
RC24788 (W0904-091) April 21, 2009
Computer Science

IBM Research Report

Service Oriented File Systems

Eric Van Hensbergen, Noah Evans
IBM Research Division

Austin Research Laboratory
11501 Burnet Road
Austin, TX 78758

Phillip Stanley-Marbell
IBM Research GmbH

Zurich Research Laboratory
8803 Rüschlikon

Switzerland

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

Service Oriented File Systems

Eric Van Hensbergen
IBM Research Austin

bergevan@us.ibm.com

Noah Evans
IBM Research Austin
npevans@us.ibm.com

Phillip Stanley-Marbell
IBM Research Zurich
pst@zurich.ibm.com

Abstract
Service Oriented Architectures(SOAs) are a loose

coupling of network services providing methods for sys-
tems development and integration. Interoperability be-
tween different systems and programming languages is
provided via communication protocols and well defined
messages. The recent development trend has been to
favor RESTful approaches for these interfaces, which
encode relevant context and semantic metadata into the
URL of an HTTP GET or PUT operation.

We observe that this approach is essentially a sim-
plified web-instantiation of synthetic file system based
service interfaces, such as those originally pioneered by
UNIX and later the Plan 9 and Inferno operating sys-
tems. In this paper we advocate the collapse of the
software stack by abstracting the underlying transport
and naming details, and accessing RESTful services via
standard file system interfaces. We explore the research
challenges and opportunities presented by taking such
an approach to building comprehensive dynamic dis-
tributed systems appropriate for large scale cloud com-
puting.

1 Introduction
Service-oriented architectures (SOAs)are networked
software infrastructures in which resources are made
available through a transactional interface [19]. They
typically comprise collections of reusable application
modules, each of which expose standardized interfaces.
The use of well-defined protocols and message for-
mats to communicate between these services decou-
ples application implementations from one another, pro-
viding greater degrees of flexibility and composability.
The popularity of the web has lead to many SOA run-
times adopting HTTP encapsulated protocols such as
SOAP [12].

The emergence ofWeb 2.0andcloud computinghas
extended the SOA development paradigm from busi-
ness process services to complete computing environ-
ments, involving everything from the customer-facing
interfaces to the back-end database. These new classes
of application have evolved from client-server based tra-
ditional RPC exemplified by SOAP, torepresentational
state transfer (REST)[6] mechanisms as their common
communication architecture.

RESTful applications differ from their RPC counter-
parts in relying principally onresource identifiersversus
command methods. In web environments, this results in
operational semantics being encoded as part of the URL
of HTTP requests, and relying on HTTP methods (GET,
PUT, POST, DELETE) as the sole methods. This al-
lows service components to access and navigate service
infrastructures without requiring complete knowledge of
the resource capabilities or data structures. Existing run-
times each use their own language-specific bindings for
accessing and addressing these service methods.

It is our belief that it is the responsibility of systems
software to provide a unified language- and network-
neutral interface to its users. As such, we believe that
the operating system should provide facilities for ad-
dressing and interaction of SOA interfaces. We feel that
enabling interaction via system-provided interfaces en-
ables a new degree of composability and flexibility in
much the same way as pipes unlocked tool-based ap-
proaches in UNIX [10].

Our proposal is motivated by our observation that the
semantically significant URL path component of REST-
ful operations is similar in many ways to synthetic file
system environments such as UNIX’s /proc, or those
used in the Plan 9 or Inferno operating systems (Fig-
ure 1). The introduction of theFile Systems in User
Space (FUSE)and 9P file systems into the mainline
Linux kernel has further enabled the use of such file
system interfaces as an applications component in main-
stream environments. We propose the use of such mech-
anisms to allow RESTful interfaces to be managed, or-
ganized, and interconnected by the operating system in-
stead of purely by an SOA runtime. It is our belief
that using synthetic file systems to establish operating
system based uniform interface abstractions and appli-
cation orchestration will further enable the benefits of
SOAs while also enabling a seamless distributed com-
puting environment across platforms to enable large-
scale “cloud” environments.

2 Background
UNIX pioneered the concept of treating devices as files,
providing a uniform interface to system hardware. In the
8th edition, this methodology was taken further through
the introduction of the /proc synthetic file system to

clone

0/

1/
...

n/
ctl

data

(b). A typical dynamic
fileserver in Plan 9/Inferno;
file abstractions are used
for resource instance
creation (clone), control
(ctl) and data (data).

syscontext/

mem

run

mbox

wbox

ibox

(a). An example "Old Unix
style" virtual filesystem,
SYSFS; data exchange via
files, but control and resource
instance creation via ioctl()
and create() system calls.

http://y.com/sys/spucontext

http://y.com/sys/1/mem

(c). An example RESTful interface to a system service
exposed over HTTP.

[URI captures instantiated identifier and resource to be
accessed. Payload of HTTP request contains data for this
interaction.]

[An HTTP transaction (e.g., GET) to achieve resource
instance creation, for instance syscontext. This returns
an identifier pointing to the new instance.]

...

Figure 1: Illustration of a service–oriented file system interface

manage user processes [8]. Synthetic file systems are
comprised of elements with no physical storage, i.e., the
files represented are not present on any disk. Instead, op-
erations on the file communicate directly with the kernel
sub-system or application providing the service. This
methodology has persisted over the evolution of UNIX
and UNIX-like systems, and the Linux kernel now sup-
ports several synthetic file systems representing devices,
process control, as well as access to system services and
data structures.

The Plan 9 [14] and Inferno [15] operating systems
took the file system metaphor further, using file opera-
tions as the simple, well-defined interface to all system
and application services. As such, interfaces to all kernel
subsystems, from the networking stack to the graphics
frame buffer, are represented within synthetic file sys-
tems. User-space applications and services may also ex-
port their own synthetic file systems, in much the same
way as the kernel interfaces. Common services such as
domain name service (DNS), authentication databases,
and window management are all provided as file sys-
tems. Even end-user applications such as editors and
e-mail systems export file system interfaces as a means
for data exchange and control. The benefits and details
of this approach are covered in detail elsewhere [16].

The intuition behind the design was based on the
assumption that any programmer knows how to inter-
act with files. Every programming language has the
means of interacting with file systems, and network pro-
tocols (including HTTP) for remote access of file hier-
archies are readily available. Application frameworks
implemented as file systems eliminate many of the op-
erating system and language portability problems that
occur when implementers develop new protocols and
interfaces—the responsibility for the interactions occur
at the systems level, making a new API unnecessary.
Programs just navigate a file hierarchy open the relevant

files and read/write the necessary data to the proper lo-
cation.

In addition to providing language portability, syn-
thetic file systems provide data portability as well. They
can act as intermediaries between the physical data and
the presentation, interpreting data in the most appropri-
ate way for a given application. Again this moves the
responsibility for ensuring data from the user to system,
removing much of the burden of data conversion from
the user. For example files of one type, say xml data,
can be presented as yaml and vice versa. Further exam-
ples of this process appear in [5].

Synthetic file systems have the unique property of be-
ing implementable either within the operating system or
in user space, but still providing a single consistent in-
terface through the operating system’s file system name
space. Using synthetic file systems as interfaces for
software implementations decouples software function-
ality from decisions about implementation location, pro-
gramming language bindings, or runtime system sup-
port.

3 Approach
Following Plan 9’s example, we propose the pervasive
use ofsynthetic file systemsas a resource interface ab-
straction, andan augmented form of UNIX pipelinesto-
gether with application ofdynamic private name spaces
to achieve this goal. We believe that by collapsing the in-
frastructure of service-oriented architecture stacks back
into the system, we can return the flexibility and ele-
gance of the composable modular approach exemplified
by UNIX.

The presence of service interfaces within the operat-
ing system name space allows for natural naming and
addressability, freeing services from location-dependent
numeric identifiers such as IP addresses and port num-
bers. The use of simple, consistent distributed file sys-

tem protocols together with automated discovery and
registry mechanisms can be used to bridge cluster re-
sources into a comprehensive name space. Application
of dynamic private name space semantics can be used to
enforce context and security considerations.

The UNIX pipeline model [10] established a sim-
ple mechanism for composing collections ofprograms
that read and write from their standard input/output
streams, intoworkflowsor applicationsof unlimited so-
phistication. We believe that a straightforward evolu-
tion of this same model can be used to construct dy-
namic collections of applications across heterogeneous
networked computing platforms. This approach keeps
modular components loosely coupled, maximizing their
re-use and maintaining the principle of “do one thing
well” that foundational UNIX applications were based
upon. We believe such decoupling is vital to maximiz-
ing composability.

Presenting the interfaces through the systems software
also decouples the addressing and network aspects of
the service, allowing applications without HTTP com-
ponents to interact with the services and data presented
by SOA infrastructures. Such an approach doesn’t pro-
hibit HTTP based interaction with these resources, as
the HTTP server can directly access the represented in-
terface through the file system which should allow for
an overall simplification to the HTTP server implemen-
tation.

3.1 Application: Interface
The pervasive appeal of the web has moved its func-
tion from simple query and information display to a
full-blown applications environment. Web applications
are becoming a dominant force driven by the desire
to enable collaboration as well as location and plat-
form independence. The current approach of many of
these web applications involve JavaScript front-ends in-
teracting with application server backends usingAsyn-
chronous JavaScript and XML (AJAX). This decouples
the user interface implementation from the back-end
logic and storage management, allowing different inter-
faces to be built for different client platforms. The hi-
erarchical nature of widget-based user interfaces maps
easily to file-system-based structures, and, when com-
bined with the concept of dynamic private name spaces,
allows for “mashups” of interfaces from multiple back-
end server implementations to be combined in a coherent
visual interface.

The Octopus project [1] is an effort to look at syn-
thetic file system based server implementations for such
subdivided application environments. Octopus struc-
tures interfaces such that they can be expressed as a file
hierarchy, and then usesOp, a simple CRUD protocol,
for communication between user-facing and server-side

components.

3.2 Application: Services
By utilizing synthetic file systems as the primary inter-
face for application components, developers can both
enable and take advantage of the composition of collec-
tions of applications hosted across a network. By decou-
pling service interface from runtime infrastructure, such
systems increase modularity, and allow the developer to
integrate possibly-different runtime systems, maximiz-
ing performance, efficiency and reliability by choosing
the best tool for the job.

Libferris [9] is an example infrastructure which ex-
poses file system interfaces to various data collections
and services, such as XML, database queries, and so
forth. This permits interesting composite applications to
be constructed even from a command shell environment.
Google’s Chubby lock service [4] is another example of
a synthetic file system providing a commonly required
system component.

3.3 Application: Management
The provisioning and management of clusters can also
be abstracted through synthetic file systems. The Xcpu
infrastructure [11] provides a dynamic synthetic file sys-
tem name space allowing process creation, management
of, and interaction with created processes. A top-level
provisioning control file is used to instantiate new pro-
cesses. Subdirectories per process contain information
analogous to theproc file system in UNIX, as well as
control files which can be used to manipulate execution,
and files representing standard input, standard output,
and standard error. Computation servers can make this
Xcpu synthetic file system accessible over a network, al-
lowing remote systems to initiate and control execution
on the server.

We are currently developing extensions to this
methodology that allow dynamic instantiation of new
logical partitions within cloud infrastructures, all con-
trolled via synthetic file system interfaces. By layering
machine provisioning as well as remote service execu-
tion, monitoring, and control through a cohesive name
space, we can enable a seamless model of distributed
computing without the complexity overhead of single-
system image [2].

In order to orchestrate services instantiated in such
a manner, we are exploring a distributed extension of
the UNIX pipe abstraction which incorporates concepts
of one-to-many distribution and subsequentcoalescingof
results allowing for a natural instantiation of map/reduce
style [7]. In support of this activity we are investigat-
ing support for passing references to synthetic file hier-
archies as well as traditional character streams over these
negotiated channels.

3.4 Application: Hybrid Systems
The technique of employing synthetic file systems as ab-
stractions for resources can also be used to manage and
interact with emerginghybrid architectures—multicore
environments where cores have different architectural
properties (e.g., different ISAs, or non-programmable
hardware accelerators for tasks such as media encod-
ing/decoding or encryption). Such architecturesrequire
a looser coupling than typical SMP approaches to multi-
core systems. At the same time, the capabilities of such
heterogeneous components goes well beyond the ability
of typical device interfaces.

Spufs [3], a programming interface for the Cell pro-
cessor, is one example of a synthetic file system inter-
face to such hybrid architectures. In Spufs however,
the exposed interface is not entirely through a synthetic
file system, as several control interactions with the hard-
ware can only be performed viaioctl() system calls.
The approach we propose, is to enforceall configura-
tion and data exchange through a synthetic file system,
which would then naturally enable complete control of
such hardware over a network, and in a distributed sys-
tem.

We believe that deep synthetic hierarchies represent
the right command and control interface for such hetero-
geneous environments. By incorporating management
and control into the file system, these units can be con-
trolled across the network and integrated into distributed
computing schemes such as cloud computing.

4 Research Challenges
While synthetic file systems are relatively straightfor-
ward to interact with from the client, developing syn-
thetic file servers has historically been considerably
more difficult. Developers must not only know how
to structure their service, they have to have an in-depth
understanding of file system operations, semantics, and
in some cases accounting for file system structures.
Scalable multi-threaded and asynchronous synthetic file
servers are even more challenging to implement.

RESTful approaches and synthetic file systems share
common interface design pitfalls. It is often difficult for
the developer to identify the right level of expressive-
ness to represent within the resource identifier (URL for
REST, path name for file systems), and how much to en-
code within the content. For example, the elements of
a data structure can be represented together in a single
file using XML or s-expressions—or they can be spread
amongst several files within the hierarchy allowing the
user application or script to only get or put the granular
element. Different circumstances require different deci-
sions as to the granularity of the data represented in a
file. We have also encountered situations in which both
representations are desired.

Topology is another common design issue between
file system and RESTful interfaces. There are cases
in which the natural layout of the data isn’t easily rep-
resented in a simple hierarchical fashion. Cyclic ref-
erences and multiple paths to the same data can cause
endless issues for common scripted methods of travers-
ing hierarchical layouts. File system and tool developers
must carefully consider the implications of their selected
topology on the ways in which it is likely to be used.

An important consideration is the tradeoff between
overloading file system semantics to achieve required
functionality, and the user expectations for the file sys-
tem operation that was overloaded. Our experience is
that it is often a mistake to violate the rule of least sur-
prise. However, there are situations in which correctness
demands a different behavior than what is typically ex-
pected when interacting with files. An example is the
“clone” file which is used by certain Plan 9 synthetic
interfaces to allocate resources. To avoid race condi-
tions in the automatic garbage collection of the resources
which clone allocates, the file descriptor returned by
opening a clone file actually points to the control file
interface within a subdirectory representing the resource
instance which opening the clone file allocated. The al-
ternative is a multi-stage provision, access, and release
sequence which opens up the potential for race condi-
tions and complicates error handling and recovery.

A commonly perceived challenge is the performance
overhead of the additional layer(s) of indirection as well
as parsing string-based control commands. In practice
much of this overhead is either insignificant or avoid-
able. However, the implementors of the synthetic file
server infrastructures as well as the services themselves
must be aware of performance overheads in order to
avoid unnecessary copying of data, expensive parsing
and irrelevant synchronization. Of course these per-
formance pitfalls are common to many such service
provider applications.

Like the entries in traditional file systems which serve
as interfaces to disk files, extant synthetic file systems
only permit a small set of file properties, largely struc-
tured around ideas that still date back to disk file sys-
tems (e.g., size, access rights and modification times of
entries in the file name space). One direction of further
evolution is the consideration of synthetic file systems
in which the properties of individual entries in the file
name space may have an arbitrarystructured type, built
from a small set of primitive types. This idea has been
explored to a limited extent as the basic underpinning of
the runtime system for a programming language targeted
at heterogeneous concurrent hardware platforms [17].
The idea of generalized structured types for thenames
of entries in a file name space is related to the idea of
types for thedata in a file store and object-based stor-

age [13]; the difference lies in the fact that the name of
an entry can foreseeably have a different type from the
items obtained by interaction with such a name.

5 Conclusion

Service Oriented Architectures and RESTful interfaces
are becoming a dominant paradigm in applications de-
velopment and integration. We have compared this ap-
proach with that of synthetic file systems and proposed
a systems software approach which we facilitates more
natural interaction and composition of these emerging
applications, tools, and services.

We are currently exploring the use of synthetic file
systems for a wide range of systems including cloud
provisioning and management, large scale simulation in-
frastructures [18], semi-supervised machine learning for
translation and semantic search(in progress), and as the
distributed systems infrastructure for high-performance
computing [20]. As a foundation for these projects we
are developing tools to help with the design and imple-
mentation of synthetic file servers. We are also looking
into mechanisms which mitigate the performance over-
head of going through an operating systems file inter-
face.

This material is based upon work supported by the
Department of Energy under Award Number DE-FG02-
08ER25851.

References
[1] F.J. Ballesteros, P. de las Heras, E. Soriano,

G. Guardiola, and S. Lalis. The Octopus: Towards
Building Distributed Smart Spaces by Centralizing
Everything.

[2] A. Barak and O. La’adan. The MOSIX multicom-
puter operating system for high performance clus-
ter computing.Future Generation Computer Sys-
tems, 13(4-5):361–372, 1998.

[3] A. Bergmann. Linux on Cell Broadband Engine
status update. InProceedings of the Linux Sympo-
sium, pages 21–28, 2007.

[4] M. Burrows et al. The Chubby lock service for
loosely-coupled distributed systems. InProceed-
ings of the 7th OSDI Conference, 2006.

[5] N. Evans. Representing disparate resources by lay-
ering namespaces.the Second International Work-
shop for Plan Proceedings, 2007.

[6] R. Fielding. Representational State
Transfer (REST). PhD thesis, PhD the-
sis, available at: http://www. ics. uci.
edu/fielding/pubs/dissertation/restarchstyle.
htm, 2000.

[7] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fet-
terly. Dryad: distributed data-parallel programs
from sequential building blocks. InProceedings
of the 2007 conference on EuroSys, pages 59–72.
ACM Press New York, NY, USA, 2007.

[8] TJ Killian. Processes as Files. InUSENIX Summer
Conference Proceedings, 1984.

[9] B. Martin. Everything is a virtual filesystem: lib-
ferris. In Proceedings of the 2007 Ottawa Linux
Symposium (OLS 2007), volume 2, pages 223–227,
Ottawa, Canada, June 2007.

[10] M.D. McIlroy. Pipes and filters.Internal Bell Labs
memo, original title lost, 11, 1964.

[11] R. Minnich, A. Mirtchovski, and L. Ionkov.
XCPU: a new, 9p-based, process management sys-
tem for clusters and grids.Cluster 2006, 2006.

[12] N. Mitra et al. SOAP Version 1.2 Part 0: Primer.
W3C Recommendation, 24, 2003.

[13] D. Nagle, M. E. Factor, S. Iren, D. Naor, E. Riedel,
O. Rodeh, and J. Satran. The ansi t10 object-based
storage standard and current implementations.IBM
J. Res. Dev., 52(4):401–411, 2008.

[14] R. Pike, D. Presotto, S. Dorward, B. Flandrena,
K. Thompson, H. Trickey, and P. Winterbottom.
Plan 9 from Bell Labs.COMPUTING SYSTEMS,
8:221–221, 1995.

[15] R. Pike, D. Presotto, S. Dorward, DM Ritchie,
H. Trickey, and P. Winterbottom. The Inferno oper-
ating system.Bell Labs Technical Journal, 2, 1997.

[16] R. Pike, D. Presotto, K. Thompson, H. Trickey,
and P. Winterbottom. The use of name spaces
in plan 9. In Proceedings of the 5th workshop
on ACM SIGOPS European workshop: Models
and paradigms for distributed systems structuring,
pages 1–5. ACM Press New York, NY, USA, 1992.

[17] P. Stanley-Marbell and D. Marculescu. A Pro-
gramming Model and Language Implementation
for Concurrent Failure-Prone Hardware. InPro-
ceedings of the 2nd Workshop on Programming
Models for Ubiquitous Parallelism, PMUP ’06,
September 2006.

[18] Phillip Stanley-Marbell. Implementation of a dis-
tributed full-system simulation framework as a
filesystem server. InProceedings of the First In-
ternational Workshop on Plan 9, 2006.

[19] E. Thomas. Service-Oriented Architecture: Con-
cepts, Technology, and Design, 2005.

[20] E. Van Hensbergen, C. Forsyth, J. McKie, and
R. Minnich. Holistic aggregate resource environ-
ment. 2008.

