side of the inequality (6) and Lemma 1.2 to the
left-hand side of the inequality (6), we have

p2s [f(S ∪ C)− f(S)] ≤ ((p + 1)2s + (k − 2)p2s) [f(S)− f(S ∩ C)] ,

which is equivalent to

(

k +
1

p

)

· f(S) ≥ f(S ∪ C) +

(

k − 1 +
1

p

)

· f(S ∩ C).

The result follows. ⊓⊔

A simple consequence of Lemma 3.1 implies bounds on the value of the locally-optimal
solutions in the cases when the submodular function f has additional structure.

Corollary 3.2. For k ≥ 2, a locally-optimal solution S, and any C ∈ ∩k
j=1Ij , the following

inequalities hold:

1. f(S) ≥ f(C)/
(

k + 1
p

)

if function f is monotone,

2. f(S) ≥ f(C)/
(

k − 1 + 1
p

)

if function f is linear.
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Input: Finite ground set N := [n], value-oracle access to submodular function f :
2N → R, and matroidsM = (N,Ii), for i ∈ [k].

1. Set v ← arg max{f(u) | u ∈ N} and S ← {v}.

2. While the following local operation is possible, update S accordingly:

p-exchange operation. If there is S′ such that

(i) |S′ \ S| ≤ p, |S \ S′| ≤ kp, and

(ii) f(S′) ≥ (1 + ǫ
n4 )f(S),

then S ← S′.

Output: S.

Figure 1: The approximate local-search procedure.

The local-search algorithm defined in the beginning of this section could run for an
exponential amount of time until it reaches a locally-optimal solution. To ensure polynomial
runtime, we follow the standard approach of an approximate local search under a suitable
(small) parameter ǫ > 0, as described in Figure 1. The following Lemma 3.3 is a simple
extension of Lemma 3.1 for an approximate local optimum.

Lemma 3.3. For an approximate locally-optimal solution S and any C ∈ ∩k
j=1Ij,

(1 + ǫ)

(

k +
1

p

)

· f(S) ≥ f(S ∪C) +

(

k − 1 +
1

p

)

· f(S ∩ C),

where ǫ > 0 is the parameter used in the procedure of Figure 1.

Proof. The proof of this lemma is almost identical to the proof of the Lemma 3.1 — the
only difference is that left-hand sides of inequalities (3) and inequalities (5) are multiplied
by 1 + ǫ

n4 . Therefore, after following the steps in the proof of Lemma 3.1, we obtain the
inequality:

(

k +
1

p
+

ǫ

n4
·

λ

p2s

)

· f(S) ≥ f(S ∪ C) +

(

k − 1 +
1

p

)

· f(S ∩ C),

where λ = t +
∑

e∈S\C [(p + 1)2s + (k − 2)p2s − ne] is the total number of inequalities (3)

and (5). because t ≤ |C|p2s we obtain that λ ≤ (n + k)p2s. Assuming that n4 >> n + k,
we obtain the result. ⊓⊔

Lemma 3.3 implies the following:
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Theorem 3.4. For any k ≥ 2 and fixed constant δ > 0, there exists a 1
k+δ -approximation

algorithm for maximizing a non-negative non-decreasing submodular function subject to k
matroid constraints. This bound improves to 1

k−1+δ for linear functions.

Remark 3.5. Combining the techniques from this paper and the iterative local-search tech-
nique from [11], we can improve the performance guarantees of the approximation algo-
rithms for maximizing a general (non-monotone) submodular function subject to k ≥ 2
matroid constraints from k + 2 + 1

k + δ to k + 1 + 1
k−1 + δ for any δ > 0.
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[20] J. Vondrák. Optimal approximation for the submodular welfare problem in the value
oracle model. In STOC, 2008.

[21] D.R. Woodall. An exchange theorem for bases of matroids, J. Combinatorial Theory
Ser. B 16 (1974), 227–228.

15


