RC24791 (W0904-112) April 27, 2009
Computer Science

|BM Resear ch Report

PADD: Power-Aware Domain Distribution

Min Yeol Lim?, Freeman Rawson? Tyler Bletsch?, Vincent W. Freeh?

'North Carolina State University
Raleigh, NC 27695-8206
USA

2IBM Research Division
Austin Research Laboratory
11501 Burnet Road
Austin, TX 78758
USA

——=—= Research Division
S S=E55= Almaden- Austin - Beijing - Cambridge - Haifa - India- T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
0. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on theinternet at http://domino.watson.ibm.com/library/CyberDig.nsf/home.

PADD: Power-Aware Domain Distribution*

Min Yeol Lim! Freeman Rawsdn Tyler Bletsch Vincent W. Freeh
" North Carolina State University ~ *IBM Austin Research Laboratory

North Carolina State Univ. 11501 Burnet Road
Raleigh, NC 27695-8206 Austin, TX 78758
{mlim,tkbletsc,vwfreeh@ncsu.edu frawson@us.ibm.com
Abstract

Modern data centers usually have computing resources sized to hafmieted peak demand, but av-
erage demand is generally much lower than peak. This means that teensyis the data center usually
operate at very low utilization rates. Past techniques have exploited thisofadhieve significant power
savings, but they generally focus on centrally managed, throughperted systems that process a single
fine-grained request stream. We propose a more general solutionieehaique to save power by dynami-
cally migrating virtual machines and packing them onto fewer physical mashvhen possible. We call our
scheme Power-Aware Domain Distribution (PADD). In this paper, wentegn simulation results for PADD
and demonstrate that the power and performance changes from usDB Bfe primarily dependent on
how much buffering or reserve capacity it maintains. Our adaptive hoffescheme achieves energy sav-
ings within 7% of the idealized system that has no performance penalty. e3uits also show that we
can achieve an energy savings up to 70% with fewer than 1% of the requ@sting their service level
agreements.

1 Introduction

Modern data centers usually have computing resources sized to hapdtgekpeak demand. However,
peak demand events are rare, and average demand is generally fdalegmak. Although there is no
systematic analysis of server utilization across wide range of data ceategsent study estimates the
average utilization to be between 5% and 20% [28]. Even in highly customizeshvironments, it is
hard to achieve 50% utilization. Therefore, a large number of computirmgiress are idle much of the
time. This presents an opportunity for power savings if we can shut dowibernate physical machines
not needed for the current workload while still providing the requiredtiooity of service. Fortunately,
several modern virtualization systems [4, 5] provide the ability to migrate rgnnitual machines without
interruption. Combining live virtual machine migration with the ability to power phglsicachines on and
off turns the data center into a dynamically resizable pool of compute ressur

Powering servers on and off is a well-studied techniquédiaat workloads such as transaction processing.
Such workloads consist of many, short-lived, independent requdsth are serviced by homogeneous
software running on multiple physical systems. However, many environrdentst run fluid workloads.

*This research was funded in part by an University Partnership anardiBM.

Instead, they execute coarse-grain workloads, such as datalb&de, fiosting or business logic systems
which do not use a single workload distributor or which require hetergensoftware. Increasingly, the
performance requirements of such workloads are specified in terseswite level agreements (SLA)ich
give the throughput requirements for each application in the computingoanvent.

In this paper, we use simulation to evaluate the power and performanctsesfedynamic workload
consolidation for such workloads in a virtualized environment. The wodd@ae separated into multiple
domains® Data center power is reduced by packing multiple domains onto fewer physidas during
periods of low utilization and expanding them back onto more systems whersaige vises. We call this
coarse-grained packing schefewer-Aware Domain Distribution (PADD)n this paper, we explore the
energy savings and performance impact of running heterogenemamoin terms of demand and SLA.

One relatively new environment that may benefit from the PADD apprisatieUtility Grids, which are
clusters that are time- and space-shared by clients who will run an aybittakload. Amazon’s Elastic
Computing Cloud (EC2) [1], NCSU’s Virtual Computing Lab (VCL) [3], af8M Blue Cloud [2] are
examples of this kind of grid. A key feature is that unlike HPC or businags ghe workloads that will be
executed are not necessarily run-to-completion or throughput-origniedather a mix. Some domains may
run HPC-style apps and basically have a demand of 100% for the entirmeur®thers may be throughput-
oriented and have fluctuating demand. Finally, some may act as human iesef$aell, VNC, etc.), and
have mostly low levels of demand. Given that the heavy use of virtualizatisndly grids, we expect to see
a power-savings benefit from using PADD’s domain packing.

The simulation tool used in this paper simulates dynamic domain packing basextes of real-world
workloads. It predicts both the power saved and the performance impactsing PADD with a particular
set of parameters for a particular workload as represented by a Bgagsing a variety of traces, we are
able to assess how generally applicable PADD is. The simulation also allowstugltohow sensitive the
results are to particular parameters such as buffer sizes and the time thasitdgamigrate a partition or
turn off a machine.

Our key contributions in this research are:

1. We developed a dynamic algorithm for placing domains to minimize total enehngg avoiding
SLA violations. Its key feature is the use of a two-level, adaptive buffesitheme which reserves
capacity. Our scheme absorbs workload surges to avoid SLA violatiohadapting the buffer sizes
to the workload reduces the amount of energy wasted on the buffers.

2. We provide a trace-driven simulation study of the energy benefits angkttiormance effects of our
algorithm along with studies of its sensitivity to various parameters.

The rest of this paper is organized as follows. In Section 2, we diseladed work. Section 3 presents our
model of a computing environment with coarse-grain workloads, and &ettives a precise description
of the PADD algorithm, discusses the parameters affecting it and presentmsics of our simulation.
Section 5 presents our simulation results while Section 6 suggests futuramsdoncludes.

2 Reéated work

Much research has been conducted on dynamic mapping of domains togbhgachines. In some
work, performance is the primary concern without power analysis. Tér Wy Steindergt al. [25], is
both implementation and a simulation. In her work, there is a workload flow d@erttbat manages the

1Xen [5] uses the terrdomain which is used in this paper as a general, conceptual term for easpasfian. Other terms in
common use areirtual machine (VMandpartition.

workloads being run and helps drive the application placement contrdfiesur work, there is no such
workload controller: the workloads are run in the individual domains witlaoy centralized control over
them. The study by Bobrofkt al.[7], is a predictive placement scheme based on time series analysis. In
contrast, our work is reactive, observing load and reacting apptelytia

The problem of saving power in a throughput-computing environmentleasaen studied previously.
Most work centers on fluid workloads, i.e., workloads consisting of maoytdived independent requests
that can be served by homogeneous software running on multiple physécdiines and which have a
centralized workload distributor that routes the requests to the machines proicess them. Elnozahst
al. [13] simulate the effects of dynamic voltage scaling coupled with vary-opetir(“VOVO”, basically
powering nodes on/off). They run their simulator against two well-knovadpction web traces and find
that VOVO alone saves up to 42 % while the addition of voltage scaling saaddgtional 18 %. Similarly,
Chaseegt al.[9] use an atrtificial resource economy to save energy by balancing#teftresources against
the benefit realized by employing them. This is also simulation-based workoandds on satisfying the
demand presented by web traffic traces. Both techniques save powening some nodes off and using
a central workload distributor to route new requests to other nodes. derfAware Request Distribution
(PARD) system addresses data center power by using the individpatseas the fundamental unit of
work [23]. The system directs requests to a pool of compute resowdtiet can be powered on or off
depending on anticipated load. Because requests are independeeinard are stateless, powering down
a server is simply a matter of removing it from the load balancer, waiting fodipgrrequests to finish,
and turning it off. In this environment, there is nothing to migrate or back ugrvghutting down a node,
which leads to a very fine-grained power management: the system runthemhachines needed to satisfy
the current demand. However, the PARD approach is only applicablertdoads similar to web-serving,
and many workloads cannot be modeled in this manner. For example, ggegray need to maintain state,
or there may be multiple indivisible processes that each handle a sepamtérigademand. In contrast to
PARD, we study power management for a coarse-grained environniemévhe unit of work is a domain.
We assume that domains have long lifetimes and contain state which must be mdin@umepproach is
to migrate entire domains between nodes, instead of request distributioninfrbduces two qualitative
changes to the problem.

1. Unlike redirecting requests, there is a significant time and energy cosgitating domains.

2. The number of domains does not change (or at least changes stmwty}hough the computational
demand of each domain may change quite rapidly.

Recently, Nathuji and Schwan [20] proposed a framework to determinmotiier-performance tradeoffs
of virtual machines and to efficiently manage physical machines within giearepbudgets. This work
focuses on achieving good performance under a power cap, velmreaork seeks to satisfy an SLA while
minimizing energy consumption. Vermet al. [26, 27] designed and evaluated several domain placement
algorithms on top of their existing platforms. Like our approach, they exantivettadeoff between power
consumption and migration cost of running domains when determining theimpéaaten virtualized sys-
tems. Although the problem they are addressing is similar, our contributiontisgilished in two ways.
First, because our work is a simulation study, we can define and exploreraus configurable parameters
that vary by hardware and software characteristics and evaluate ffegitseén theoretical environments,
including very large scale computing systems. Second, we propose auldlgfering scheme where the
buffering sizes are adapted by given SLA requirements. Our algoritiois flower efficient placement of
domains while minimizing the SLA violation.

(a) Node states (b) Domain states

Figure 1. Node and Domain state diagrams. Each edge indicate s the transition time delay.

There has been a significant amount of research into understandingyedicting workload patterns.
Bradley, et al. [8] proposed two power management algorithms using short-term andéomgworkload
predictions. The algorithms identify temporal workload patterns and praideigh available resources
proactively by exploiting these patterns. More recently, Cle¢ml. [10] studied incoming traffic patterns
and used them to predict the amount of resources needed to procdsadheSuch prior work focuses
on improving predictions of workloads and applying the information to powera server provisioning.
In contrast, PADD simply reacts to the work being processed or beingaedewithin the computing
environment. In addition, these studies assume that one server is detlicattvice. Since the servers are
not shared by different services, there is no domain migration betwesmguservers. These approaches
are complementary to our work because combining prediction with reaction tedtdoad can lead to
better placement decisions, achieving more power savings with lessrparfoe impact.

In contrast to coarse-grained domain packing, CPU packing and ram#téng techniques [6, 14, 16] are
available to the operating system as a fine-grained packing. This allowadhking of jobs onto a subset of
the available processors and power down the rest.

There is a large body of work on Dynamic Voltage and Frequency ScdliW§$) to save energy [15]
[18]. The work [19] proposes a online power management approach \drtual machines supporting
isolation between them and honoring the power management requests adith@uial virtual machines.
Using DVFS allows us to improve further the power efficiency of the runsygjems in the environment
by reducing voltage and frequency when a server’s processensoara bottleneck. Since our work aims
at domain distribution in virtualized server environments, any local DVFSritigo in a system can be
combined with our approach to get additional power savings.

3 Mode

This section offers some quantitative basis for our approach as wedffiméng) the basic structure of the
power and performance model used in our simulations.

3.1 Machine State and Virtualization

PADD distributes domains onto the available physical nodes using dynamictimigead controls the
number of physical nodes by turning them on and off. Alternatively, ifdjigtems support hibernation,
entering and exiting hibernation state can be used to manage the numbevefraathines. Since our
research aims at achieving power savings by packing multiple domains eveo paysical nodes during
periods of low demand, PADD tries to keep energy consumption as low afhfgowhile meeting given
performance requirements.

Running multiple domains with heterogeneous workloads may introduce adtibi@r&ead in the cur-
rent virtualization technologies. The overhead mainly comes from shaewvigedaccesses, expensive TLB
misses, page faults, and memory handling [12]. Padakd,[22] have evaluated the overhead of the existing

Domain parameters

M Number of domains
D;(t) CPU demand of domainat timet, 1<i<M
DS; Domain state if Running, Premigration,
Migration}.

Tps,—ps, | Domain state transition time
Node parameters

N Number of physical machines
C; Processing capacity of machinel<i<N
NS; A machine state iActive, Standby, Off.

Pjs. (U) | Power consumption of machinet U
utilization in the statéVs;,1 < i < N
Tns,—ns; | Machine state transition time

Eff; Maximum power-performance efficiency of
machine;, 1 < ¢ < N

Performance parameter
SLA;(d,l) | d% of demands of domaii) must be
processed withihsecondsl < ¢ < M

Table 1. Parameters defined for PADD and its power and perform ance model

virtualization technologies. They conclude that the overhead depeasidyhen the running applications,
their resource utilization, and the virtualization mechanisms used. Since viati@tizs widely accepted in
the industry, we make no attempt to model it in our simulation.

3.2 Model Description

We define the power and performance models used in our algorithm and itetsimuThe diagrams in
Figure 1 show the operating states and the transitions between them fgrarmtidomains respectively. We
first define the operating states and the transitions between them foranmdie®mains. For a node, there
are three (3) stable stateictive (A) Standby (S)andOff (O). Real systems may define more states, but we
abstract them and collapse them for simplicity. In many modern systems, tleevaiigety of intermediate
power states betweeictive and Off. These intermediate states consume varying amounts of power and
typically trade off power consumption to reduce the time to get back tcAtiee state. However, for
simplicity, we only consider one intermediate st&&ndby

Nodes may make four (4) transitions between statestiveto StandbyA—S), Standbyto Active(S—A),

Off to Standby(O—YS), andStandbyto Off (S—0O). The transition time is a hardware-dependent character-
istic of the particular systems being used in the installation. One key questiow sttumgly the power and
performance behavior of PADD depends on the transition times betweeatiogestates.

Each domain can be in one of three (3) operating staesining (R) Premigration (P) or Migration
(M). We assume that domains are long-lived entities and do not consider trasgitian off state. A domain
is in the Premigrationstate during the time that the system is preparing to move it to a different node by
copying data from the current node to the new one. Clarke [11] mehtweverhead imposed by this state
on a Xen platform running SPECWeb and found little measurable degradatiaur model assumes that
performance in unaffected by premigration. However, a domain itMigeation state generally becomes
out of service, and the downtime varies depending on workload. Wenasthat Migration stops the work
on the source node and restarts it on the target resulting in a pause @sgirgz Our model assumes that
Migration stops the work in the current node and restarts it in the target node,iaag@ompanied by pause
which causes a processing delay for current requests. The Xeniragssnts indicates that this delay is less

5

than 1 second. Consequently, frequent migrations will result in signiffparfiormance degradation. We
take this gap in processing into account in our simulation. We use our simulatoalyze the sensitivity of
PADD to different migration times.

The capacity of a node is the processing done by a single CPU runningizauma frequency. The CPU
frequency is fixed — we do not model DVFS and related techniques, vanehargely orthogonal to this
work. The power consumption is taken to be a function of the system utilizaBmte DVFS can affect
both the capacity and power consumption, we assume for simplicity that thatiogefirequency is fixed at
nominal. Also, most environments are heterogeneous with systems with goose$ varying capacities.
In [24], the capacity is modeled as a multidimensional vector of the availableawngs (CPU, Memory,
10, etg). For simplicity, we assume that processing capacity can be normalized glestue representing
the CPU capacity. We hope to incorporate the insight of [24] in the future.

The performance requirement of a domain is specified by the servicedgrestment which is defined
asSLA(D,L). It specifies how much of the demaritl (expressed as a percentage of the total) must be
processed within a given time limit (specified in seconds). Each domain may have its own SLA. At
present, PADD constitutes a best effort to meet the given SLA, so viotatiompossible. In future work,
we plan to bound the degree of SLA violation so that hard limits can be eiforce

Our problem is then to reduce energy consumption while offering the peafore required by the SLAs.
Finding the optimal domain distribution on every cycle is an example of a binipgpkoblem, where the
bin is a node and the bin’s size is the node’s capacity. This is an NP-halotepr [21]. The task is actually
more nuanced than the abstract bin packing problem, because nodlioinarend domain migrations have
time delays. Moreover, the number of active nodes is not fixed.

PADD is a heuristic method which approximates the optimal solution to the problekeylteature is
that it uses two separate safety margins — per-node and whole systeneféMéorthese safety margins
asbuffers The buffers are reserve capacity which allows PADD to deal with adhgngorkloads and the
latencies of the actions that it takes. Although the algorithm has a numberesfmarameters, the buffer
sizes have the greatestimpact. It turns out that the behavior of PADD tssestive to the amount of local
buffering within each machine and the size of a global buffer of resespacity in the environment: the
other parameters matter less. Our simulation offers a quantitative insight intoleeme and the parameters
that we use to tune it.

4 Implementation

We define a number of policies affecting power and performance. Our gionufeamework can param-
eterize these policies as a group of parameter settings. The policies cateberized into three groups:
buffering, time cost, and other decision policies.

4.1 Buffering

The PADD framework uses a two-level buffering scheme to deal efflgiernth variations in the work-
load.

1. Local Buffer LB): A reserved portion of the processing capacity on a single nodel baffar sizes
are specified in fractions of a CPU, so that reserving 10% processorth of capacity gives a local
buffer size of 0.4 if the capacity)) is 4.0.

2. Global Buffer (GB): An separate reserve pool of processing capacity spread dbmsstive ma-
chines in the environment. Global buffer sizes are also specified in finsatita CPU. If a quad-core

< Node View >

Node 1 Node 2 Node 3 Node N

C c C C
LB, LE, LB, LBy

L R

o

Nl

< Aggregated View >

Figure 2. Each node has its own Local Buffer. The Global Buffe ris a pool of additional capacity
spread across the active nodes.

machine is modeled and each core has 1.0 capacity, reserving a whole engelds a global buffer
size of 4.0.

The Figure 2 illustrates how the buffering mechanism works. The locd¢bpfevents frequent and
unnecessary domain migrations by absorbing smaller, transient variatitims agygregate demand of the
domains on the machine. If there are k domains running in the ngde/fien the aggregate CPU demand
of all the domains starts to udeB, that isC,, — Zle D,(t) < LB, ittriggers an event to spread the
demand over the physical nodes by migrating domains. However, in the interfore any migrations can
occur, the local buffer absorbs some or all of the additional demanithgUscal buffers protects the SLA
in the event that the aggregate demand is changing rapidly. In additionotbed guffer makes additional
capacity ready to deal with larger, more permanent changes causexmaynd starting new workloads or
going to new workload phases. Therefore, the migration delay causaddgytransition can be avoided.
Both buffers handle surges, but they handle different types oésurg

In addition to supporting fixed buffer sizes, our simulator also supporéslaptive buffering scheme. In
order to control the buffer sizes dynamically, the system monitors any $alations in a node and across
the whole environment. We then calculate i& and L B for each node using the following equations. If
an SLA violation occurs on a node, we increase the LB size of the node. 8ymile increase the GB size
when there is any SLA for any domain across all of the nodes. The GBRBiade dynamically determined
as a function of SLA violations.

1. GB = a x Violation(all_domains)
2. LB; = 8 x Violation(active_domains;)

The number of violations among domains on a node in the active state is coumediaetermining the
local buffer to avoid frequent changes in the LB size due to domain migratlanseasingy and 5 gives
less energy savings but allows for stricter adherence to the perfoemaggirements. In our simulations,
andj are empirically chosen as 1 and 0.1. These parameters are derivedibyg fime best non-adaptive
test cases and determining the values that would guide the adaptive systiemidoresults. We note that
this is not necessarily optimal and that it is worth further study. We evaluatpdiver and performance
tradeoffs of the two types of buffering in the next section.

7

4.2 Time Cost of Transitions

As defined in Section 3, there exist four (4) transition states for a ndue transition time of each state
is specified as input in our simulation. For a domdemigrationand Migration states are considered
to be temporary, transitional states. The time spent in these two states alse sah ds configurable
parameter. In reality, the time delay in these two states are a function of theitywi@nsorkloads, along
with virtualization technology.

Turning a node off always reduces the overall power consumptioreafdmputing environment. During
node transitions, the machine continues to consume power. We assume falinggulirposes that the
power consumption is constant for the entire duration of the transition ahdhihaode does no useful
computing during a transition. Moreover, the power during transition isrgénenigher than the power
consumed when the machine is active but idle. As a result, we expect¢aefit node transitions will
result in more power consumption than staying in the idle state. To model thisefivee chbreak-even
time (Tyreakeven)- The break-even time is the length of time that a node must be completely idie litefo
costs less in terms of power to turn it off than it does to leave it on. Empty noateseeded for the global
buffer remain on fofl,cqreven DEfOre PADD turns them off. The break-even time is defined as the period
for which a node continues to stay in the idle state before its power down swé¢hean achieve energy
savings. In other words, the breakeven time is obtained when the cosidsteghe benefit in terms of
energy consumption. When changing power state in a machine, there ekisskaven time period that
can achieve power savings. The break-even time of the ngde ¢alculated as follows.

Tn _ (P3—>A X TO—>A + PZ\L—>O X TA—>O)
breakeven PX(O)

4.3 Additional Parameters

There are some other aspects of PADD which are also parameterizese paw@meters refine the cal-
culation of a domain’s demand over time, the choice of domains to migrate andstimaext length of time
that it takes to migrate a domain. These parameters are defined below.

1. Moving Window size {/W): size of the time window used to statistically summarize demands

2. Average PercentileAP): percentile (%) to be ignored in the average of the demand. This can eemov
outliers in the demand data in order to avoid under-provisioning of systpatitg

3. Victim Selection {/S): how to choose a domain to be evicted when the remaining capacity in a node
is less tharl. B. There are three (3) victim selection schemes are defined: maximum ewkagnd,
minimum average demand, and minimum standard deviation of demands.

4. Migration Delay (4/D): time delay (sec) between migrations. This is used to avoid frequent migra-
tions.

4.4 Algorithm

In Algorithm 1, we give the pseudo-code for the PADD algorithm. Peridlgictne algorithm runs to
adjust overall capacity and reduce power consumption. We use fractioits of a CPU for the metrics of
both system capacity and domain demand. We calculate utilization by dividingthardl by the capacity.

The algorithm responds to the current demand by determining how mang todse and doing any
migrations required. There may be SLA violations due to the fact that PADBIgjuoo few nodes as the

0.8
8.7
8.6
8.5 |
a4

8.3

Hunber of requests
CPU denands

8.2

a.1

:] 5 18 15 29 a 5 18 15 28
Tine (hour} Tine (hour}
(a) Access patterns (b) CPU Demands

Figure 3. One day access logs of the sporting event web site an d synthetically generated CPU
utilizations for a single domain.

238 Power —+— 5

CFU Tine B

B
= @
= 268 4 .

[T}
=

a
=]
= @
< 158 3z

-
H -
%]

=
S 188 P
o [)
' [
g ¥
3 58 1
= g

=

1] a

8 18 20 380 40 50 60 70 80 90 168
Systen Loads (%)

Figure 4. Average power consumption and CPU utilizations fo r 11 different loads from
SPECpower _ssj2008 benchmark.

demand rises. We also simulate the performance effects of the migratiorPréimégrationstate has no
performance impact, but in the migration state, all the requested demanddagrediuntil it leaves the state.
This may results in some SLA violations. The PADD simulation keeps track of thelags and makes a
detailed analysis of SLA violations.

When determining a victim node due to over-provisioning (line 23), we firtka@n the three condition:
no move infout domain, no SLA violation in running domains, and idle for moreThaRic.e» time defined
in Sec 4.2. If there is under-provisioning (line 35), on the other side, arease the number of active nodes.
If heterogeneous nodes are given, we will select the node in the afrdggh power-performance efficiency.

5 Evaluation

5.1 Workload generation

In this paper, we use traces obtained from the web site logs for a majoratiteral sporting event.
Figure 3(a) shows the access patterns of the web site for a day. T nearesents the number of requests.
The request patterns show that there exists significant variability in bdyhestal hourly accesses.

Param| Value Param Value
N 40 M 40
Py 0 (W) Pgq 110 (W)
Py_.s | 151 (W) || Ps_a 151 (W)
Ps_o | 187 (W) || Po_s 187 (W)
TA—»S 1.0 (S) TS—>A 1.0 (S)
Ts—o 30 (S) To—s 180 (S)
Tp 60 (S) T 3 (S)
C 4.0 SLA | SLA(99,5),SLA(95,1)

Table 2. Parameter values for the simulation.

While we may be using traces derived from a web-based workload, it isrtenido note that we are
simulating long-lived, stateful applications. We use a web-derived tratteeiabsence of direct measure-
ments of such applications; this is a reasonable technique, becauseviehdpdick-end applications are
often driven by a transient web-based request stream, so theytsba@me usage pattern.

Since we do not have access to measured CPU utilizations, we genetaetisy@PU demands from the
access traces by running the SPECpaasg2008 benchmark on a real system. We transform the request
trace into a set of CPU utilizations using a calibration procedure that is basedasured workload intensity
and measured CPU utilization for a representative program. The intensty lesed with the program range
from 100% of maximum possible load to 0% in increments of 10%. We count theattons processed
while measuring the CPU utilization, and then, based on these data, we dorartegaolation to calculate
for a particular request rate in the trace, the associated CPU utilization.ckilevaledge that this is not
ideal. But it is the best available approach. The benchmark generabegtiput-oriented workloads and
provides precise throughput control based on a measured maximum.

The system used in the generation of the CPU utilization is an AMD Opteroncoue)-dual-processor
machine with 4GB memory. While running the benchmark, we obtain CPU utilizatidompewer draw for
the different load levels as shown in Figure 4. Since the machine has 4 Gfel, ¢che total CPU time
per second is always less than or equal to 4.0. The power consumpigesraetween 151 and 203 watts.
Based on this, we generate a synthetic CPU demand trace by applying d paybability distribution. We
also scale the number of requests in the traces to generate a more rigpnesseet of processor utilizations.
Figure 3(b) shows the CPU demands generated with the access logsifnarma &a). In order to generate
multiple CPU demands while maintaining the pattern, we amplified the coarse-g@nialtiple days of
CPU demands are generated in the same way to simulate many domains running.

5.2 System configuration

Table 2 shows time delays and the power usage for all node state transiianeasured on our hardware.
These server characteristics are used as input to all the simulations.

In our evaluation, we simulate 40 domains, where each domain’s trace isftakera different day’s
access pattern. The samples in the trace are 1 second apart. We assuhee@iJ demand in a domain
can require up to 1.0 CPU per second. As a performance requiremempwese two SLAs. Half of the
domains must process 99% of the incoming requests in 5 seconds while thbaltheust process 95% of
them in 1 second. In this paper, we simulate 40 physical nodes with the spagtgaWe do not consider

the case where the capacity)(is different by nodes. This is in the highest priority in our future work.

10

188

- E a8 SLA violations E==Z3 58 %
e -~ 30 Avg Violation E==3 o5
~ & % Hax Violation E==% s
w - 38 e
&] o8 ¥
= 60 o 25 L
-] T o2g A c
L @ (] -
z o 15 g 18 ®
& Cl k1 ~
g 28 18 ki c
= L 4 =]
w _g ﬁ 5 >
a £ a 4 -
122 83 ¢qs £ olballaflaial fEl T, 3
-D‘I = = = T w = = = = o = = T
-] - [[} - el [[= 3 . L3 - *
-} =+ =+ o [==] == @ @ T w =
L] ot ot et ot L 3 3 ' ' -
- - - w
= z £ z
(a) Energy savings of various policies (b) Performance impact of various policies

Figure 5. The overall comparison of the representative case s. (Util=14.5%, MW=60, AP=60,
VS=1, MD=30)

108 " 48 308
TIdealized E==3 @ SLA wiolations ===3 -
{A,A) E3 € 35 Avg Violation EEZ b
- b= Hax Violation === 23
e o o
- _'nu 38 E
1] o 28 @
g 3 2)
H = 28 15 £
W @ =
15
B kS 10 3
5 , ¢
3 e o
£ [) : -
g0 & 2
e Bl = B 1 B e 8
12 i} 12 14.5
Overall utilization {3} Overall Utilization {3}

(a) Energy savings for varying workload intensityb) Performance impact df4, A) for varying work-
load intensity

Figure 6. The comparison of the adaptive GB/LB with differen t workload intensity. (MW=60,
AP=60, VS=1, MD=30)

5.3 Analysis

Next, we analyze the energy savings and the performance impact daudgirent configurations. The
energy savings are calculated by comparing against a base case intidrielwas no consolidation. We
measure performance in terms of how well SLAs were respected. To thisverdefine theiolation degree
(D;) as the difference between the desired success rate and the meauretheadomain. For example, if
a domain has SLA(95,1), then it needs to meet 95% of demands within onadséoonly 93% of demands
are met in the given time, then the violation degree is 2% 93). When considering multiple domains,

M
we present either thaverage violation degre(sZT) or themaximum violation degreenaz(D;)).
For each evaluation, we compare 5 different PADD approaches whiitg ffome parameter values.

1. Idealized there are no migration and transition time delays. GB and LB are not negesHae
Idealizedalways gives the lowest energy consumption without performanceandrtepresents the
best tradeoffs.

2. Adaptive GB and LB (A,AGB and LB are dynamically determined depending on SLA violation at

11

168 48 . . 38
-~ E SLA violations == %
= -~ 35 Avg Violation EZ=ZE
- fi:] - - - 25 g
T g9 Hax Violation E==3 @
2] - L
£ &a b= - 20 ¥
- E =
= = o0] 15 £
© 48 7 I 2
a L 15 :’: 18 ﬁ
b 3 [-
20 [l
2 . 18 k4 =
w 17} :0: il >
a 'E @ :1: T
T = B N e 3 z 8 = o = 8 &
M - * * - - - -~ - - -~
- = = = = = - = o - o
-] - [} = = " L} 3 + + 3
-} = o w 2] = =] @ = =
o = bl) - ' » » " 3
- - = - .-}]
i} - - - -
Z
(a) Energy savings by fixed buffer sizes (b) Performance impact of (a)
108 @ 48 n - 38
- g 5LA violations ===3 %
S = 30 Avg Violation E=== o
-~ 8 ® 38 Hax Violation E=—=3 S
@ - [N
¥ -3 a5 o8 ¥
- > -
o = 28 15 §
© a8 7 s
§ < 15 18 E
g 28 18 °
= L =1
“ 2 s o = 5 2
@ g @] -
- -~ - - -~ o~ 2 a = E§ 1 &g ! - = a7
o = = o w w
) 3 [] - . [Ll - L)) -
-] -] [--] [--] = = = @ o T 2=]
— - [y Y Y [[} 3] 3 +
L) = - = = - [--] [--] [--] =
€] - - - b= - - = » -
- - - - =
b Z z Z Z
(c) Energy savings by adaptive GB (d) Performance impact of (c)
168 48 . . 38
~ E - SLA violations == %
= A 35 i Avg Violation EZ=3 o5
~ s % b Hax Violation E==3]
“ - 38 £ c
- K 20 g
= 5 23 g =
& s 20 % 15 §
48 7 b =
& 15 i +
o s % i =
kA =
g 28 18 -]
= L =1
w _g Li >
a 5 @ i
H a = 8 o

Idealized

{A,A}

{@.a)

{4,n}

{8,n}

{12,.A)

{a,A)

{8,A)

{12,R}

(e) Energy savings by adaptive LB (f) Performance impact of (e)

Figure 7. The comparison of adaptive buffering and fixed buff
AP=60, VS=1, MD=30)

ering. (Util=14.5%, MW=60,
runtime.

3. Adaptive GB and fixed LB (A;Ipnly GB is dynamically determined. The LB is fixedito

4. Fixed GB and adaptive LB (g,A9nly LB is dynamically determined. The GB is fixedgo

5. Fixed GB and LB (g,)During simulation, GB and LB are the fixed valugand, respectively.

Figure 5 shows the overall energy savings and performance impaat ofphesentative cases. The best
case is(8, A) which indicates an adaptive LB with a fixed GB of 8.0 CPUs (2 nodes). Tdse does
not have any SLA violations. The fully adaptivel, A) case does nearly as well, achieving 92.5% of the

12

168 7 60 SLA violations DN 58
0,5 é Avg Violation == o
~ g8 1.0 m=== S 98 1 Hax Violation Emmm 25 «
s 1,5 - -
» 2.8 == = 48 20 5
%’ (] 5 5
4 T 38 15 §
w [’x] -]
o 48 o z
g S 2o 16 3
2 & E
w20 £ 10 5
= [T7]

a a a

{A,A} {8,08,8) {A,A} {8,08.8)
(a) Energy savings by different node transition costs. (b) Performance impact of (a)

Migration cost is set to 1.0.

109 A, Ay —— » 0 [6LA violations o
{0,0,08) —M— g Avg Violation EZ=3 8
il -5 98 I Hax yiolation == 25
-~ 3 -
Z B f———————x ® 8
" . c o8 &
@ T T - i
g oo 3 k|
E S 38 15 §
m 7 £
il -
z T 2a 19 2
(=}
[[-
2 2 >
S 2" nlls N
= w
a E_N E In] 8
o I N B
a 6.5 1 1.5 2 S Syt ¥ S
(c) Energy savings by different domain migration (d) Performance impact of (a)

costs. Transition cost is set to 1.0.

Figure 8. The comparison of domain migration cost. (Util=14 .5%, MW=60, AP=60, VS=1, MD=30)

188 A 188 A - 38
Idealized E==A SLA violations =573 -
{A,Ay E==3] Avg VYiolation B3 e
o < gg | Hax Vielation =3 25 -
> 8 5
2] m 28 @
g - =
E g c
g z s
L] 48 -
B 3 10 5
& -]
2 >)

5 « 28 5
® @ S 3
] % sl 8 = [e 0

(88,41} (128,61} (168,81} {48,28) (88,41} {(128,61) {168,811}
Utilizations (# of Domains, Hax util (X)) uUtilizationz (# of Domains, Hax util (X))

(a) Energy savings by varying the number of doma{b}.Performance impact of (A,A) for different number
of domains

Figure 9. The comparison of the adaptive GB/LB with differen t number of domains. On X-axis,
(x,y) indicates the number of domains and the maximum aggreg ate utilization, respectively.
(MW=60, AP=60, VS=1, MD=30)

energy savings of thielealizedsystem with almost no average violation degree. With fixed GB(UBR).2)
achieves similar energy savings (d, A) but it has a maximum violation degree of 10%. T{%0.4)
configuration over-provisions capacity and therefore achieves signify lower energy savings.

13

In Figure 6, we show the energy savings of the adaptive GB/LB appnaah respect to varying work-
load intensity. The average utilization is formulated as the sum of demandsdufraliins for simulation
time divided by total CPU capacity provided. As the utilization increases, tbggsavings of the system
decreases by about 10%. The adaptive GB/LB approach achie¥e®Bthe energy savings of thde-
alized system on average. At a utilization of 7.5%, there are more opportunities solaate domains,
which causes more node transitions and domain migrations. This results in neogy savings but more
SLA violations. The average and maximum violation degrees, howevelingted to 0.39% and 1.79%,
respectively.

In Figure 7, we evaluate the buffering schemes: fixed GB/LB, adapt®ea@aptive LB, and adaptive
GBI/LB. In patrticular, (A,0) or (0,A) can be regarded as one level adapuffering scheme.

Overall, the adaptive GB/LB outperforms the others by achieving enargggs within 7% of thddeal-
izedsystem with limited performance penalty. Various fixed GB/LB configuratiomskown in Figures 7(a)
and 7(b). In this case, onl{8, 0.4) and(12, 0.6) offer acceptable performance. With the adaptive GB con-
figurations shown in Figures 7(c) and 7(d), we see that the choice tiasBittle effect on the performance
impact but a major effect on energy savings. The reason is that thefroBeis taken by GB. Once enough
GB is given, performance is not likely hurt much by long node transition timdadt, the increase of LB
in the adaptive GB approach reduces energy savings by 23%. |n dptisedLB approach (Figures 7(e)
and 7(f)), the reverse is true: varying GB has a much greater effepedormance than energy savings.
This is because as GB approaches zero, migrations from overloasedssare having to wait for compute
resources to come online.

In Figure 8, we show how the domain migration cost affects energy saaimfyperformance. Each time
cost is normalized to the real measured time delay specified in Table 2. Wheasmg the domain migra-
tion time while transition delay is fixed, the energy savings in the adaptive GB/té&lisced (Figure 8(c)).
This is because more processing delays occurred followed by more domedtved in transitions. This
performance penalty is clearly shown in the c&@.0) in Figure 8(d). When the domain migration time
becomes 0, there is almost no performance penalty for migration and thegjre@ergy savings is achieved.
The only other potential source of performance degradation is unexpeariation of CPU demand, which
we account for not only with the Global and Local Buffers, but alserage percentile (60% in this case).
Therefore, the given SLA requirements are generally met, although therée some delays due to the
transition time (e.g. when a busy node is waiting for additional nodes to comehnlin

For reasons of space, we omit the figures regarding the effects eftrantsition times as well as some
other parameters of PADD. As node transition time increases while the migratsbrscfixed at 1.0, we
mMiss out on some power saving opportunities, resulting in diminished enarmgsaHowever, the differ-
ence between 0.0 and 2.0 is negligible (less than 3%). In terms of perfoerimapact, for fixed LB/GB, the
increasing node transition cost actually has a positive effect, becablseks unnecessary domain migra-
tion caused by transient spikes in demand. In our adaptive GB/LB agproade transition cost does not
significantly affect the overall performance. We also evaluated diftgrelicies with changing the parame-
ters defined before. Our findings from those changes are less tirigréd/e did not find that the changes
had much of an impact, compared with GB/LB sizes and management.

In Figure 9, we show the energy savings and performance impacts afapéae GB/LB approach by in-
creasing the number of domains. The same 40 demand traces are usiditfonal domains. Accordingly,
the overall utilization increases as the number of domains increases. Orattig, Xx,y) represents the
number of domains (x) and the maximum utilization (y) respectively. As the nupflomains increases
along with overall utilization, the energy savings in tdealizedsystem decreases from 75.2% to 4.3%, due
to reduced residual in processing capacity. Our adaptive schemeeskigergy savings within 6% of the

14

Idealizedsystem. The SLA violation rate™ber of ﬁf%o‘;‘jﬁg‘m) however, remains below 22.5%. The

average violation degree is 0.6% or less in all cases, although additionalimigrcaused by running more
domains increase the maximum violation degree up to 7.4%.

6 Conclusion

This paper presents an algorithm for consolidating domains in a virtualizéement running coarse-
grained workloads to reduce overall energy consumption. We showghra simulation-based study that
we get the best combination of energy savings and performance byarsiadaptive buffering scheme to
determine how much reserve capacity is needed. We use a two-level salitbnael.ocal Buffer on each
node and an additional Global Buffer. A number of other dimensions exakiated including the time to
migrate a domain and the time to change the power state of a node, but nonmdfahe as much effect
on PADD as the size and management of the buffers. The best trafte-effectively no performance loss
and maximum energy savings is the adaptive GB/LB approach. More raselfsesented in [17].

Our future work is twofold. First, we want to run our simulator using tracemfa wider variety of
workloads and incorporate mixes of different workloads. We believertheging different workloads in
the simulation is more realistic for emerging computing environments such as utility gnid clouds.
Second, we made a number of simplifying assumptions which make our pootieéfomogeneous. This
is clearly unrealistic for any large installation. We need to extend our algordthehour simulation to
consider machines with different characteristics.

In the long term, the simulator will provide an understanding of the designipl@scinvolved in the
PADD system, allowing us to develop a practical implementation.

References

[1] Elastic Compute Cloud (Amazon EC2). http://aws.amazom/ec2/.

[2] IBM Blue Cloud Computing. http://www-03.ibm.com/pigss/en/pressrelease/22613.wss.

[3] Virtual Computing Lab. http://vcl.ncsu.edul.

[4] VMware ESX Server. http://www.vmware.com/productsgx/.

[5] Xen Virtualization Technology. http://www.xen.org/.

[6] M. Banikazemi, D. Poff, and B. Abali. PAM: A Novel Perfoance/Power Aware Meta-scheduler for Multi-core
Systems. IrBupercomputing conference ($S€908.

[7]1 N. Bobroff, A. Kochut, and K. Beaty. Dynamic Placement\dftual Machines for Managing SLA Violations.
Integrated Network Management, 2007. IM '07. 10th IFIP/EEmBternational Symposium ppages 119-128,
21 2007-Yearly 25 2007.

[8] D. J. Bradley, R. E. Harper, and S. W. Hunter. Workloaddzh power management for parallel computer
systems. INBM Journal of Research and Developme203.

[9] J.S. Chase, D. C. Anderson, P. N. Thakar, and A. M. Vaidanaging Energy and Server Resources in Hosting
Centers. Irthe Eighteenth ACM Symposium on Operating Systems Prgcaf101.

[10] G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao, and Fagh Energy-Aware Server Provisioning and
Load Dispatching for Connection-Intensive Internet Segsi In5th Symposium on Networked Systems Design
USENIX Association and Implementation (NS2008.

[11] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. lachy I. Pratt, and A. Warfield. Live Migration of
Virtual Machines. I2nd Symposium on Networked Systems Design and Impleroan2ads.

[12] U. Drepper. The Cost of VirtualizatioARCM Queug2008.

[13] E. N. Elnozahy, M. Kistler, and R. Rajamony. Energy-&#nt Server Clusters. 18nd Workshop on Power-
Aware Computing Systenz002.

[14] V. W. Freeh, T. K. Bletsch, and F. L. Rawson. Scaling aadkihg on a Chip Multiprocessor. Morkshop on
High-Performance, Power-Aware Computjr&p07.

15

(15]
(16]
(17]
(18]
(19]
(20]

[21]
(22]

(23]
(24]

(25]

(26]

[27]

(28]

V. W. Freeh, D. K. Lowenthal, F. Pan, and N. Kappiah. dsMultiple Energy Gears in MPI Programs on a
Power-Scalable Cluster. Principles and Practices of Parallel Programming (PPORPDO05.

S. Ghiasi and W. Felter. CPU Packing for Multiproced8ower Reduction. lPower Aware Computer Systems
(PACS) 2003.

M. Y. Lim, T. Bletsch, V. W. Freeh, and F. Rawson. PADD:wa-Aware Domain Distribution. Ifechnical
Report To be assigned, IBM Resear2B09.

M. Y. Lim, V. W. Freeh, and D. K. Lowenthal. Adaptive, Treparent Frequency and Voltage Scaling of Com-
munication Phases in MPI Programs.IHEE/ACM Supercomputing 2008006.

R. Nathuji and K. Schwan. VirtualPower: CoordinatedM@o Management in Virtualized Enterprise Systems.
In ACM Symposium on Operating Systems Principles (SCBBY.

R. Nathuji and K. Schwan. VPM Tokens: Virtual Machine#re Power Budgeting in Datacenters.HRDC
'08: Proceedings of the 17th international symposium ontHigrformance distributed computingCM, 2008.

R. Neapolitan and K. NaimipouFoundations of Algorithms1997.

P. Padala, X. Zhu, Z. Wang, S. Singhal, and K. G. ShinfdPerance Evaluation of Virtualization Technologies
for Server Consolidation. Technical report, HP Lab., ARAD7.

K. Rajamani and C. Lefurgy. On Evaluating Request-fibstion Schemes for Saving Energy in Server Clusters.
In IEEE Performance Analysis of System and Softn2003.

A. Singh, M. Korupolu, and D. Mohapatra. Server-Staadrtualization: Integration and Load Balancing in
Data Centers. lISupercomputing conference ($S2008.

M. Steinder, |. Whalley, D. Carrera, |. Gaweda, and D. €heServer virtualization in autonomic management
of heterogeneous workloaddntegrated Network Management, 2007. IM '07. 10th IFIP/EERternational
Symposium gr2007.

A. Verma, P. Ahuja, and A. Neogi. pMapper: power and maigm cost aware application placement in vir-
tualized systems. IMiddleware '08: Proceedings of the 9th ACM/IFIP/USENIXdmtational Conference on
Middleware Springer-Verlag New York, Inc., 2008.

A. Verma, P. Ahuja, and A. Neogi. Power-aware dynamacpment of HPC applications. 168S '08: Proceed-
ings of the 22nd annual international conference on Supapmding ACM, 2008.

W. Vogels. Beyond Server ConsolidatiohCM Queug2008.

16

Al

gorithm 1 Power Aware Domain Distribution

1
2
3
4

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:
33:

34

35:
36:
37:
38:
39:

40

5
6
7.
8
9

: Il Retrieve the node/domain states.
. update N odeandDomainStates()
: /I Find all the nodes whereB is below the specified level
:forn=1toN do
if Cp, < LB, + 3 Avg(D;) then
nodes «— n
end if
: end for
: for nin nodes do
/I Choose a victim domain in the node. see Sec 4.3
domainl D «— selectVictimDomain(n)
/I Determine where to migrate the domain
targetNodel D «— findTargetNode(domainlD)
/I'If there exists an active node that has sufficient LB
if targetNodel D is validthen
beginMigration(domainl D, target Nodel D)
end if
end for
I/l Check if there is enough provisioning in GB and LB _
reqCap — GB+ Y.L LB; + Y. | Avg(D;) — S35 =Aetve ¢
if reqCap < 0then
/l'If there is over-provisioning in total system capacity,
/I find the nodes where domains can be consolidated
nodelist = getTurnO f fCandidates()
for nodel D in nodelist do
if reqCap + Crogerp < 0 then
/I If all the domains in the node can fit into other nodes,
/I vacate the node by evicting all of them,
if beginDomainConsolidation(nodel D) then
reqCap «— reqCap + ChoderD
end if
end if
end for
. eseif reqCap > 0 then
repeat
nodel D = getNodeWithHighestE f ficiency()
powerupN ode()
reqCap « reqCap — Cpoderp
until reqCap <0
cend if

17

