
RC24796 (W0905-036) May 13, 2009
Computer Science

IBM Research Report

Distributed Cross-Domain Change Management

Bruno Wassermann
University College London

Department of Computer Science
London, WC1E 6BT

UK

Heiko Ludwig, Jim Laredo, Kamal Bhattacharya
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598
USA

Liliana Pasquale
Politecnico di Milano

via Golgi, 40
20133 Milano

Italy

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Distributed Cross-Domain Change Management

Bruno Wassermann
University College London
Dept. of Computer Science
London, WC1E 6BT, UK

b.wassermann@cs.ucl.ac.uk

Heiko Ludwig, Jim Laredo, Kamal Bhattacharya
IBM TJ Watson Research Center

19 Skyline Drive
Hawthorne,NY 10532

{hludwig, jlaredo,kamalb}@us.ibm.com.com

Liliana Pasquale
Politecnico di Milano

via Golgi, 40
20133 Milano, Italy

pasquale@elet.polimi.it

Abstract

Distributed systems increasingly span organizational
boundaries and, with this, system and service management
domains. Web services are the primary means of exposing
services to clients, be it in electronic commerce, Software-
as-a-Service (SaaS) or on cloud platforms and are being
used and integrated with customer-managed applications as
well as in complex mashups. Maturing cross-domain rela-
tionships and an increase in loose coupling and ad-hocness
makes managing configuration changes, e.g., changes in
interfaces or endpoints, increasingly relevant. Traditional
service management processes within organizations, in par-
ticular change management, relies on a central configura-
tion management database (CMDB) to assess the impact
a change has on other components of the system. How-
ever, this approach does not work in a cross-domain en-
vironment, due to the lack of a central CMDB, centralized
management processes, and knowledge by service providers
which clients depends on their respective services. This
paper proposes the Change 2.0 approach to cross-domain
change management based on an inversion of responsibility
for impact assessment and the facilitation of cross-domain
service process integration. We present the requirements
imposed by cross-domain change management, the Change
2.0 architecture, and a brief evaluation of its benefits.

1. Introduction

The increasing popularity of Software-as-a-Service
(SaaS), Cloud computing, and the use of mashups to create

novel applications on the basis of services and data from
different sources entails an increase in applications that rely
on infrastructure spanning multiple organizations, and with
that, multiple management domains. In this context, com-
plex dependency structures can arise. For example, an in-
stance of a SaaS, such as Salesforce.com, may need to
access a customer’s backend system, such as a customer
database, through a Web service interface. Today’s Web ser-
vice platforms not only enable complex service invocation
dependencies, but also the rapid and dynamic establishment
of these relationships by taking advantage of loose coupling
capabilities. As a result, these cross-domain dependency
relationships are subject to frequent change. The problem
this poses is that changes to a service owned and managed
by one domain have the potential to affect the operation of
applications in other domains depending on this service. A
simple change to the interface of some Web service can thus
disrupt an application in another domain, which now relies
on an effectively deprecated service definition.

Evolution of interfaces, endpoints and properties is a nor-
mal occurrence in the life-cycle of a service and organiza-
tions address it with the help of a change process. A change
process helps transitioning a system configuration from its
current state to a new state while minimizing its impact on
service availability and taking into account the side effects
that a configuration change entails [11]. The processes typi-
cally involve a number of employees of an organization that
work on designing a proposed change, asses its impact on
other configuration items, i.e. infrastructure components,
applications and services, and then implement the change in
a change window, a time interval that is convenient, e.g., at
night or on weekends. Change management systems, which
are available from many vendors, help drive the process and

involve the necessary stakeholders.
Current change management processes and systems suf-

fer from two key shortcomings when it comes to cross-
domain applications. (1) First, they typically rely on
a centrally managed configuration management database
(CMDB) to store information on a system’s configuration,
its configuration items (CIs). Such CMBDs are the basis
on which service management processes within a manage-
ment domain run. They facilitate activities such as deter-
mining the impact of a proposed change on other config-
uration items. (2) The second issue is that service man-
agement processes are typically not integrated between ser-
vice providers and users. If a service provider knows its
user base, it may send a notice of a pending change per
email or post it on a Web site. This is error prone and will
often lead to delays if the relationship between a service
provider and its clients is not institutionalized. In many
cases, changes are only noticed after their implementation
leading to outages of their using applications. The distribu-
tion of management responsibility for cross-domain appli-
cations requires a decentralized approach to change man-
agement.

This paper proposes a novel approach to change man-
agement across management domain boundaries. This
Change 2.0 approach addresses the issues of how to enable
the various parties affected by a change to notice relevant
changes and asses their impact and furthermore implements
a change coordination protocol to enable the various parties
to cooperate in the implementation and testing of changes.

The next section discusses the issues of cross-domain
change management in more depth, derives a set of spe-
cific requirements that need to be addressed, and introduces
an example on which we evaluate Change 2.0. Section 3
presents the key concepts underlying our approach to cross-
domain change management. In section 4 we discuss the
REST-based architecture of the current Change 2.0 proto-
type, before we discuss a proof-of-conept implementation
and evaluate its benefits in section 5. Finally, we discuss re-
lated work and summarize our conclusions from this work.

2. Issues of cross-domain applications change
management

In a single management domain service management to-
day is mostly conducted according to various sources of
best practices, e.g., the IT Infrastructure Library (ITIL) [11]
and the Control OBjectives for Information and related
Technologies (COBIT) [19]. Assets and CIs are the infor-
mation on which service management processes, such as
change management, are based. Depending on the intended
use of a CI, its relevant properties may include IP addresses
of virtual machines, Web service endpoint URLs, WSDLs
associated with an endpoint, information about service ca-

pacity, policy information, etc. The Distributed Manage-
ment Task Force (DMTF) publishes a Common Informa-
tion Model that proposes a standard set of CI types to which
many vendors adhere [6]. An important aspect of CIs in a
CMDB is the notion of dependency of one CI on another,
e.g., a Web application being dependent on its application
server. This is important for problem root cause analysis or
impact assessment.

ITIL also identifies a number of service processes such
as incident management (often called ticket management),
problem management, and change management. Service
processes can trigger each other, e.g., a problem process
can trigger a change process if fixing the problem requires a
configuration change. Asset and configuration information
are updated regularly in a discovery process that identifies
new CIs and changes in its configuration by searching for
and analyzing systems on the network of a service infras-
tructure. Changes to CIs can also be driven by a change
management process updating the corresponding entries in
a CMBD.

A change process is typically conducted in a number of
steps, which may vary depending on the best practice used,
the specific process of an organization and the service man-
agement system that the organization implemented. How-
ever, we will find a set of common steps in most change
process implementations:

Change Design A proposed change is designed, i.e. it is
specified which set of CIs will change, e.g., by in-
stalling a new version of a an application or a patch.
This typically also includes a rollback plan in case of
failure.

Impact Assessment It is investigated which CIs beyond
the ones in the change will be impacted and remedial
action will be planned, either in the course of the same
change or separate ones. The key source of informa-
tion for this step are the CI dependencies as found in
the CMDB.

Change scheduling A suitable point in time is set to exe-
cute the change e.g., in a change window on a weekend
[18].

Change implementation The actual implementation of
the change, e.g., the installation of an upgrade.

Change verification and release Testing the change and,
if successful, putting it in operation.

The main motivation behind the implementation of such
a change management process by an IT organization is to
minimize the down time and cost due to the side effects of
necessary changes to one’s infrastructure. In a single man-
agement domain, it can be assumed that all assets and CIs

relevant for the management processes can be found in a
centralized CMDB. Furthermore, these CIs can be discov-
ered and read within a single management domain. How-
ever, in a situation where Web services are accessed across
organizational boundaries in a potentially dynamic manner,
we can neither assume a central CMDB shared by all par-
ticipants nor an integrated change process agreed upon by
everyone.

We will refer to the following example throughout this
paper: A Start Up online shop relies on a payment processor
Enterprise to charge its customers while the shop applica-
tion itself is implemented as a cloud application by a cloud
platform provider. The payment processor in turn uses a
storage service provider for storing transactions data. Both,
payment service and storage service expose a Web service
interface. All service providers have a large number of cus-
tomers.

Figure 1 outlines the corresponding configuration. The
relevant CI properties for these dependencies are what we
would normally find in a WSDL, such as operation signa-
tures, service version, authentication mechanism, endpoint
addresses, XML schemas, and so on. The rounded boxes
represent different management domains and the circles are
CIs in these domains. The edges represent dependencies
between CIs. The bold circles represent CIs on which other
management domains depend for the services they offer to
their clients. The relevant CI properties for these dependen-
cies are the operation signatures, service version, storage
size limit, authentication mechanism, endpoint addresses,
XML schemas, and so on. These are properties you would
typically find in a WSDL and additional information about
the service such as the storage capacity associated with the
storage service subscription.

In the course of the service life-cycle, service providers
may need to modify some of the CIs in their domain. For
example, it may become necessary to change the authenti-
cation method of the payment service to a longer key length
to comply with banking regulation. This can negatively im-
pact clients in case changes to the client code invoking the
Web service are needed and may impair the online shop, if
not implemented in time. Given the example in Figure 1, we
see that there are further levels of CI dependencies, which
may cause a ripple effect along the chain of dependencies
leading to large overall outage costs.

In summary, as we have started to build applications
as compositions of services from various management do-
mains, we have increased the likelihood of outages due to
changes to some CI somewhere along the chain of cross-
organizational dependencies. Yet, at the same time no ef-
ficient mechanisms are available to manage change across
domains. Cross-domain change management is an impor-
tant ingredient in the reduction of outage costs and clients
of Web services will regard this capability as an impor-

Figure 1. Overview of online shop example
configuration.

tant value-add. The distribution of management respon-
sibility of Web-based applications requires a decentral-
ized approach to service management that takes into ac-
count the distribution of configuration information and fa-
cilitates the execution of management processes across or-
ganizational boundaries while maintaining each organiza-
tion’s autonomy. Enabling change management for cross-
organizational applications needs to address the following
issues:

• It is difficult to discover assets and CIs outside one’s
own management domains due to the lack of scope and
access to the resources of other domains.

• It is difficult to keep track of which management do-
mains are using and currently depending on a specific
CI of one’s management domain, in particular in dy-
namic and loosly-coupled environments.

• Service management processes are typically confined
to one management domain, primarily due to lack of
knowledge of and access to external CIs.

• Service management process implementations vary
and point-to-point process integration is expensive.

In the next sections we outline how the Change 2.0 ap-
proach addresses these issues.

3. Change 2.0 concepts

Change 2.0 is based on a number of basic principles to
overcome the issues raised above. First, we address the

shortcomings of centralized approaches through the inver-
sion of responsibility. We let clients maintain knowledge
of the CIs they depend on and obtain notifications about
relevant changes. Second, we have developed a decentral-
ized change coordination protocol based on a common state
model. This enables participants to cooperate on the im-
plementation of changes while respecting their autonomy.
Finally, we allow initiators of a change to fine tune the de-
gree of influence participants have over the outcome of a
change process.

3.1. Inversion of responsibility

Service providers want to ensure that all clients poten-
tially affected by a change are notified about it so that they
have an opportunity to adapt to it. However, as discussed
above, inter-domain applications complicate achievement
of this requirement in several ways. First, it is impractical
to maintain a centralized global public CMDB and CMDB
federation presents us with trust and scalability issues. Sec-
ond, in a loosely-coupled environment it can be difficult to
establish when and whether a particular client will use a
service. And finally, there are cases where it is not obvious
how to establish a link from a specific change to a set of
potentially affected clients. For example, consider a change
to a low-level configuration item, such as a DBMS under-
lying a public storage Web service, e.g., the change to the
query language offered by the storage service. How could
a service provider determine all of its dependent CIs across
domains, e.g., those using deprecated features of the query
language of a public service? We need a mechanism that
doesn’t require a central CMDB, that nevertheless removes
the burden of identifying which clients to contact form ser-
vice providers, and that scales well.

Our solution to these issues is to invert the responsibili-
ties among clients and service providers in the inter-domain
use of Web services. The two main aspects to this idea
are the discovery of configuration information and notifi-
cations about changes. In the absence of a central CMDB,
each client is responsible for discovering and maintaining
all those CIs it depends on. We use a decentralized configu-
ration discovery mechanism for this purpose, in which each
resource carries out a local discovery and publishes CIs rel-
evant for external clients as Web accessable resources. Fur-
thermore, given knowledge of their dependencies, clients
are able to subscribe to changes on the CIs relevant to their
operation. Service providers are then responsible to pub-
lish notifications about planned changes to the CIs under
their control. These notifications should describe changes
in sufficient detail for subscribers to carry out their own
impact analysis. The delivery mechanism for notifications
must scale to a large number of subscribers and work across
the Internet. The problem is thus reduced in complexity,

as each client maintains its own set of dependencies and
providers can remain unaware of their clients for the pur-
pose of change management.

3.2. Decentralized change coordination

Successful adaptation to changes often requires coopera-
tion among a service provider and the set of clients affected
by a particular change. However, we cannot expect every-
one to adhere to and implement the same change process.
Point-to-point integration is not feasible on a large scale
and therefore a more general solution would be desirable.
In particular, such a solution must provide for cooperation
in implementing a change without violating the autonomy
of the various parties involved in a change process.

Instead of a global change process, change should be
a decentralized coordination mechanism coordinating inde-
pendent processes. Coordination protocols are often applied
in situations where a dynamic number of participants are
being coordinated, e.g., in transactions executing a 2 phase
commit protocol orchestrated by a transaction manager [9],
[12]. Coordination means in this case distribution of state
updates to the participants involved and advancing the state
of the coordination according to a state model. These mod-
els are typically very simple, e.g., the 2 phases of the 2
phase commit.

We apply this general approach on coordination to the
issue of cross-domain change management. In Change 2.0,
coordination is based on a common state model represent-
ing the least common denominator of the states a distributed
change processes assumes, corresponding to the phases or
steps of a change process. Participants are free to imple-
ment the various phases of a change process as required at
their end but are able to synchronize on the progress of the
common change process.

Figure 2 shows the common state model of the Change
2.0 approach. The initial state is Authorization during
which participants join and have an opportunity to voice
their opinion whether or not to go ahead with the change.
If a participant votes to reject the change, the state of the
change process will reflect this (i.e. Rejected) and all par-
ticipants are notified of the decision. Otherwise, if no one
rejects the change by the planned start time of the change,
the change owner is free to indicate when it has started
with the implementation and the common state will reflect
this prompting all participants to carry out the necessary
changes at their end. Once the service provider has com-
pleted its implementation of the change and all participants
have been adapted accordingly the common state model
transitions to the verification phase. This allows for test-
ing the changes and can either result in undoing the service
change or putting the new version into production. These
states loosely follow the ITIL service transition process [11]

Figure 2. The Change 2.0 common state
model.

and represent the common states necessary to allow par-
ticipants to synchronize on implementation and testing of
changes.

3.3. Modes of collaboration

Given the cross-domain and cross-organizational nature
of the change processes considered here, it is important
to ensure that service providers can maintain control over
their resources and still cooperate with those affected by its
changes. For this purpose we have introduced the concept
of collaboration modes. These represent different levels of
influence a participant is granted by the change owner over
the outcome of the change process. We have defined the
following modes of collaboration

• Informative: The change participant is notified of
progress made as the change process runs (i.e. au-
thorized, implementing), but has no influence over the
change process and does not supply any feedback. A
participant is enabled to follow the change process and
adapt to it, but no further cooperation can take place.

• Consultative: As for informative, however, a consulta-
tive participant is asked to provide feedback about the
change process, such as whether it could have verified
the change or how long it took to implement the nec-
essary changes at its end. This affords collection of
information about how clients adapted to a change and
it may be useful to aggregate such information over
time.

• Co-Authorizing: As above, but in this case the change
participant can influence the change process through

its authorization vote. A co-authorizing participant
can vote to reject the change during the authorization
phase.

• Co-Verifying: As above, but in addition the change
participant’s vote during the verification phase is taken
into account. A co-verifying participant whose adap-
tation to a change failed can thus cause the owner and
all other participants to revert the changes.

Different levels of cooperation can be granted to dif-
ferent service users according to their importance. While
high-level involvement is often desired, it limits the service
provider. In cases of a large user base, providers will opt
for the informative or consultative mode of collaboration,
which scales well to large numbers.

4. Change 2.0 Architecture

The issues discussed above point to a number of key re-
quirements for cross-domain change management. It must
be possible to carry out change notifications in a scalable
manner, to allow clients to easily integrate their manage-
ment systems with the change coordination protocol, and to
respect the autonomy of the various domains involved in a
change. The Change 2.0 change process includes two ma-
jor steps: the dissemination of information on impending
changes and the coordination of the change process itself.

4.1. Change dissemination

A prerequisite step of disseminating information on im-
pending changes to CIs is the access to CIs pertaining to
a Web service by its clients. This requires the discovery
of configuration information and its publication to clients
in a convenient way, as RESTful Web resources. As al-
luded to by inversion of responsibility, instead of relying
on a centralized process for this, each resource or domain
needs to perform a discovery of its CIs through locally in-
stalled agents. The dependency discovery approach creates
a set of so-called Smart Configuration Items (SCI). Each
SCI contains the properties of the configuration items it rep-
resents and a set of dependencies on other SCIs, which can
be in the same or in some remote domain. This approach for
local discovery and publication of SCIs has been discussed
in detail in [13]. In the Change 2.0 architecture, the Feed
Manager (FM) is responsible for maintaining a registry of
all SCIs that a domain has discovered locally and makes this
information available to clients with relevant dependencies.
Each domain is thus responsible to maintain its own set of
dependencies.

Subscriptions and notifications of planned changes are
mainly dealt with by four components in our architecture as
illustrated in Figure 3.

Change Client Subscription
Client

Domain Service
Manager (DSM)

Feed Manager

3. Retrieve
configuration

items

1. Retrieve
dependent CIs

2. Subscribe to
change feeds on

dependent
configuration items

4. Enter planned
change

description

5. Submit
planned change

description

6. Check planned
change ATOM

feeds

Figure 3. Subscription and notification of
changes.

Having identified the SCIs they depend on, clients sub-
scribe to information on planned changes pertaining to these
SCIs using a subscription client. Planned changes are made
available as a feed at the Domain Service Manager (DSM).
The DSM is a central domain service and acts as the en-
try point to change management functionality for a particu-
lar domain. It serves feeds that describe the latest planned
changes to SCIs in its domain to interested subscribers
(i.e. all those resources that discovered a changing SCI as
one of their dependencies). Service clients use the subscrip-
tion client to monitor changes to their dependencies. The
subscription client polls the relevant DSM instances in dif-
ferent domains for changes to these dependencies and noti-
fies its users if a change is encountered that may potentially
impact a service client. Users can then retrieve all necessary
information to carry out an impact analysis for the given
change and take the appropriate action such as conducting
their own change process.

On the service provider’s side, a change client is used to
connect to the DSM and submit a newly planned change,
including the set of SCIs to which it is germane. The
change feed for each of the affected SCIs is amended with
the planned change, to be retrieved by interested service
clients. The change feed describes the planned changes to
SCI properties, e.g., the change of a WSDL or the update of
the DBMS underlying the storage service.

4.2. Change process coordination

The three primary components that implement change
coordination are the Change Coordinator (CC), the Change
Owner (CO) and the Change Participant (CP). The CC en-
capsulates our common state model and enables owners and
participants to coordinate the implementation of a change
among each other. The latter two represent the initiator
of a change, the service provider, and a client affected by
this change, respectively. In our current architecture the
CC resides in the domain initiating the change, but it could
equally well be hosted as a service by a third party.

Figure 4 shows how the various components of the

Domain A Domain B

Change Client Subscription
Client

Domain Service
Manager (DSM)

Change
Coordinator

(CC)

1. Return change
process URL

2. Create CO
instance

4. Contains
change process

URL

5. Create CP
instance

Common
state model

Change
Participant (CP)

Change Owner
(CO)

3. Join change
process

6. Join change
process

CP local
change
process

CO local
change
process

Figure 4. Creation of a new change process.

Change 2.0 architecture working together. When a change
client submits a new planned change to the DSM, the DSM
not only reflects this in its change feeds, but it also causes
a new change instance to be created at the CC, which we
refer to as the change context. The DSM then informs the
change client of the newly created change context by re-
turning its URL. Furthermore, it adds this URL to the cor-
responding change feed entry. The change client can then
create a Change Owner instance, which will represent the
service provider of the change during the change process.
Similarly, the subscription client creates a Change Partic-
ipant instance, which then joins the change process at the
CC. The CO and CCs can be integrated to the proprietary,
domain-internal change management systems of their re-
spective organizations.

On request by the DSM the CC initiates a change context
for each change and then transitions through the state model
by collecting votes and status updates from the change
owner and participants. Each change context at the CC
implements a state machine representing our common state
model. The state machine implementing the state model in-
spects all incoming requests and determines whether or not
to transition to the next state. For example, it will transition
to verifying, once the CO and all CPs indicate that they have
completed the implementation or adaptation to the change.
Upon a state transition, the CC updates participants of this
and then awaits their reaction. For example, the CC informs
everyone that the Verifying phase has been reached and thus
indicates that it now awaits votes from the owner and par-
ticipants whether or not they verify the change.

Once the change has progressed to a terminal state, Un-
changed or Change Released, the change coordination is
completed and the change context in the CC can be archived
or dismantled. The CO and CP instances in the service
provider and the clients can be dissolved and the domain-
internal change processes in all participants can completed.

4.3 Interfaces

Facilitating change management across domain bound-
aries benefits from using existing standards of interoper-
ability and requiring the least additional standardization,
thus enabling adopters to use existing systems to deal with
Web services as far as possible. The Change 2.0 approach
to interfaces is is based on Web 2.0 technologies to facil-
itate integration and interoperability. All components ex-
pose their functionality via RESTful interfaces [8]. We rely
on ATOM feeds [2] for the notification of planned changes,
which lends itself well a the large number of subscribers.
The various data types used by the Change 2.0 components
(e.g., change feeds and change protocol messages) are pub-
lished as XML Schema Definitions.

Table 1. Excerpt of the CC’s REST interface.
Resource GET POST DELETE
/chgctxs/id/participants List par-

ticipants
Register
partici-
pant

Participant
with-
draws

/.../id/status Protocol
status

Unused Unused

/.../votes/authorization List
sub-
mitted
votes

Submit
autho-
rization
vote

Unused

An example of the REST interface as defined by the CC
is shown in table ’1. For each change, there is a uniquely
identifiable change context through which a number of re-
sources are organized. These resources allow participants
to register, submit votes and inquire about the current status
of an ongoing change process. The payload of requests to
and responses from the CC are defined as data types pub-
lished by the CC as an XSD. Using RESTful interfaces and
ATOM feeds enables service providers and service client or-
ganizations to use existing tools such as ATOM readers by
Google or various e-mail systems to follow changes or to
implement COs and CCs based on widely available toolkits
to deal with REST, ATOM feeds and the like.

As stated above, it is an important requirement to respect
the autonomy of participants in a change process. There are
a number of requirements on the implementation of a CO
and CP. First, they need to understand the data types pub-
lished by the CC and the feed format used by the DSM.
There are a handful of status messages (e.g., implementa-
tion complete, verifying) they need to understand. Second,
COs and CPs need to offer some URL on which they accept
status updates from the CC. Finally, they must be able to
inform the CC of their current progress and of their votes
at certain points in the change process. It is important to
note that beyond these requirements participants are free to

implement the change process at their end in whatever way
they see fit. Integration thus does not impose more than
the bare minimum and the interface standards used keep the
implementation burden low.

5. Implementation and evaluation

We implemented a proof of concept of all components
involved in Change 2.0. We use WebSphere sMash as a
lightweight Web server supporting RESTful implementa-
tions. We use Dojo [1] to implement the change and
subscription client end user components. Since all inter-
faces are REST, it is easy to also read status in a regular
Web browser or follow feeds using a feed reader, which en-
abled us to make use of many popular tools such as Google
Reader for subscriptions and reduce adoption cost, both in
terms of implementing the solution as well as in training
costs.

While a large-scale trial of Change 2.0 is still outstand-
ing, we are able to start sizing its benefits. The main global
benefit is the reduction in change-related outage costs of
service clients. The reduction for each client depends on
the collaboration mode of the client. Co-authoring and co-
verifying clients should see a large reduction of outage cost,
close to zero in the latter case. The benefit of clients in
an informative and consultative mode depends on the ex-
tent to which they are affected by the change and whether
the time window allocated for the change is sufficient for
their change implementation and verification. It is diffi-
cult to size the improvement over email or Web-based up-
dates on service changes. We are not aware of any studies
on the perception rate of these announcements in organiza-
tions though, anecdotally, it is low. The benefit for service
providers is the superior service they can offer to clients,
compared to peer services that don’t offer change manage-
ment support.

6. Related Work

Much work has been done in the area of distributed
systems management to expose configuration information
to the public and on the Web. Both standards, Web Ser-
vices Distributed Management (WDSM), and Web Services
for Management (WS-M) propose a Web services interface
to access this data [15], [7], the latter of which propos-
ing an XML rendition of CIM [6] as a model for the CI
content. While WSDM has a concept of relationships,
which could be amended to represent dependencies, WS-
M lacks such an explicit concept which is crucial for track-
ing cross-organizational changes. To distribute information,
WSDM uses WS-BaseNotification [16] and WS-M uses
WS-Eventing [4]. Both standards offer a publish/subscribe

mechanism to send and receive events. An ATOM/RSS feed
approach, however, can be used with any RSS reader and
rely on its subscription and filtering capabilities.

CMDB federation enables accessing configuration infor-
mation held in different CMDBs [5]. However, CMDB fed-
eration requires the explicit establishment of the federation
relationship between interested parties and does not scale
to a large service user base as common for popular service
providers due to high setup costs, even ignoring incompat-
ible CMDB products. Therefore, this approach is not ap-
plicable to dynamically changing environments as it can be
found in today’s Web services usage patterns.

Significant work has been conducted on cross-domain
process integration in general [3] and dynamic integration in
particular [10]. However, many approaches rely on detailed,
message-oriented integration of bilateral parties, in pre-
designed processes such as expressed with WS-BPEL [17],
or rely on contracts to specify the details of a relationship
between interaction partners. None of these approach does
applies to the large scale and dynamic environment of our
change issue in the same way than a coordination-based ap-
proach, on which we based our work [12].

Initial work on automatic service invocation adaptation
remains confined to specific scenarios of change [14].

7. Conclusions

As Web service use and integration across the Internet in
a loosely-coupled manner proliferate, managing change in a
controlled way becomes increasingly important. Otherwise,
we are facing a situation in which regular maintenance and
evolution of services leaves behind a trail of disruption and
service outages on a regular basis.

We propose the Change 2.0 approach to address this is-
sue. In this approach, the initiator of a change is relieved of
having to identify the set of potentially affected clients. In-
stead, each domain maintains its dependencies and change
owners publish change notifications. The use of ATOM
feeds enables the publication of such notifications to a po-
tentially large number of subscribers across the Internet.
We rely on widely adopted Web 2.0 technologies to facil-
itate integration and interoperation. We avoid imposing a
single change process through our coordination-based ap-
proach that imposes a common state model, which encap-
sulates the minimum number of synchronization points nec-
essary to achieve meaningful cooperation. Participants are
left with ample freedom to implement a change process at
their end, or use the change system they have in place. Fi-
nally, we enable service providers to maintain fine-grained
control over their resources through various modes of col-
laboration. To our knowledge, this solution is the first to
address the key issues of cross-domain change management
that we have outlined at the beginning of this paper.

The next stage of our work is to continue to deploy our
prototype in real settings. Furthermore, we will investi-
gate to conduct other service management process across
domain boundaries based on a similar, coordination-based
approach.

References

[1] Dojo. http://dojotoolkit.org/.
[2] The Atom Syndication Format.

http://www.ietf.org/rfc/rfc4287.txt, 2005.
[3] C. Bussler. B2B Integration: Concepts and Architecture.

Springer-Verlag, 2003.
[4] D. Box et al. Web Services Eventing (WS-Eventing) W3C

Member Submission 15, 2006.
[5] D. Clark et al. The Federated CMDB Vision: A

Joint White Paper from BMC, CA, Fujitsu, HP,
IBM, and Microsoft, Version 1.0. Technical report,
http://www.cmdbf.org/CMDB-Federation-white-paper-
vision-v1.0.pdf, 2007.

[6] Distributed Management Task Force, Inc. (DMTF). Com-
mon Information Model (CIM) Specification, Version 2.2,
1999.

[7] Distributed Management Task Force, Inc. (DMTF). Web
Services for Management (WS-Management), Version:
1.0.0, 2008.

[8] R. Fielding. Architectural Styles and the Design of Network-
based Software Architectures. PhD thesis, University of Cal-
ifornia Irvine, 2000.

[9] J. Gray and A. Reuter. Transaction processing : Concepts
and techniques. Morgan Kaufman, 1993.

[10] P. Grefen, K. Aberer, H. Ludwig, and Y. Hoffner. Cross-
organizational workflow management for service outsourc-
ing in dynamic virtual enterprises. IEEE Data Engineering
Bulletin, 24(1), 2001.

[11] Information Technology Infrastructure Library. Service
Transition, May 2007.

[12] L. F. Cabrera et al. Web Services Coordination (WS-
Coordination), version 1.0, 2005.

[13] H. Ludwig, J. Laredo, K. Bhattacharya, L. Pasquale, and
B. Wassermann. Rest-based management of loosely coupled
services. In Proc. of the World Wide Web Conference, 2009.

[14] H. R. Motahari Nezhad, B. Benatallah, A. Martens,
F. Curbera, and F. Casati. Semi-automated adaptation of
service interactions. In Proc. of the World Wide Web Con-
ference, 2007.

[15] OASIS. Web services distributed management: Manage-
ment using web services (wsdm- muws 1.1), 2006.

[16] OASIS. Web Services Base Notification 1.3 (WS-
BaseNotification), 2006.

[17] OASIS. Web Services Business Process Execution Lan-
guage Version 2.0, 2007.

[18] T. Setzer, K. Bhattacharya, and H. Ludwig. Decision sup-
port for service transition management. In Proceedings of
the IEEE/IFIP Network Operations and Management Sym-
posium, 2008.

[19] The IT Governance Institute. COBIT 4.1, 2007.

