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Abstract

In this paper, we discuss the inverse classification prob-

lem, in which we determine the features to be used to
create a record which will result in a desired class la-
bel. Such an approach is useful in applications in which
it is an objective to determine a set of actions to be
taken in order to guide the data mining application to-
wards a desired solution. This system can be used for a
variety of decision support applications which have pre-
determined task criteria. We will show that the inverse
classification problem is a powerful and general model
which encompasses a number of different criteria. We
propose a number of algorithms for the inverse classifi-
cation problem which use an inverted list representation
for intermediate data structure representation and clas-
sification. We validate our approach over a number of
real data sets.

1 Introduction

The classification problem has been widely studied in
the literature because of its applicability to a wide
variety of problems such as customer segmentation,
modeling, and pattern recognition. A huge amount
of research [1, 2, 3, 4, 5, 6, 7, 9, 12, 13, 14] has been
dedicated to the development of scalable and effective
classification algorithms. In this paper, we study
an interesting and related problem problem, which
we refer to as inverse classification. In the inverse
classification problem, we would like to determine the
action oriented feature variables for an incompletely

specified test data set. Typically, these feature variables
are decision variables for an optimization or decision
support application. The aim is to decide these feature
variables in such a way so as that the resulting records
would belong to a set of desired class variable values
for the test data set. For the case of the training data
set, both the feature and class variables are completely
defined in it. On the other hand, for the case of
the test data set, the class variables are completely
defined but the feature variables are not. Thus, each
test data example has a desired class label associated
with it. The aim of the inverse classification problem

is to choose the test feature variables such that the
corresponding classification accuracy with respect to
the desired test classes is maximized. We note that
the inverse classification problem is different from the
classification or imputation problem on missing data
sets. In the classification problem on missing data,
we try to determine the unknown class variable with
incompletely defined features. On the other hand, in
the inverse classification problem, we try to determine
the action-oriented missing variables in order to achieve
a desired result which is reflected in the class variable.
The inverse classification problem is useful for a number
of action-driven applications in which the features can
be used to define certain actions which drive the decision
support system towards a desired end-result. Some
examples are as follows:

• In a mass marketing application, it may be desir-
able to send various kinds of mailers to customers in
order to solicit responses from customers. Different
kinds of mailers (eg. promotions, advertisements)
may have different effectiveness on the responses of
the customers. It is desirable to maximize the ef-
fectiveness of the campaign by using the correct set
of mailers on the different customers. In this case,
a number of feature variables may be defined cor-
responding to the different kinds of mailers which
can be sent to the customers during a pre-specified
horizon in time. In addition, the data may con-
tain demographic or other features about the cus-
tomer which are relevant to the likelihood of a pos-
itive response. We assume that the class variable
is in binary form which indicates whether or not
a given customer responded to a particular mailer.
While the training database class variables contain
0-1 values corresponding to the true participation
behavior, the test data class variables contain only
1-values corresponding to the fact that it is desir-
able for as many participants as possible to respond
positively. Therefore, a high accuracy of test clas-
sification corresponds to a high participation rate.
It is desirable to pick the action-driven feature vari-
ables such that the largest number of test examples



are classified to the desired class label. We note
that while a single-attribute version of this problem
is solvable using a sensitivity analysis approach on
standard classification methods, it is necessary to
define the more sophisticated inverse classification
problem in order to model the effect of a combina-

tion of different action and decision variables.

• In a decision support application, it may be de-
sirable to perform a set of actions such that the
pre-defined criterion of the decision support sys-
tem is optimized. We note that this pre-defined
criterion may be defined in terms of the class la-
bel, and the feature variables correspond to the
different actions. It is desirable to choose the fea-
ture variables such that the pre-defined criterion
is optimized. While decision support systems are
often designed with the help of ad-hoc optimiza-
tion methods, the use of modeling techniques such
as that of inverse classification can be particularly
useful in creating a framework which can be used
for transformation of arbitrary decision support ap-
plications.

A related class of methods is that of reinforcement
learning [10, 15], in which it is desirable to learn the
variables of a Markov decision process in order to learn
a specific outcome. However, reinforcement learning is
tailored to process-optimization criteria, whereas the
inverted classification problem is tailored to a large
class of problems where large amounts of training data
are already available from previously tested processes.
In such cases, it is prudent to design the inverse
classification problem to leverage on the pre-defined
training data.

We will define and model the inverse classification
problem assuming that the attributes in the data are
categorical. We will also discuss how to handle the
case when the records in the data are quantitative.
This is quite simple, since quantitative variables can
be transformed to categorical form using discretization.
We also note that since this technique will be used for
action-driven applications in which the features define
the actions that may or may not happen, it is more
natural to use categorical variables for the incompletely
defined features.

This paper is organized as follows. In the next
section, we will introduce some modeling concepts of the
inverse classification problem. In the same section, we
will discuss some algorithms for the inverse classification
problem. Section 3 will discuss the experimental results.
Section 4 contains the conclusions and summary.

2 Inverse Classification Algorithm

We will first introduce some notations and definitions.
We assume that the training data set Dtrain contains N
records which are denoted by X1 . . . XN . Each record
in the training data contains d dimensions. In addition,
the N records are associated with class labels denoted
by l1 . . . lN , each of which is drawn from the set {1 . . . k}.
Thus, there are a total of k classes. The subsets
of the data for each of the k classes are denoted by
D1

train . . .Dk
train. We also assume that the cardinality

of these k classes are denoted by p1 . . . pk. Thus, we
have:

k∑

i=1

pi = N(2.1)

The test data set contains M records which are denoted
by Y1 . . . YM along with desired class labels denoted
by q1 . . . qM . The records Y1 . . . YN are incompletely
defined since some of the fields may be missing. These
missing fields are typically action-oriented or decision
variables which need to be chosen in order to maximize
the probability of a test instance classifying to the
desired class label.

Our approach is to first design an intermediate
representation (on the training data) which allows us to
effectively examine the class behavior of different local
subspaces of the data. For a given test example, we
would like to use (local) combinations of dimensions
which classify to the desired class label. The inverted
representation of the data provides such a method for
efficient access of such local combinations of dimensions.

2.1 Constructing the Inverted Statistics on the

Training Data In this section, we will discuss a
method for constructing the inverted statistics on the
training data. The inverted statistics are useful in keep-
ing a track of how well different local subspaces classify
to the desired class label. As we will see, the process
of inverted classification requires us to leverage on the
efficient storage of these statistics, since the algorithm
needs to search the space of missing attributes in order
to find those combinations which classify to the desired
class label.

For the purpose of ease in exposition, we will
first introduce the notations assuming that all the
attributes in the data are categorical. This assumption
is without loss of generality since we can use the process
of discretization in order to convert the quantitative
variables into categorical form. As discussed earlier,
the training data contains N records such that each
of these records contains d dimensions. We assume
that the number of possible categorical values for the
ith dimension is denoted by v(i). For the dimension i,



the categorical values are denoted by ai
1 . . . ai

v(i). For
each categorical value for dimension i, we maintain an
inverted list containing all the record identifiers which
take on that particular value. In addition, we store the
class label identifiers for the corresponding records. We
assume that the data points in the qth list for dimension
i is denoted by L(i, q). The number of elements in each
inverted list is equal to the number of records taking
on that particular value. Thus, the total number of
inverted lists nI is defined as follows:

nI =

k∑

i=1

v(i)(2.2)

We note that this simple level of storage allows us to
compute the class statistics of both the individual lists
as well as intersections of the inverted lists. This is
useful for computing the class distribution statistics in
different local subspaces of the data.

In the case of quantitative data sets, it is also
possible to control the granularity of discretization in
order to change the representation of the inverted list.
As in the previous case, we assume that we have a
total of v(i) possible intervals for dimension i. In
general, the value of v(i) may be the same for all
quantitative dimensions. This is achieved by using equi-
depth discretization of the different dimensions. As in
the previous case, we assume that the data points in the
qth list of dimension i are denoted by L(i, q).

It is also possible to use the inverted list along with a
combination of quantitative and categorical attributes.
This is because the different discretized values of the
quantitative attributes can be treated as different values
of a categorical attribute for the purpose of the inverted
list representation. Therefore, we will use the above-
mentioned notations such as L(i, q) in a transparent
way without reference to the nature of the underlying
attribute.

The idea of using the inverted representation is
that it is possible to examine the behavior of a local
subspace by using an intersection of the data points
in the different lists L(i, q). For example, the data
points in the local subspace corresponding to the qth
list in dimension i and the r list in dimension j is
given by the intersection of the lists L(i, q) and L(j, r).
Since the class statistics are also stored in the inverted
lists, the class behavior of that local subspace can
also be accurately re-constructed. Since the inverted
classification algorithm explores the class behavior of
a potentially large number of subspaces, the ability to
compute such sets of points efficiently is particularly
useful.

Another statistic which we would like to be able to
compute is the level of class discrimination among dif-

ferent subspaces. We note that not all lists are equally
discriminative in terms of distinguishing between the
different classes. Let f(i, q, s) denote the fraction of
records from the list L(i, q) corresponding to the class
indexed by s ∈ {1, . . . k}. This is easy to compute since
we store the class labels along with the record identifiers
in the inverted lists. Therefore, we have:

k∑

s=1

f(i, q, s) = 1(2.3)

We would like to define the level of class discrimination
among the data points in L(i, q). Let G(S) be the gini-
index for a set of data points. Then, we define the
gini-index G(L(i, q)) of list L(i, q) as follows:

G(L(i, q)) =

k∑

s=1

f(i, q, s)2(2.4)

We note that the value of the gini-index G(L(i, q)) lies
in the range (0, 1). The value of G(L(i, q)) takes on
a minimum value of 1/k when all classes are equally
distributed in the corresponding set of points. This
is the least discriminative case. When the entire
list contains only labels from one class, the value of
G(L(i, q)) is equal to 1. This is the most discriminative
case for classification.

For the case of the inverse classification problem,
we are only interested in the discrimination behavior
of those local subspaces corresponding to both the
specified and missing attributes of test example T . A
test example T is said to activate the qth list from
dimension i, if the value of test example T for dimension
i belongs to the value-range1 for the qth list of dimension
i. In general, we refer to the index of the list for
dimension i for test example T , by IT (i). Therefore,
for a fully specified test example T , the relevant lists are
denoted by L(1, IT (1)) . . . L(i, IT (i)) . . . L(d, IT (d)).
We note that since a smaller number of lists are fully
specified in most cases, a fewer number of lists are
activated.

In general, the set of data points in the subspace
intersection of the relevant lists for test example T and
set of dimensions S is determined by the intersection
of the corresponding inverted lists. This intersection is
denoted by Q(S, T ), and is defined as follows:

Q(S, T ) = ∩i∈SL(i, IT (i))(2.5)

Thus, the subspace locality Q(S, T ) is defined by the
intersection of the data points in the relevant inverted

1For the case of categorical attributes, we use the relevant

categorical value rather than the value-range.



lists for the test example T and set of dimensions
S. We use the gini index G(Q(S, T )) in order to
quantify the level of discrimination in the set Q(S, T ).
This quantification can be used in order to define the
discrimination of the set of dimensions S in the locality
of the test example defined by T . The dominant class
label in Q(S, T ) can be used in order to define the class
of test example T . We note that the inverted data
structure can also be used for conventional classification.
In general, a variety of approaches can be used in order
to find a set of dimensions in S, such that the gini-
index of Q(S, T ) is as large as possible. Some examples
of such strategies are sampling or greedy construction of
the dimension set S. Similarly, the data structure can
also be used for inverse classification by finding those
local subspaces which are consistent with the specified
values of the test instance, and which classify to the
desired class label.

2.2 Leveraging the Inverted Statistics In this
section, we will discuss how the inverted statistics are
leveraged in order to construct the missing attributes for
the test instance. The key is to identify combinations of
dimensions from the missing attribute statistics which
are biased towards the desired class variable. Since the
inverted representation of the training data (along with
class statistics) is already available, we will use it in
order to achieve our goal.

Let us assume that the test instance T contains q
missing attributes which are indexed by i1 . . . iq. We
note that the attributes can take on v(i1) . . . v(iq) pos-
sible values. We denote the number of possible com-
binations of filling the missing variables by C(i1 . . . iq).
This is given by:

C(i1 . . . iq) = πq
j=1v(ij)(2.6)

Thus, the number of possibilities for picking the missing
attributes implicitly defines the search space for a given
test instance. The size of this space is exponentially
related to the number of missing attributes. It is
our goal to leverage the inverted representation of the
training data to efficiently search through the space of
exponential possibilities in order to optimally pick the
missing attributes. In order to achieve this goal, we
will use a roll-up approach. For this purpose, we use
the inverted lists from the training data in order to
track the candidate missing value possibilities for the
test instance. The aim is to keep a set of candidate
missing value possibilities which classify to the desired
class label. In addition, we would like the corresponding
subspaces to have a sufficient number of points in
them (support requirement), and also be discriminatory
among the different classes.

Algorithm InvertedClassify(Test Example: T ,
Target Class Index: qc, Gini Threshold: a,
Support: s);

begin

Compute all possible singleton sets L1 for
test example T with support at least s and
gini-index at least a;

Prune L1 to contain only dimension sets in
which the dominant class is the target
class qc;

Return any sets to L1 which correspond
to non-missing variables;
k = 1;
while Lk contains at least 1 element;

begin

Join Lk and L1 to form Ck+1;
Prune all elements in Ck+1 with gini less

than a and support less than s to
form Lk+1;

Prune all elements in Ck+1 in which
the dominant class is different from target
class qc;
Lk+1 = Ck+1;
k = k + 1;
end

LF = ∪k
i=1Li;

while missing values of T have not been filled
and LF is non-empty

begin

Pick highest gini-index set H from LF
and add to missing values in T using the

corresponding values in H;
Remove any sets from LF which are

inconsistent with filled values of T ;
end;

if LF is empty
fill remaining missing values of T with average

values of all records taking on the target
class qc;

end

Figure 1: The Inverse Classification Algorithm



The inverse classification algorithm uses as input
the inverted lists from the training phase, the test
example T , the target class index qc, the gini threshold
a, and the support threshold s. The support and gini
thresholds define a bound used to prune the sets of
dimensions which are not sufficiently discriminatory for
the exploratory process. The first step is to construct
the set of all singleton inverted lists L1. We note that
L1 is basically all the inverted list possibilities (from
the training data) for the missing variables which have
sufficiently high gini index and support, and also classify
to the desired class label qc as the dominant class for
that inverted list. In addition, the list L1 also contains
one element for each of the non-missing elements. Since,
there are v(ij) possibilities for the missing variable ij ,
the total number of possibilities is given by:

N(i1 . . . iq) =

q∑

j=1

v(ij) + (d − q)(2.7)

The inverse classification algorithm prunes many of
these singletons because they do not satisfy the gini
index and support threshold requirements. In addition,
we prune any of the singletons which do not classify
to the desired class, and whose attribute values have
not already been specified in T . We do not prune
the inverted lists corresponding to specified values in
T , because they have already been decided and the
effects on other attributes needs to be considered, even
if they do not satisfy the gini-index, support or class
requirements. Once the singleton set L1 has been
generated, we use pairwise joins on the elements in L1

in order to generate the set C2. Each pairwise join
essentially consists of the process of intersecting two
inverted lists. We note that the pairwise joins need to
be performed only on those elements in L1 which belong
to different dimensions. This is because the process
of performing the intersection on two lists (for disjoint
ranges) in the same dimensions results in the empty set.
In the next step, we prune those elements from C2 which
do not have the desired level of support, gini- value, or
for which the dominant class label is not the desired
target class. At this point, we set the value of L2 to C2.

This process is repeated in roll-up fashion for Lk

and Ck for general values of k. In general, we construct
Ck+1 by performing a join of Lk with L1. As in the
previous case, we prune those elements of Ck+1 which
do not have the desired support, gini-index, or for which
the dominant class is different from the target class. The
set Lk+1 is then set to the pruned set Ck+1. We note
that for larger values of k, fewer and fewer patterns will
satisfy the support requirements, and eventually, the
set Lk+1 will be empty. The process of constructing
Ck+1 from Lk and L1 is repeated iteratively, until the

set Ck+1 is empty. At this point, the set of elements in
LF = ∪k

i=1Li form the set of different possibilities for
the values which may be chosen for the missing values in
the test example T . We note that different combinations
of possibilities may be inconsistent with one another
since they may suggest different values for the missing
variables.

Next, we will discuss how LF may be used in order
to iteratively construct the missing values in the test
example T . In this process, we repeatedly pick the set
with the highest gini-index from LF . We substitute
these values in T with these picked values from LF . In
each iteration, we also delete those sets in LF which
are inconsistent with the filled values of T . A set in LF
is said to be inconsistent with T if the value of any of
its attributes is inconsistent with a filled value of T . In
the next iteration, we pick the set in LF with the next
highest gini-index in order to insert values into the set
T . This process is repeated until all values in T have
been filled, or the set LF is empty. In the event that
some value of T has not been filled, and the set LF is
empty, we need to pick the unfilled values of T . This
is a rare circumstance, since LF will usually contain
some singleton from L1 which can be used to fill T .
Nevertheless, the situation is a possibility when the gini
or support threshold is chosen to be too high. In such
cases, we choose the value of that feature variable using
the average behavior of all records belonging to the
target class. In the event of categorical attributes, we
pick the categorical value which occurs most frequently
for the target class. This is however a rare situation for a
rudimentary special case, and does not affect the overall
behavior of the algorithm. The inverse classification
algorithm is illustrated in Figure 1.

3 Experimental Results

All experiments are implemented by Microsoft Visual
C++ 6.0 and run using a 3GHz Pentium IV machine
with 1GB main memory. A key issue is the choice of
data sets in order to test the algorithm. This is be-
cause there are no standard benchmarks available for
the problem, nor are there readily available data sets
corresponding to such decision support applications.
Since there are no data sets available for testing the
inverse classification problem, we need to use the data
sets for testing the standard classification problem. We
note that these data sets are also typically not decision
support problems; however, by removing the attribute
values from real data sets, it is possible to know the
effectiveness of the inverse classification algorithm in
learning the relationships in the attribute values which
optimize the classification accuracy. As long as the data
sets used for testing correspond to real domains, the re-



sults are not reflective of a pre-defined or artificial dis-
tribution. In such cases, it can be assumed the quality
of the results will provide guidance in understanding
how well the technique will work in real domains. We
will describe our results on a number of data sets which
were obtained from the UCI machine learning reposi-
tory [8]. Each data set was randomly divided into a
training and testing part. Specifically, two-thirds of the
data was used for training and the remaining was used
for testing. The training data was preserved in its orig-
inal state whereas the test data was used to create the
missing action driven attributes. Specifically, for each
tuple, we removed Attr Remove entries. The inverted
classification algorithm was used to determine the ac-
tion driven missing entries. A number of off-the-shelf
classifiers were used in order to determine the classifica-
tion quality of the newly constructed data set on these
entries. At the same time, we also determined the classi-
fication accuracy on the data set with a reduced number
of attributes. Care was taken to pick a variety of differ-
ent classifiers, so that there was no overfitting between
the particular classifier being used and the methodology
of the inverted classification algorithm for determining
the entries in the data. Specifically, we used the follow-
ing classifiers which were obtained from the open-source
WEKA algorithms repository [16]:

• An implementation of a Naive Bayesian classifier.

• An implementation of a decision tree classifier
which is referred to as REPTree.

• The implementation [16] of the decision table clas-
sifier discussed in [11].

The accuracy of the classifiers on the newly con-
structed data set were used to test the effectiveness of
the technique. The aim is to show that the use of the
inverted classification method results in an increase in
accuracy of classification on the substituted attributes.
This shows that by changing the nature of the decision
variables, it is possible to improve the accuracy of deci-
sion based classification processes. We further note that
the Naive Bayesian, REPTree and the Decision table
classifiers are conceptually very different from the lazy
learners used in the inverse classification algorithm in
order to decide the unfilled attributes. Therefore, such
classifiers can be considered “righteous” judges which
do not overfit to the particular methodology of the in-
verted classification algorithm. Furthermore, if the ac-
curacy across the different classifiers improved with the
use of different kinds of data sets, then this is evidence
of the effectiveness of the inverted classification method
in defining correct values of the corresponding decision
variables.

mush. car tic-tac. nursery

Dim. 22 6 9 8

Card. 5.68 4.5 3 4.375

Records 8124 1728 958 12960

Classes 2 4 2 5

Table 1: Dataset Characteristics

3.1 Descriptions of data We used the following
four data sets from the UCI machine learning repos-
itory: mushroom, car, tic-tac-toe, and nursery. The
data sets were chosen in order to reflect a variety of
dimensionalities, data set sizes, and class distributions.
The corresponding characteristics are listed in Table 1.
In this Table, the term cardinality refers to the aver-
age number of values per attribute. All datasets have
nominal attributes which can be used in a natural way
for testing the effectiveness of the inverted classification
approach. In all cases, the target class label for the
test data was set to its same value as in the unmodified
data. We note from Table 1, that many of these prob-
lems are multi-class problems. Therefore, the algorithm
was required to simultaneously learn the correct feature
substitution for different target labels for different test
instances. We note that the different distributions of
feature characteristics of different class labels could af-
fect the nature of the best strategy which should be used
for the inverse classification problem. This ensures that
the accuracy boosting results are quite robust since they
are not tailored to a particular kind of distribution or
relationship between the features and class variables.

3.2 Accuracy Results In this section, we will dis-
cuss the accuracy results from the use of the inverted
classification approach. In each case, we have illustrated
the classification accuracy using two different methods:
(1) We illustrate the classification accuracy on the test
data with the reduced number of attributes. The train-
ing is performed on the same set of reduced attributes.
We refer to this accuracy as Tbefore. The accuracy of
the classification process will typically reduce with fewer
number of attributes. (2) For each case in which we
tested with a reduced number of attributes, we used
the inverted classification algorithm to fill in the miss-
ing attributes. Then, we tested the classification accu-
racy on the modified data with the filled-in attributes.
The corresponding classification accuracy is referred to
as Tafter.

For each of the data sets, and settings (Tbefore and
Tafter), we computed the accuracy of the classification
process with increasing number of removed attributes.
The results are illustrated in the following figures:
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Figure 2: Naive Bayesian: Accuracy boost on mush-
room with increasing number of removed attributes
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Figure 3: REPTree: Accuracy boost on mushroom with
increasing number of removed attributes
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Figure 4: Decision Table: Accuracy boost on mushroom
with increasing number of removed attributes
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Figure 5: Naive Bayesian: Accuracy boost on car with
increasing number of removed attributes
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Figure 6: REPTree: Accuracy boost on car with
increasing number of removed attributes
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Figure 7: Decision Table: Accuracy boost on car with
increasing number of removed attributes
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Figure 8: Naive Bayesian: Accuracy boost on tic-tac-
toe with increasing number of removed attributes
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Figure 9: REPTree: Accuracy boost on tic-tac-toe with
increasing number of removed attributes
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Figure 10: Decision Table: Accuracy boost on tic-tac-
toe with increasing number of removed attributes
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Figure 11: Naive Bayesian: Accuracy boost on nursery
with increasing number of removed attributes
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Figure 12: REPTree: Accuracy boost on nursery with
increasing number of removed attributes
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Figure 13: Decision Table: Accuracy boost on nursery
with increasing number of removed attributes
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Figure 14: Sensitivity for mushroom: Accuracy with
Support
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Figure 15: Sensitivity for mushroom: Accuracy with
GiniThreshold
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Figure 16: Sensitivity for car: Accuracy with Support
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Figure 17: Sensitivity for car: Accuracy with
GiniThreshold
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Figure 18: Sensitivity for tic-tac-toe: Accuracy with
Support
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Figure 19: Sensitivity for tic-tac-toe: Accuracy with
GiniThreshold
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Figure 20: Sensitivity for nursery: Accuracy with
Support
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Figure 21: Sensitivity for nursery: Accuracy with
GiniThreshold
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Figure 22: Time complexity on mushroom w.r.t. data
size
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Figure 23: Time complexity on mushroom w.r.t.
Attr Remove
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Figure 24: Time complexity on nursery w.r.t. data size
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Figure 25: Time complexity on nursery w.r.t.
Attr Remove



• The mushroom data set results are illustrated in
Figures 2, 3, and 4 for the Bayes classifier, decision
tree, and decision table classifiers, respectively.

• The results for the car data set are illustrated in
Figures 5, 6, and 7 respectively.

• The results for the tic-tac-toe data set are illus-
trated in Figures 8, 9, and 10 respectively.

• The results for the nursery data set are illustrated
in Figures 11, 12, and 13 respectively.

In most cases, the accuracy before substitution of the
missing attributes (Tbefore) reduces with increasing
number of missing attributes. This is because of the
reduced amount of information in the smaller number of
attributes. In a small number of cases, the accuracy may
actually increase slightly when the number of missing
attributes are increased. For example, the decision
table classifier shows this behavior on the mushroom
and tic-tac-toe data sets. This can be observed from
Figures 4 and 10. A similar behavior is exhibited in
Figure 11 by the naive bayesian classifier on the nursery
data set. These anomalous behaviors are a result of
some instances in which the removal of some of the
attributes had the indirect effect of feature selection for
that particular classifier. It is also interesting to see,
that this kind of behavior was not just data set specific
but was also classifier specific.

At the same time, we should note that the overall
trend should only be judged on the basis of the behavior
of all three classifiers. It is easy to see that the broad
trend supports a reduction in accuracy when the num-
ber of missing attributes are increased. In each figure,
we have labeled the curve illustrating the variation
in accuracy with increasing number of attributes by
Tafter. We make the following observations over the
different data sets:

(1) In each case, the accuracy of the classifier
showed a considerable boost over the original data
set because of the modification of the attributes in an
optimized way by the inverted classification process.
This is because the inverse classification algorithm
learns the optimum combination of attribute values
which result in the greatest matching of the feature
variables to the target class label. This is useful in a
decision support application, in which it is desirable
to learn the most appropriate categorical decision
variables for classification.
(2) The amount of boosting depended both upon the
combination of the classifier and data set being used.
For example, for the nursery data set, the REPTree
classifier seemed to provide better boosting, whereas for

the other data sets, the Naive Bayes classifier seemed
to provide better boosting results. This shows that
even though different data sets may be more amenable
to different kinds of classifiers, the overall trend of
accuracy boosting as a result of feature modification
remains unchanged. This also tends to indicate that
the boosting effects are not a result of overfitting to a
particular kind of classifier, but they are a result of the
effective decision feature combinations created by the
inverse classification algorithm.

The overall summary of these results is that the in-
verted classification approach can lead to improvements
in the quality of the data, and this improvement in-
creases with the number of attributes being replaced.
In the context of a decision support application, this
means that the inverted classification approach is most
effective when there are a large number of decision vari-
ables. This is also the most interesting case in a real
setting.

3.3 Parameter Sensitivity and Tuning Process

In this subsection, we will test the sensitivity of the
inverted classification method to parameters such as
the optimal setting of Support and GiniThreshold.
In Figure 14, we fix the value of GiniThreshold at
0.75 and explore how the accuracy varies according to
Support. From the results, it seems that the optimum
values of the Support should be in the range of 160 to
300. However, the key observation is that the accuracy
variations across different values of the parameters are
not very large. In Figure 15, we have illustrated the
variation of the accuracy with the gini index after fixing
the support at 220. From the results of Figure 15,
it is clear that the accuracy stabilizes from 0.55 to
0.65. We note that the gini index value of 0.65 is only
slightly larger than the gini index of the random class
distribution from the data set. This was a general trend
which was observed over different data sets.

We have illustrated the variations in the accuracy
with the gini-index and support for the other data
sets in Figures 14, 15, 16, 17, 18, 19, 20, and 21
respectively. From the graphs, we can see that the
inverted classification method is not very sensitive to
parameter variations. This is good news from an
application point of view, since it means that it is
possible to apply the method effectively over a wide
range of parameter values.

The general observations from the different data
sets also provided some understanding of the behavior
of the inverted classification algorithm which can guide
the parameter setting procedure:

• In general the threshold gini-index was about 10%
to 20% times larger than that computed according



to the training set class distribution. In general, the
default gini-index from the training set distribution
served as an effective default value which was used
to compute the accuracy graphs.

• The support threshold could be defined well by
the average number of data points per nominal
attribute value. This is because this choice of
parameters ensures the joins of the inverted lists
not to explode in terms of the computation of
the discriminative patterns. The accuracy for this
range also continued to be quite robust.

3.4 Scalability tests For scalability tests, we com-
puted the running time with increasing training data
size. We artificially enlarge the mushroom data set by
“repeating” the data set several times in a manner that
random noise is added to some of the attributes. By
using this procedure, the resulting data set is not just
a duplicated version of the original data set, but an
enlarged version of the data set with a similar distri-
bution. For the enlarged data set we set a Support
which is proportional to the data set size, whereas the
GiniThreshold is held constant. The results are illus-
trated in Figure 22. The results illustrate a linearly
scalable scenario. This is an encouraging result, since it
indicates scalability of the method for very large data
sets. Similar results were obtained for the nursery data
set, which are illustrated in Figure 24.

We also tested the scalability of the method with
increasing number of missing attributes. The results
for the mushroom and nursery data sets are illustrated
in Figures 23 and 25 respectively. While the running
times increase faster than linearly, this increase is not
significantly faster than linear. The reason for the
super-linear increase in time complexity is that the
inverted classification algorithm needs to test various
combinations of attributes in order to find the optimum
values of the decision attributes. In practice, the
use of inverted lists significantly speeds up the search
process. In higher dimensionality the size of each
inverted list is also small, and the intersections are much
faster. Therefore, the running times scale effectively
with number of missing attributes.

4 Conclusions

In this paper, we introduce the inverted classifica-
tion method, a technique for determining of decision
attributes in order to achieve a desired result. This
inverse relationship is very useful in a number of
applications in which we are trying to achieve a desired
result, rather than trying to determine the classifica-
tion behavior based on pre-defined features. Such an

approach is more useful for action-driven applications
in which we are trying to find the appropriate values
of the decision variables in order to optimize particular
business applications. Such methods can bridge the
divide between analysis-driven data mining and action-

oriented data mining. While the latter has not been
studied as extensively as the former, it is often more
useful in many real scenarios. We tested the inverted
classification algorithm on a wide variety of data sets,
and show the effectiveness of the method in boosting
the classification accuracy towards a desired result.
In general, this effectiveness continues to be observed
over a wide range of parameter variations. We also
illustrated the scalability of the method and show that
it can be used efficiently for large data sets or a large
number of decision variables.
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