
RC24780 (C0904-002) April 9, 2009
Other

IBM Research Report

On the Tour Planning Problem

Chenbo Zhu, J. Q. Hu, Yifan Xu
Department of Management Science

School of Management
Fudan University
Shanghai 200433

P.R China 

Fengchun Wang, Shun Jiang, Rongzeng Cao, Wei Ding
IBM Research Division

China Research Laboratory
 Building 19, Zhouguancun Software Park

8 Dongbeiwang West Road, Haidian District
Beijing, 100094 

P.R.China

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It  has been issued as a Research
Report for early dissemination of its contents.  In view of the transfer of copyright to the outside publisher, its distribution  outside of IBM prior to publication should be limited to peer communications and specific
requests.  After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties).  Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598  USA  (email:  reports@us.ibm.com).  Some reports are available on the internet at  http://domino.watson.ibm.com/library/CyberDig.nsf/home .



On the Tour Planning Problem*

Chenbo Zhu1, J.Q. Hu†1, Yifan Xu1

Fengchun Wang2, Shun Jiang2, Rongzeng Cao2, Wei Ding2

                                                           
* The work in this paper is supported in part by a grant from IBM China Research Laboratory and by the National Natural 
Science Foundation of China under Grant NSFC No. 70832002. 
† Corresponding author: Tel.: 86-21-25011177; Fax: 86-21-65642412; E-mail: hujq@fudan.edu.cn 

1Department of Management Science 
School of Management, Fudan University 

Shanghai 200433, China 

2IBM China Research Laboratory  
Beijing 100193, China 

ABSTRACT 

Increasingly tourists are planning trips by themselves using the abundant information available on the Web, 
however they still expect and want trip plan advisory services.  In this paper, we study the tour planning problem. 
Our goal in this problem is to design a tour trip of the most desirable sites, subject to various budget and time 
constraints. We first establish a framework for this problem, and then formulate it as a mixed integer linear 
programming problem.  However, except when the problem size is relatively small, say, with less than 20-30 sites, 
it is computationally infeasible to solve the mixed-integer linear programming problem. Therefore, we propose a 
heuristic method based on local search ideas. The method is efficient and provides good approximation solutions. 
Numerical results are provided to validate the method.   

1. INTRODUCTION 

As a typical service industry, Travel & Tourism is one of the world’s highest priority industries and employers 
([1]).  It encompasses transportation, accommodation, catering, recreation and services for visitors both at home and 
from overseas. Information Communication and Technologies have radically changed the efficiency and 
effectiveness of tourism organizations, the way that businesses catering to tourists operate, as well as how 
consumers interact with organizations ([2]). One of the major paradigm-shifts is due to the emergence of the 
Internet. A survey of US Web users conducted in 2007 by Burstmedia ([3]) shows that: four out of five (79.0%) 
respondents would use the Internet to plan their upcoming personal travel. 

Generally speaking, most travel websites provide information, destination or travel package recommendation, 
online flight/hotel/car reservation, and community forums for sharing travel tips. With the help of such travel 
websites, a new type of user is emerging: they become their own travel agents and build their travel packages 
themselves ([4]). Trip planning is a complex constructive activity affected by various factors, which can be 
classified into two categories: 1) personal features, including both socioeconomic factors (such as age, education and 
income) and psychological and cognitive factors (such as experience, personality, and involvement), and 2) travel 
features (such as travel purpose, travel-party size, length of travel, distance, and transportation mode). In the study 
of the complex constructive activity, both researchers and practitioners have explored several possible approaches.  
One popular approach is to use recommendation systems based on Artificial Intelligence ([5]). In a Travel 
Recommender System (TRS), travelers’ needs and constraints, through recommendation algorithms, are mapped 
into appropriate product selections based on the knowledge collected by the intelligent recommender. Knowledge 
can be extracted by using the following four approaches ([6]):  

1.    Non-personalized: recommending products to customers based on what other customers have said about the 
products on average; 

2.    Attribute based: recommending products to customers based on syntactic properties of the products; 

3.  Item-to-item correlations: recommending products to customers based on a small set of products the 



customers have expressed interest in; 

4.  People-to-people correlations: recommending products to a customer based on the correlation between that 
customer and other customers who have purchased products from the E-commerce site. 

However, Ricci [7] argues that none of these approaches can support the user in building a “user defined” trip 
package that is consists of one or more tourist attractions, accommodations, caterings and other services. Current 
TRS can only support the first stage of trip package planning-destination selection, because: 1) a content based 
approach does not scale unless we pursue a costly knowledge-engineering activity, and 2) a collaborative-filtering 
approach encounters the complexity of the travel products: people can not simplify a trip to the point where two 
travelers’ trips are the same ([7]). Ricci and Wether [8] believe that a case based reasoning (CBR) approach might 
be more useful. Its basic idea is to load one previous case which best match the traveler’s personal data and 
preferences (room prices, type of accommodation, etc.) as a reuse base and then tailor it.  

No matter what kind of recommendation systems are employed as advisors for tour package planning, a 
reference base would be extremely useful and can be used to simplify the selection process dramatically: the 
reference base could be either previous purchase/selection records by the user/other users or a prepackaged tour 
provided by a travel agency or other experienced travelers. Although some commercial websites claim that they can 
support tour trip planning, it’s more like an electronic notebook and organizer, which allows the user to record their 
selections of single products (e.g., a flight, a hotel, a car rental) in their trip planning. The user still has to plan their 
entire trip almost completely manually with little help from these websites. 

In this paper, we aim to establish a framework for the tour planning problem, and then develop a mathematical 
model as well as efficient algorithms. In solving such a problem, our objective is to design a tour trip with the most 
desirable sites subject to various budget and time constraints.  We will first formulate the problem as a mixed integer 
linear programming (MILP) problem. However, as in many similar applications, the tour trip planning MILP 
problem is NP-complete and it is computationally difficult to solve when the problem size is large. 

       The rest of the paper is organized as follows. In sections 2, we first introduce the tour planning problem and 
formulate the problem as a mixed-integer linear program problem. In section 3, we give a computational comparison 
between our results and exact results in an instance involving 33 sites to validate our algorithm, then a real instance 
with more sites is solved, and section 4 concludes. 

2. PROBLEM FORMULATION 

Let be a connected graph with vertices( , )G V E= V M N= U , where {1, , }M m= K represent hotel sites 
and represents tourist sites, and edges

m
{ 1, ,N m m n= + +K } n {( , ) : , }E i j i j V= ∈ . For ease of exposition, we 

assume that only one hotel is selected for the entire tour.  However, our formulation and method can be extended to 
more general cases in which more than one hotel may be selected.  We define: 

1. C: the total budget available for the tour,  

2. d: the number of days available for the tour,  

3. : the tour time available during the th day (k = 1, 2,…, d),  kT k

4. iτ : the tour time that the tourist spends at site i, i V∈  ( iτ = 0 for i M∈ ) 

5. : the time period during which the tourist is allowed to visit site i, i[ , ]i ia b V∈ , and we assume that it is the 
same for all days, 

6. : the cost associated with visiting (or staying at) site i, ic i V∈ , 

7. : the utility of visiting (or staying at) site i, iU i V∈ ,  

8. : the travel time between sites i and j, ijt ,i j V∈ . 

We note that one way to obtain the utility function for each site is to introduce a set of attributes, A (e.g., an attribute 
could be natural beauty, historical significance, or cultural heritage).  Each attribute is assigned a weight jw by the 
tourist, which indicates his preference to the attribute (the higher the weight, the more preferred the attribute by the 
tourist).  Let ，the attribute value set, where ij{ : , }ijS s i V j A= ∈ ∈ s  is the value of attribute j for site i.  For 
example, if site i is a historical museum, then its value of the historical attribute is very high, the while its values for 



other attributes may be very small (or zero).  Given S  and W , we can obtain tourist’s utility  for site i as: 
.   

iU
i jj AU w∈=∑ ijs

 on th day,
0, otherwise.ijk

i j k
x

⎧
= ⎨
⎩

k

k

The tour planning problem (TPP) is to construct a d-day tour that maximizes the total utility of all sites visited 
while satisfying the following constraints: 

1. The number of days for the tour is d; 

2. For each day, the tour starts and ends at the hotel; 

3. Each tourist site is visited no more than once; 

4. The arrival and the departure time at each tourist site is restricted by its permited visiting time [ , ; ]i ia b

5. The cumulative tour time of the k th day does not exceed the available tour time ;  kT

6. The total cost of the d day tour does not exceed the budget C . 

We now introduce the following decision variables:  

  
1, if the tourist travels from site  to site  the 

  
1, if site  is visited by the tourist,
0, otherwise.i

i
y

⎧
= ⎨
⎩

  
1, if hotel  is selected by the tourist,
0, otherwise.i

i
z ⎧
= ⎨
⎩

   the time epoch at which the tourist starts his visit at site .it i=

   the time epoch at which the tourist departs from hotel  on the th day.iakt i=

   the time epoch at which the tourist arrives at hotel  on the th day.ibkt i=

TPP can then be formulated as the following MILP problem:  
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The objective function (1) maximizes the total utility of all sites visited and constraint (2)-(16) are: 

 Constraint (2) is the balance equation, which ensures that if the tourist visits a site, he would leave the site. 

 Constraint (3) ensures that the tourist starts and ends at the same hotel every day. 

 Constraints (4) and (5) state the relationship between ijkx , , and . iy iz

 Constraint (6) ensures that only one hotel is selected for the entire tour. 

 Constraints (7)-(12) are the time constraints. 

 Constraint (13) is the budget constraint. 

Note that the above MILP can be decomposed into smaller sub-problems, each with only one hotel selection.  
It is clear that the sub-problems are much easier to solve, however, it is still very difficult to solve each individual 
sub-problem. 

m

We note that TPP is related to the classical Vehicle Routing Problem (VRP).  In VRP, the objective is to design 
the routes for a fleet of vehicles to service all customers with minimum total cost, subject to vehicle capacity and 
time constraints.  The cost in VRP can be either the number of vehicles used or the total length of the routes.  
Graphically, VRP is to find a set of cycles with minimum total cost to cover all the vertices.  Clearly, the Hamilton 
cycle problem is a special case of VRP.  By comparison, TPP is to generate a fixed number of cycles such that the 
total utility value of the vertices covered by these cycles is maximized.  Since VRP is a well-known NP-complete 
problem, it is not practical to obtain optimal solutions, even for medium-size problems; hence heuristics and 
approximate algorithms are often used to obtain near optimal solutions (e.g., see [9], [10], [11], [12]). TPP is also a 
NP-complete problem, thus in [13] we proposed an efficient heuristic method based on local search ideas.  The 
method is quite efficient, and it can generate good solutions in relative short time. In what follows, we outline the 
basic steps involved in the method: 

Step 1: Generate an initial solution by using some greedy algorithm. 



Step 2: Select p sites at random in the current solution. For each site selected, replace it with a new site based on 
some selection rules (various selection rules can be developed, and they can be probabilistic) such that the new 
solution is feasible. The best solution among these p solutions is selected as the next solution if it is better than 
the current solution.  This step is repeated until a desired solution is found or after a number of iterations. 

There is significant feasibility in selection rules used in Step 2.  In [13], we developed a local search algorithm for 
the selection of the new site.  The numerical experiments presented in the following section are obtained based this 
local search algorithm, which seems to work quite well. 

3. NUMERICAL EXPERIMENTS 

In this section, we provide some numerical experiments from two examples (one small and one large).  Both 
examples were taken from our work in a real-world problem.  Example 1 has 30 sites and 3 hotels, with three 
different utility functions.  We assume that there is no constraint on the total budget as well as the time during which 
the tourist can visit a site.  We also assume that kT is the same for all d days, so let kT = T.  We used CPLEX to 
solve the MILP and compared the results with those obtained based on our method.  Our selection rules are 
probabilistic, so for our method we ran 30 replicates for each instance, based on which the average, maximum, and 
minimum objective values were then obtained.  All our numerical experiments were run on a Pentium(R) 4 
processor 1.7 G PC.  The numerical results for Example 1 are presented in Tables 1 — 3.   Based on these results it 
is clear that our method works extremely well: in 19 cases the error of our method are almost zero while in other 8 
cases the error is less than 1%, where the error = (Optimal value  – Average value of our method)/Optimal value.  
The average CPU times of our method are between 0.083 and 0.7 second, which are considerably less than those of 
CPLEX.   

Example 2 has 59 sites and 26 hotels and is otherwise similar to Example 1.  For this example, it is no longer 
possible to use CPLEX to solve, so only the heuristic method was applied.  The numerical results are presented in 
Table 4.  It is clear that our method produces reasonably good solutions in fairly short amount of times (in fact, all 
within 10 seconds. 

4. CONCLUSION 

In this paper, we studied the tour planning problem.  We formulated it as a mixed-integer linear program 
problem, and proposed a heuristic method based on the idea of local search. We provided some numerical 
experiments that demonstrate that the method is quite efficient and is able to find good approximate solutions in 
very short time.   
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Table 1: Example 1 with Utility Function 1 

Our Method MILP 
Objective Value d T 

Minimum Average Maximum 
Average CPU 

Time (seconds) 
Objective 

Value 
CPU Time 
(senconds) 

Error (%) 

8 239 239 239 0.087 239 0.438 0.0000 
10 314 314 314 0.105 314 0.828 0.0000 1 
12 344 344 344 0.343 344 2.109 0.0000 
8 422 422 422 0.308 422 1.844 0.0000 

10 529 529 529 0.336 529 54.141 0.0000 2 
12 634 634 634 0.582 634 440.547 0.0000 

3 8 576 576 576 0.388 576 12.219 0.0000 
4 8 727 727 727 0.590 727 29.422 0.0000 
5 8 865 865 865 0.670 865 78.359 0.0000 

Table 2: Example 1 with Utility Function 2 

Our Method MILP 
Objective Value d T 

Minimum Average Maximum 
Average CPU 

Time (seconds) 
Objective 

Value 
CPU Time 
(senconds) 

Error (%) 

8 278 278 278 0.084 278 0.625 0.0000 
10 370 370 370 0.095 370 0.703 0.0000 1 
12 440 449.8 454 0.373 454 1.625 0.9251 
8 508 508 508 0.311 508 3.906 0.0000 

10 656 669.4 675 0.429 675 31.937 0.8247 2 
12 792 800.2 808 0.603 808 918.563 0.9612 

3 8 714 716.3 717 0.457 717 22.141 0.0976 
4 8 908 913.6 914 0.611 914 175.078 0.0438 
5 8 1108 1108 1108 0.689 1108 1388.748 0.0000 

Table 3: Example 1 with Utility Function 3 

Our Method MILP 
Objective Value d T 

Minimum Average Maximum 
Average CPU 

Time (seconds) 
Objective 

Value 
CPU Time 
(senconds) 

Error (%) 

8 187 187 187 0.083 187 0.422 0.0000 
10 248 248 248 0.083 248 1.188 0.0000 1 
12 284 284 284 0.341 284 2.187 0.0000 
8 332 343.0 345 0.330 345 2.563 0.5700 

10 437 439.4 443 0.378 443 68.047 0.8126 2 
12 525 527.8 529 0.535 529 1416.908 0.2268 

3 8 501 501 501 0.438 501 10.594 0.0000 
4 8 642 642 642 0.658 642 35.531 0.0000 
5 8 776 776 776 0.700 776 341.469 0.0000 

 



Table 4: Example 2 

Utility Function 1 Utility Function 2 Utility Function 3 
Objective Value Objective Value Objective Value d T 

Min. Avg. Max. 
Avg. CPU 

Time (secs) Min. Avg. Max. 
Avg. CPU 

Time (secs) Min. Avg. Max. 
Avg. CPU 

Time (secs) 

8 259 259 259 1.033 287 287 287 1.073 187 187 187 1.537 
10 314 314.8 315 0.919 370 370 370 1.817 248 248 248 1.978 1 
12 370 370 370 0.916 432 449.7 454 0.988 283 288.6 291 0.969 
8 419 428.0 429 3.193 505 510.3 516 1.894 330 342.2 345 1.469 

10 523 542.2 554 1.834 650 665.4 675 2.098 423 444.9 456 3.034 2 
12 632 644.5 663 2.438 770 788.4 808 2.000 529 537.0 544 1.930 
8 598 602.7 612 3.057 705 743.7 745 1.969 471 495.2 501 1.936 

10 726 754.4 767 4.831 898 931.8 948 3.306 608 624.9 650 3.705 3 
12 880 904.6 934 4.047 1086 1109.1 1136 4.047 749 767.5 777 3.071 
8 740 760.7 778 4.290 873 896.6 923 3.263 592 605.5 629 1.709 

10 920 949.3 976 3.674 1137 1166.5 1190 3.389 763 789.1 807 2.814 4 
12 1121 1146.4 1157 4.448 1380 1402.2 1432 3.689 934 956.7 991 2.904 
8 904 915.5 933 6.684 1060 1095.4 1136 5.448 712 727.1 754 2.518 

10 1116 1140.1 1159 1.140 1347 1390.4 1416 4.270 904 941.0 980 3.920 5 
12 1357 1379.7 1421 7.051 1653 1677.8 1709 4.192 1101 1123.9 1153 3.891 
8 1010 1054.6 1073 9.153 1231 1272.9 1293 8.209 813 838.9 891 3.126 

10 1292 1319.4 1345 6.224 1575 1603.5 1631 5.619 1034 1075.4 1107 4.576 6 
12 1564 1589.6 1618 8.661 1890 1927.3 1970 8.229 1240 1267.4 1296 5.721 

 


