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Strengthening lattice-free cuts using non-negativity

Ricardo Fukasawa Oktay Günlük

May 14, 2009

Abstract

In recent years there has been growing interest in generating valid inequalities for mixed-
integer programs using sets with 2 or more constraints. In particular, Andersen et.al (2007) and
Borozan and Cornuéjols (2007) study sets defined by equations that contain exactly one integer
variable per row. The integer variables are not restricted in sign. Cutting planes based on this
approach have already been used by Espinoza [12] for general mixed-integer problems and there
is also ongoing computational research in this area.

In this paper, we restrict the model studied in the earlier papers and require the integer
variables to be non-negative. We extend the results in Andersen et.al (2007) and Borozan
and Cornuéjols (2007) to our case and show that cuts generated by their approach can be
strengthened by using the non-negativity of the integer variables. In particular, it is possible to
obtain cuts which have negative coefficients for some variables.

Keywords: Mixed integer programming, valid inequalities, lattice free polyhedra.

1 Introduction

Given a mixed-integer program (MIP) and a basic feasible solution to its linear programming (LP)
relaxation, one can define a relaxation of the feasible solution set

X =
{

(x, s) ∈ Zm × Rn
+ : xi −

n∑
j=1

aijsj = fi for i ∈ {1, . . . ,m}
}

which is obtained by starting with the associated simplex tableau and (i) deleting rows associated1

with basic continuous variables, (ii) relaxing integrality of the non-basic variables and (iii) relaxing2

the non-negativity of basic variables. Notice that variables x can be projected out by requiring s3

to satisfy fi +
∑n

j=1 aijsj ∈ Z for all i. This set can also be viewed as a continuous relaxation of4

the corner polyhedra of Gomory [13].5

In a recent paper Andersen at. al [2] study the set X when m = 2 and show that all valid6

inequalities for X can be represented by maximal lattice-free bodies in R2. Later Borozan and7

Cornuéjols [5] extend this and show that minimal valid inequalities for the semi-infinite relaxation8

of X are in one-to-one correspondence with maximal lattice point free bodies in Rm that contain b9
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(provided that b is not on the boundary). In addition, Cornuéjols and Margot [6] extend the results1

in [2] and study conditions under which valid inequalities for the set X (when m = 2) become2

facet defining. More recently, Andersen at. al [3] extend their earlier work by considering upper3

bounds on some of the continuous variables. There has also been some initial computational work4

by Espinoza [12] as well as ongoing computational work by other groups [1, 8] that use the results5

in [2, 5] to produce cutting planes for MIPs.6

In this paper, we study the set

X+ =
{

(x, s) ∈ Zm+ × Rn
+ : xi −

n∑
j=1

aijsj = fi for i ∈ {1, . . . ,m}
}

which contains non-negative points in X. As X+ ⊆ X, it gives a tighter relaxation of MIPs for7

which integer basic variables are required to be non-negative.8

Our main result in this paper is to show inequalities derived in [5] (using maximal lattice point9

free sets) can be strengthened using the fact that x variables are required to be non-negative in10

X+. This strengthening, for example, leads to minimal valid inequalities of the form αx ≥ 1 where11

α has negative components. We next present an example to emphasize the difference between X12

and X+.13

Example 1.1 Let r1, r1, r2, r3, r4, r5, f ∈ R2 be defined as follows:

r1 =

(
−1

4
3
4

)
r2 =

(
−1

4

−5
4

)
r3 =

(
7
4

−5
4

)
r4 =

(
5
4

−5
4

)
r5 =

(
3
4

−5
4

)
and f =

(
1
4
1
4

)

and consider the following set,

X =
{

(x, s) ∈ Z2
+ × R5

+ :

[
x1

x2

]
−

5∑
j=1

rjsj = f
}

defined by 2 rows. Using a the results in [6, 2], it is possible to show that the following inequality:

s1 + s2 + s3 + s4 + s5 ≥ 1

is valid and facet-defining for X. However, using the non-negativity of the x variables in X+ =
X ∩ R+

7 , it is possible to show that the following stronger inequality:

s1 + s2 + s3 − s5 ≥ 1

is valid (and facet defining) for X+. We will come back to this example in Section 2.14

The rest of the paper is organized as follows: In Section 2, we define the semi-infinite extension15

of X+ where we essentially study the set X+ when it has infinitely many variables, one for each16

rational coefficient vector. For this extension, we characterize the basic properties of minimal valid17

functions, relate them to convex sets that do not contain non-negative integer points and show that18

certain polyhedral sets lead to minimal valid functions. In Section 3, we focus on the semi-infinite19
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extension of X+ when it is defined by two rows and give a complete characterization of minimal1

valid functions and how they are related to convex sets that do not contain non-negative integer2

points. In Section 4, we show how to strengthen valid inequalities for X based on maximal lattice3

point free sets to obtain valid inequalities for X+.4

2 The semi-infinite extension of X+
5

In this section, we study the semi-infinite extension of X+ and show basic properties of minimal
valid functions for it. We define the set

P+
f =

{
(x, s) ∈ Zm+ × J : xi −

∑
r∈Qm

rsr = fi for i = 1, . . . ,m
}

where J = {s ∈ RQm : s has finite support}, to be the semi-infinite extension of X+. Our main6

observation is that most of the fundamental results known to hold for semi-infinite extension of7

X (called Pf and studied in [5]) can be extended to the semi-infinite relaxation of X+. We8

are, however, not able to show that there is a one-to-one correspondence between minimal valid9

functions and maximal positive lattice point free sets, which are analogous to maximal lattice-free10

convex sets. More precisely, we show that given a maximal positive lattice point free set, one can11

construct a minimal valid function but we are not able to show that any minimal valid function12

can be constructed using a maximal positive lattice point free set.13

2.1 Valid functions for P +
f14

We say that a function ψ : Qm → R is a valid function for P+
f if∑

r∈Qm
ψ(r)sr ≥ 1

for all (x, s) ∈ P+
f . As discussed in [5] (also see [2]) all valid functions violated by the point15

(x, s) = (f, 0) can be written in this form. Note that the x variables do not appear in this16

expressions as they are substituted out using the equations defining P+
f . Also note that we are17

restricting ourselves to finite functions ψ, since in the context of generating cutting planes for18

mixed-integer programming, functions that can assume the value ±∞ are not useful in practice.19

We say that ψ is a minimal valid function if it is a valid function and there is no other valid function20

ψ′ such that (i) ψ(r) ≥ ψ′(r) for all r ∈ Qm, and (ii) ψ(r) > ψ′(r) for some r ∈ Qm.21

For the sake of completeness, we first define the following: A function f : Qm → R is called22

(i) convex, if αf(x′) + (1− α)f(x′′) ≥ f(αx′ + (1− α)x′′) for all x′, x′′ ∈ Qm and α ∈ [0, 1] ∩Q.23

(ii) positively homogeneous, if f(αx′) = αf(x′) for all x′ ∈ Qm and α ∈ Q+.24

(iii) subadditive, if f(x′) + f(x′′) ≥ f(x′ + x′′) for all x′, x′′ ∈ Qm.25
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Lemma 2.1 If ψ is a minimal valid function for P+
f then ψ is (i) subadditive, (ii) positively1

homogeneous, and (iii) convex.2

Proof. The proof essentially summarizes and adopts proofs of Lemmas 2.2, 2.3, 2.4 and 2.5 in [5].3

(i) Assume that ψ is not subadditive, then ψ(r′) + ψ(r′′) < ψ(r′ + r′′) for r′, r′′ ∈ Qm. Define4

φ : Qm → R to be the same as ψ except let φ(r′ + r′′) = ψ(r′) + ψ(r′′). We will show that5

φ is valid, and therefore ψ can not be minimal, a contradiction. If φ is not valid there exists a6

point (x′, s′) ∈ P+
f such that

∑
r∈Qm φ(r)s′r < 1. But in this case ψ can not be valid either as7 ∑

r∈Qm φ(r)s′r =
∑

r∈Qm ψ(r)s′′r < 1 where (x′, s′′) ∈ P+
f and s′′ is obtained from s′ by reducing its8

(r′ + r′′)th component to zero and increasing the r′th and r′′th components by s′(r′+r′′). Therefore,9

φ is indeed valid, and ψ is not minimal.10

(ii) As ψ is subadditive, we have that ψ(r) + ψ(0) ≥ ψ(r) ⇒ ψ(0) ≥ 0. Let (x̄, s̄) be a feasible11

solution to P+
f . Since s has finite support and ψ is finite, we know that

∑
ψ(r)sr < +∞. Note12

that the point (x̄, s̃) defined by s̃r := s̄r for r 6= 0 and s̃0 = 0 is also feasible for P+
f . Hence,13

0 +
∑

r 6=0 ψ(r)sr ≥ 1. Therefore ψ is still a valid function if we change ψ(0) = 0, so minimality of14

ψ implies ψ(0) = 0.15

Therefore, if α = 0 then ψ(αr) = αψ(r) for all r ∈ Qm. Assume that ψ(αr′) 6= αψ(r′) for some
α > 0 and r′, αr′ ∈ Qm. Let β = min{ψ(αr′)/α, ψ(r′)} and define φ : Qm → R be same as ψ except
let φ(αr′) = αβ and φ(r′) = β. As in the first part of the proof, it is straight forward to reach a
contradiction by observing that φ is valid function P+

f provided that ψ is valid.
(iii) Notice that ψ positively homogeneous and therefore for all α ∈ [0, 1] and r′, r′′ ∈ Qm

αψ(r′) + (1− α)ψ(r′′) = ψ(αr′) + ψ((1− α)r′′) ≥ ψ(αr′ + (1− α)r′′)

where the last inequality follows from subadditivity.16

In [5], Borozan and Cornuéjols show that all valid functions for Pf are (i) subadditive, (ii)17

positively homogeneous, (iii) convex and (iv) non-negative. We note that the last property does18

not hold for all valid functions for P+
f . In Section 2.3, we describe a family of valid functions for19

P+
f that assume negative values for some r ∈ Qm.20

Lemma 2.2 If ψ is positively homogeneous and subadditive, then it is valid for P+
f if and only if21

ψ(x− f) ≥ 1 for all x ∈ Zm+ .22

Proof. The only if part is straight forward: if ψ(x̄− f) < 1 for some x̄ ∈ Zm+ , define s̄ ∈ J to have23

all zero components except s̄(x̄−f) = 1. We therefore have (x̄, s̄) ∈ P+
f and yet

∑
r∈Qm ψ(r)s̄r < 1,24

a contradiction.25

For the if part, note that for all (x̄, s̄) ∈ P+
f we have x̄ ∈ Zm+ and

∑
r∈Qm rs̄r = x̄ − f .26

First using homogeneity and then using subadditivity, we have
∑

r∈Qm ψ(r)s̄r =
∑

r∈Qm ψ(r̄sr) ≥27

ψ(
∑

r∈Qm rs̄r) Implying
∑

r∈Qm ψ(r)s̄r ≥ 1 and therefore ψ is a valid function for P+
f .28
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2.2 Positive lattice point free sets and minimal valid functions for P +
f1

We call a set S ⊂ Rm positive lattice point free if int(S)∩Zm+ = ∅, where int(S) denotes the interior
of the set S (a point is in the interior if it is possible to construct a ball around it that is contained
in the set). For a given function ψ : Qm → R we define a closed set in Rm associated with the
function as follows:

S(ψ, f) = cl
({
x ∈ Qm : ψ(x− f) ≤ 1

})
.

Using this definition, notice that Lemma 2.2 can be re-stated as follows:2

Remark 2.3 If ψ is positively homogeneous and subadditive, then it is valid for P+
f if and only if3

S(ψ, f) is a positive lattice point free set.4

Moreover, remember that the proof of Lemma 2.1 shows that if the function ψ is positively5

homogeneous and subadditive, then it is a convex function. This, in turn, implies that S(ψ, f) is a6

convex set. As all minimal valid functions for P+
f are positively homogeneous and subadditive, we7

also observe that S(ψ, f) is convex for all minimal valid functions ψ.8

For a set B, let RC(B) denote the recession cone of B and RCo(B) = RC(B) \ int(RC(B))9

denote the boundary of the recession cone of B. We first make a basic observation regarding10

minimal valid functions.11

Lemma 2.4 Let f ∈ Qm and ψ : Qm → R be a positively homogeneous and subadditive function.12

Then f ∈ int(S(ψ, f)). Moreover, for every r ∈ Qm, the function ψ satisfies the following:13

(i) ψ(r) ≤ 0, if r ∈ RC(S(ψ, f)),14

(ii) ψ(r) = 0, if r ∈ RCo(S(ψ, f)), and,15

(iii) ψ(r) = 1/max{λ ∈ R+ : f + λr ∈ S(ψ, f)}, if r /∈ RC(S(ψ, f)).16

Proof. To simplify notation, let S = S(ψ, f), RC = RC(S(ψ, f)) and RCo = RCo(S(ψ, f)). We17

start with showing that ψ(r) < ∞ for all r ∈ Qm implies that f ∈ int(S). Let ed be the unit18

vector with a 1 in the d-th component and zero everywhere else. Since ψ(ed) < ∞, we have that19

1 = 1
ψ(ed)ψ(ed) = ψ

(
1

ψ(ed)ed

)
= ψ

(
f + 1

ψ(ed)ed − f
)

and hence f + 1
ψ(ed)ed ∈ S. Since the same20

argument is valid for all ed and −ed for all d = 1, . . . ,m, we have that there exists ε > 0 such that21

f ± εed ∈ S for all d = 1, . . . ,m and hence f ∈ int(S). We next prove (i), (ii) and (iii).22

(i) Consider r ∈ RC. As f ∈ S, we have f +λr ∈ S for all λ ∈ Q+ implying ψ(f +λr− f) ≤ 1.23

Hence ψ(λr) = λψ(r) ≤ 1. Since λ can be arbitrarily large, we have ψ(r) 6> 0, or equivalently,24

ψ(r) ≤ 0.25

(ii) We first show that ψ(r) > 0 when r 6∈ RC. For the sake of contradiction assume that26

ψ(r) ≤ 0. Then for any x ∈ S∩Qm and any λ ∈ Q+ we have that ψ(x+λr−f) ≤ ψ(x−f)+λψ(r) ≤27

ψ(x−f) ≤ 1, therefore x+λr ∈ S. Since S is convex, x+λr ∈ S for all λ ∈ R+ and hence r ∈ RC.28

Now consider r ∈ RCo and note as r ∈ RC we have ψ(r) ≤ 0. Suppose, for the sake of
contradiction, that ψ(r) = −β for some β > 0. Since r ∈ RCo, there exists a nonzero vector
v 6∈ RC such that r + δv /∈ RC for all δ > 0. Now choose a δ′ such that 0 < δ′ < β/ψ(v) and
remember that v 6∈ RC implies 0 < ψ(v) < +∞. As r + δ′v /∈ RC we have f + λ(r + δ′v) /∈ S for
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some sufficiently large λ > 0. In other words, ψ(λ(r+ δ′v)) > 1. As ψ is subadditive and positively
homogeneous, we also have

λψ(r) + λδ′ψ(v) ≥ ψ(λ(r + δ′v)) > 1⇒ ψ(r) ≥ 1/λ− δ′ψ(v) > 1/λ− β ≥ −β,

which is a contradiction and therefore ψ(r) = 0.1

(iii) Finally, we consider r /∈ RC. Notice that we have already shown in part (ii) that ψ(r) > 0
and therefore,

1 =
1

ψ(r)
ψ(r) = ψ(

1
ψ(r)

r) = ψ(f +
1

ψ(r)
r − f)

implying f + r/ψ(r) ∈ S and hence

1/ψ(r) ≤ λ̄ = max{λ ∈ R+ : f + λr ∈ S}.

Now if λ̄ > 1/ψ(r), we have that ψ(f + λ̄r − f) = ψ(λ̄r) = λ̄ψ(r) > 1, a contradiction. Therefore,2

λ̄ = 1/ψ(r).3

Notice that the first part of the proof of Lemma 2.4 can be easily extended to show that, even4

if we allow ψ to take on the value ∞, ψ <∞ if and only if f ∈ int(S(ψ, f)). As we assume ψ to be5

finite, we only consider maximal positive lattice point free sets that contain f in their interior. We6

remark that Zambelli [22] showed that all cutting-planes for X can be generated using maximal7

lattice-free convex sets that contain f in the interior.8

2.3 A minimal valid function for P +
f9

We next present a family of minimal valid functions that are derived using polyhedral maximal
positive lattice point free sets. Throughout this section we assume that B is a polyhedral set that
satisfies the following properties: (i) it is full-dimensional, (ii) it contains f in its interior, (iii) it
does not contain any non-negative integer points in its interior. Therefore, B can be represented
as

B = {x ∈ Rm : aTi x ≤ bi,∀i = 1, . . . , k},

where all inequalities are facet defining, aTi f < bi for i ∈ I = {1, . . . , k}, and int(B) ∩ Z+ = ∅. We
now define the function ψB : Qm → R as follows:

ψB(r) = max
i∈I

{
rT âi

}
where âi = ai/(bi − aTi f). Note that ψB is a positively homogeneous function. In this section we10

show that ψB is valid for P+
f . In addition, we show that if B is maximal, then ψB is minimal.11

Given a vector r ∈ Qm, clearly r ∈ RC(B) if and only if aTi r ≤ 0 for all i ∈ I, and r ∈
RC(B) \RCo(B) if and only if aTi r < 0 for all i ∈ I. Now consider a vector r /∈ RC(B) and notice
that in this case the function value ψB(r) is identical to that of the function defined by Borozan
and Cornuéjols in [5]. The function used in [5], which we call φB : Qm → R, is defined as follows:

φB =

{
0 if r ∈ RC(B)

1/max{λ ∈ R+ : f + λr ∈ B} if r 6∈ RC(B).
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Notice that the condition f + λr ∈ B above can also be written as

aTi f + aTi rλ ≤ bi for all i ∈ I ⇐⇒ 1/λ ≥ rTai/(bi − aTi f) for all i ∈ I

and therefore, when r /∈ RC(B) both functions are indeed the same and assume the value 1/λ′1

where λ′ > 0 is the scalar for which the point f + λ′r is on the boundary of B. Furthermore, if2

r ∈ RCo(B), both functions assume the value 0 and therefore are again equal.3

For r ∈ int(RC(B)), however, then the function values are different as φB(r) = 0 > ψB(r). To4

see that ψB(r) < 0, notice that air < 0 for all i ∈ I and therefore maxi∈I
{
aTi r/(bi − aTi f)

}
< 0.5

More precisely, we can give the following geometric description of ψB when r ∈ int(RC(B)).6

Lemma 2.5 Let r ∈ int(RC(B)). Then ψB(r) = −1/λ′ where λ′ > 0 is the largest scalar for7

which the condition aTi (f − λ′r) ≤ bi for at least one i ∈ I.8

Proof. Let λ̂ = −1/ψB(r) and let l ∈ arg max
i∈I

{
aTi r/(bi − aTi f)

}
. Therefore

aTl (f − λ̂r) = aTl f +
1

ψB(r)
aTi r = aTl f +

bl − aTl f
aTl r

aTl r = bl

and therefore we have aTi (f − λ̂r) ≤ bi for at least one i ∈ I. Now let λ > λ̂ and as r ∈ int(RC(B))
we have aTi r < 0 for all i ∈ I and

aTi (f − λr) > aTi f − λaTi r = aTi f +
1

ψB(r)
aTi r ≥ aTi f +

bi − aTi f
aTi r

aTi r = bi.

Therefore, if λ > λ̂, the condition aTi (f − λr) ≤ bi is not satisfied by any i ∈ I, implying that λ̂9

indeed is the largest scalar for which aTi (f − λ′r) ≤ bi for at least one i ∈ I.10

In the context of [5], the set B used in defining the function φB is required to be lattice point11

free and therefore int(RC(B)) = ∅ as such sets can not have a full-dimensional recession cones.12

Consequently, the functions φ and ψ coincide for the sets considered in [5]. In our context, however,13

the sets B has to be positive lattice point free and therefore it can have int(RC(B)) 6= ∅. We next14

show that ψB is valid for P+
f if B is positive lattice point free.15

Lemma 2.6 If B is positive lattice point free, then the function ψB is valid for P+
f .16

Proof. Clearly ψB is positively homogenous. We next show that it is also subadditive: Let
r1, r2 ∈ Qm and let ψB(r1 + r2) = âl(r1 + r2) for some l ∈ I. Then

ψB(r1) + ψB(r2) = max
i∈I
{âTi r1}+ max

i∈I
{âTi r2} ≥ âTl r1 + âTl r

2 = âTl (r1 + r2) = ψB(r1 + r2).

Therefore, ψB is subadditive and by Lemma 2.2 and Remark 2.3, it is valid if and only if S(ψB, f)
is positive lattice point free. Let r ∈ S(ψB, f) and note that for all i ∈ I we have

1 ≥ ψ(r − f) ≥ âi(r − f) = (aTi r − aTi f)/(bi − aTi f) ⇒ bi − aTi f ≥ aTi r − aTi f) ⇒ bi ≥ aTi x

7



and therefore r ∈ B. As r is arbitrary, we have S(ψB, f) ⊆ B and therefore S(ψB, f) is positive1

lattice point free and the proof is complete.2

Note that it is possible to extend the last argument in the proof to show that the following3

remark is true.4

Remark 2.7 S(ψB, f) = B.5

To prove it, let r ∈ B ∩Qm and therefore aTi r ≤ bi for all i ∈ {1, . . . , k}. Let ψ(r− f) = âTt (r− f)
for some t ∈ {1, . . . , k}. Then,

ψ(r − f) = (aTt r − aTt f)/(bt − aTt f) ≤ (bt − aTt f)/(bt − aTi f) = 1

and therefore r ∈ S(ψB, f). Since B ∩ Qm ⊆ S(ψB, f) then B = cl(B ∩ Qm) ⊆ S(ψB, f) ⇒6

S(ψB, f) = B.7

We next show that maximality of B is sufficient to obtain a minimal valid function.8

Lemma 2.8 If B is maximal positive lattice point free, then ψB is a minimal valid function for9

P+
f .10

Proof. Suppose not and let ψ be a minimal valid function for P+
f such that ψ ≤ ψB and11

ψ(r̄) < ψB(r̄) for some r̄ ∈ Qm. We next consider two cases.12

13

Case 1: r̄ /∈ RC(B).14

For simplicity, let S = S(ψ, f). By Lemma 2.4, we have ψ(r̄), ψB(r̄) > 0 and by positive15

homogeneity of ψB and ψ, we have that there exist µ > λ > 0 such that ψB(λr̄) = ψ(µr̄) = 1.16

Let x̄ = f + λr̄ and let ¯̄x = f + µ+λ
2 r̄. Then ψB(¯̄x − f) > 1, which implies that ¯̄x /∈ B. But17

ψ(¯̄x − f) < 1, which implies ¯̄x is in the interior of cl(S). It follows that B is strictly contained in18

cl(S). By Remark 2.3, cl(S) is a positive lattice point free set. This contradicts the assumption19

that B is a maximal positive lattice point free set. Therefore ψ(r) = ψB(r) for all r̄ /∈ RC(B).20

21

Case 2: r̄ ∈ RC(B).22

First note that for all i ∈ I there exists a vector vi ∈ Qm\RC(B) such that ψB(vi) = âivi ≥ âtvi
for all t ∈ I. To show that vi exists, we use the fact that aix ≤ bi is facet defining for B and therefore
there exists a point xi such that aixi = bi and atxi ≤ bt for all t 6= i. Then vi = xi − f satisfies the
desired properties as

âivi =
aix

i − aif
bi − aif

= 1 and âtvi =
atx

i − atf
bt − atf

≤ bt − atf
bt − atf

= 1

for all t ∈ I. The fact that vi 6∈ RC(B) follows from the fact that aivi = âiv
i(bi − aif) > 0.23

If r̄ ∈ bd(RC(B)), we have that atr̄ ≤ 0 for all t ∈ I, with air̄ = 0 for some i ∈ I. In this case,
ψB(r̄) = âir̄ = 0. Note that ai(vi+ r̄) = aiv

i > 0 and hence (vi+ r̄) /∈ RC(B). Moreover, note that

âi(vi + r̄) =
aiv

i

bi − aif
= 1 and ât(vi + r̄) =

atv
i + atr̄

bi − aif
≤ atv

i

bi − aif
≤ 1

8



for all t ∈ I and therefore ψB(vi + r̄) = âi(vi + r̄). Since ψ is minimal, it is subadditive and hence1

ψ(vi) +ψ(r̄) ≥ ψ(vi + r̄). But then, ψ(r̄) ≥ ψ(vi + r̄)−ψ(vi) = ψB(vi + r̄)−ψB(vi) = 0 = ψB(r̄) >2

ψ(r̄), a contradiction. Hence ψ(r̄) = ψB(r̄) for all r̄ /∈ int(RC(B)).3

If r̄ ∈ int(RC(B)), let i be such that ψB(r̄) = âir̄. Since r̄ ∈ int(RC(B)), we have air̄ < 0.
By the choice of vi, we have that aivi = âivi(bi − aif) > 0. Let α = |air̄|/aivi and note that
ai(r̄ + αvi) = 0 implying that (r̄ + αvi) /∈ int(RC(B)) and hence ψ(r̄ + αvi) = ψB(r̄ + αvi) ≥ 0.
As ψ is valid and therefore subadditive, we have

ψ(r̄) + ψ(αvi) = ψ(r̄) + ψB(αvi) = ψ(r̄) + αâivi ≥ ψ(r̄ + αvi).

As ψ(r̄ + αvi) = ψB(r̄ + αvi) ≥ 0, we have

ψ(r̄) + αâivi ≥ 0 =⇒ ψ(r̄) ≥ −αâivi = âir̄ = ψB(r̄) > ψ(r̄),

again a contradiction.4

We next revisit the example presented in Section 1 to illustrate how (maximal) positive lattice5

point free sets lead to valid (and facet defining) inequalities for X+.6

Example 1.1 (continued) Remember the set

X =
{

(x, s) ∈ Z2
+ × R5

+ :

[
x1

x2

]
−

5∑
i=1

risi = f
}

(1)

where f and ri are defined in Section 1. As shown in Figure 1(a), the triangle T defined by7

the corner points p1, p2, p3 is a maximal lattice point free set in R2. Notice that pi = f + ri for8

i = 1, . . . , 5 and consequently φT (ri) = 1 for all i and, by [6], the inequality s1 +s2 +s3 +s4 +s5 ≥ 19

is valid and facet-defining for X.10

(a)

x1

x2

f

p1

p2 p3
p4p5

(b)

x1

x2

f

p1

p2 p3
p4p5

Figure 1: (a) A maximal lattice point free set and
. (b) a maximal positive lattice point free set in R2, both containing f > 0.
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In comparison, notice that the translated cone C (shown in Figure 1(b)) defined by the rays −−→p1p2

and −−→p1p3 is a maximal positive lattice point free set. This set can be written as

C = {x ∈ R2 : −x1 ≤ 0, x1 + x2 ≤ 1}

and notice that p4 ∈ RCo(C) and p5 ∈ RC(C) \ RCo(C). The set C leads to the minimal valid1

function2

ψC(r) = max
{
rT · [−1, 0]T

0− [−1, 0] · f
,
rT · [1, 1]T

1− [1, 1] · f

}
= max

{
rT ·

[
−4

0

]
, rT ·

[
2
2

]}
3

which gives the following stronger valid inequality for X+ = X ∩ R+
7 ,

s1 + s2 + s3 − s5 ≥ 1.

Furthermore, this inequality is facet defining as the dimension of X+ is 5, and the following 54

affinely independent points are in X+ and satisfy the inequality as equality: p1 = [0, 1; 1, 0, 0, 0, 0],5

p2 = [0, 0; 1/2, 1/2, 0, 0, 0], p3 = [1, 0; 1/2, 0, 1/2, 0, 0], p4 = [1, 0; 1, 0, 0, 4/5, 0], p5 = [1, 0; 3, 0, 0, 0, 2].6

We end this section by noting that for r ∈ RC(B), ψB(r) is only determined by the inequalities7

that define facets of RC(B). This property will be used later in Section 4 to strengthen inequalities8

for P+
f .9

Lemma 2.9 Let r ∈ RC(B). Then ψB(r) = alr/(bl − alf) for some l ∈ I such that alx ≤ 010

defines a facet-defining of RC(B).11

Proof. Since r ∈ RC(B), we have by Lemma 2.4 that ψ(r) ≤ 0. If r /∈ int(RC(B)), then12

alr = 0 for some facet alx ≤ 0 of RC(B) and ψB(r) = maxi∈I
{
air/(bi − aif)

}
= 0 and the13

result follows. Thus, we may assume r ∈ int(RC(B)). Let Ic ⊆ I be such that aix ≤ 0 defines a14

facet of RC(B) if and only if i ∈ Ic. If ψB(r) > air/(bi − aif) for all i ∈ Ic, then let j /∈ Ic be15

such that ψB(r) = ajr/(bj − ajf). By Lemma 2.4, ψB(r) < 0 and hence bj = aj(f + 1
ψB(r)r) and16

bi < ai(f + 1
ψB(r)r) for all i ∈ Ic. However, for all j /∈ Ic, we have that there exist µi ≥ 0,∀i ∈ Ic17

such that aj =
∑

i∈Ic µia
i. Therefore bj = aj(f + 1

ψB(r)r) =
∑

i∈Ic µia
i(f + 1

ψB(r)r) ≥
∑

i∈Ic µibi.18

But this contradicts the fact that ajx ≤ bj defines a facet of B. Therefore, there exists l ∈ Ic such19

that aTl (f − λr) = bl.20

3 Special case: m = 221

We now consider m = 2 and show that any minimal valid function ψ : Q2 → R is defined by the22

maximal positive lattice point free set B = S(ψ, f). We note that in R2 any cone is polyhedral and23

therefore the recession cone of any set is described by at most three inequalities.24

Let B ⊆ R2 be a full-dimensional closed convex set that is positive lattice point free and has f
in its interior. (B is not necessarily polyhedral.) Let RC(B) = {x ∈ R2 : cix ≤ 0, i ∈ J}, where

10



|J | ≤ 3 and cix ≤ 0 defines a facet of RC(B) for all i ∈ J . Let di = sup{cix : x ∈ B} for i ∈ J and
note that B ⊆ C = {x ∈ R2 : cix ≤ di, i ∈ J}. We now let ĉi = ci/(di − cTi f) and note that, as f
is in the interior of B, we have cif < di. We now extend the definition of the function ψB in two
dimensions as follows:

ψB(r) =


max
i∈J

{
rT ĉi

}
if r ∈ int(RC(B))

1/max{λ ∈ R+ : f + λr ∈ B} if r 6∈ RC(B)
0 otherwise.

It is not hard to show that if B is polyhedral, the above definition coincides with the one in
Section 2.3. To see that ψB(r) is subadditive and positively homogeneous, just notice that B =
{x : cix ≤ di, i ∈ I}, where I is a (possibly infinite) index set. Then

ψB(r) = sup
i∈I∪J

{ĉir}

and the result follows. We next show that essentially all minimal valid functions have the form1

above.2

Lemma 3.1 Let ψ : Q2 → R be a minimal valid function such that the positive lattice point free3

set B = S(ψ, f) contains f in its interior. Then ψ = ψB.4

Proof. By Lemma 2.4 we have ψ(r) = ψB(r) for all r /∈ int(RC(B)). We therefore consider
r ∈ int(RC(B)). Let ε ∈ (0, 1/2). We first construct vectors vi 6∈ RC(B), for i ∈ J , that satisfy
the following properties: (i) ĉivi ≥ ĉtvi for all t ∈ J and (ii) ψB(vi) ≤ ĉivi + ε. Remember that
di = sup{cix : x ∈ B} and as ε(di − cif) > 0 there exists xi ∈ B such that cixi ≥ di − ε(di − cif).
As xi ∈ B, we also have ctxi ≤ dt for all t ∈ J . Furthermore, as {x ∈ R2 : cix ≤ 0, i ∈ J} is a
minimal polyhedral representation of RC(B), it is possible to pick points ri ∈ RC(B) for all i ∈ I
such that (i) ciri = 0 and (ii) ctri < 0 for all t 6= i. Now let λ > −ε(dt − ctf)/ctri for all t 6= i, and
note that vi = xi + λri − f satisfies the first desired property as

ĉivi =
cix

i − cif
di − cif

≥ di − cif
di − cif

− ε = 1− ε =
dt − ctf
dt − ctf

− ε ≥ ctx
i + λctr

i − ctf
dt − ctf

= ĉtvi.

Also note that as civi = ĉiv
i(di−cif) > 0, it follows that vi 6∈ RC(B). Moreover, as vi+f = xi+λri5

where xi ∈ B and ri ∈ RC(B), we have f + vi ∈ B, implying max{λ ∈ R+ : f + λvi ∈ B} ≥ 1 and6

therefore ψB(vi) ≤ 1 ≤ ĉivi + ε.7

Let i be such that ψB(r) = ĉir. Since r ∈ int(RC(B)), we have cir < 0 and remember
that civi = ĉivi(di − cif) > 0. Let α = |cir|/civi and note that ci(r + αvi) = 0 implying that
(r+αvi) /∈ int(RC(B)) and hence ψ(r+αvi) = ψB(r+αvi) ≥ 0. Also remember that vi 6∈ RC(B)
and therefore ψ(vi) = ψB(vi). As ψ is a minimal valid function, it is subadditive, and therefore
have

ψ(r) + αĉivi ≥ ψ(r) + αψB(vi)− αε = ψ(r) + ψ(αvi)− αε ≥ ψ(r + αvi)− αε ≥ −αε

11



implying
ψ(r) ≥ −αĉivi − αε = ĉir − αε = ψB(r)− αε.

Notice that since ĉivi ≥ 1 − ε > 1/2, we have that α = |cir|/civi = |ĉir|/ĉivi ≤ 2|ĉir|. Hence1

ψ(r) ≥ ψB(r)− 2|ĉir|ε. Since this is valid for any ε > 0, it follows that ψ(r) ≥ ψB(r).2

3.1 Maximal positive lattice point free sets in R2
3

We now characterize all maximal positive lattice point free sets and show that they are polyhedral.4

In particular, the main result of this section is the following theorem, which is similar to theorems5

by Bell [4], Doignon [11], Lovász [17], and Scarf [19] for maximal lattice-free convex sets and will6

be used in Section 3.2 to characterize S(ψ, f) for minimal valid functions ψ.7

Theorem 3.2 A maximal positive lattice point free set in R2 is either a full-dimensional polyhedron8

with at most 4 facets or an irrational hyperplane.9

The rest of this section is devoted to prove of Theorem 3.2. We first study full-dimensional10

maximal positive lattice point free set s and show that we can restrict ourselves to the case where11

such sets contains a positive point in the interior.12

Lemma 3.3 Let K ⊆ Rm be a full-dimensional maximal positive lattice point free set. If there13

does not exist a point f > 0 in int(K), then K is a half-space.14

Proof. Notice first that if K contains a point f ′ > 0, then K contains a point f > 0 in its interior.15

Indeed pick y ∈ int(K) and since fλ = λy + (1 − λ)f ′ ∈ int(K) for all λ ∈ (0, 1), we can pick λ16

arbitrarily close to 1 such that fλ > 0.17

Therefore, there exists a hyperplane ax ≤ b such separatingK from cl({x ∈ Rm : x > 0}) = {x ∈18

Rm : x ≥ 0}, that is ax ≤ b for all x ∈ K and ax ≥ b for all x ≥ 0. But then {x ∈ Rm : ax ≤ b} ⊇ K19

and does not contain any nonnegative integer points in its interior, hence by maximality of K,20

K = {x ∈ Rm : ax ≤ b}.21

We now show that, regardless of the value of m, maximal positive lattice point free sets are22

polyhedral under certain conditions on their recession cones.23

Lemma 3.4 Let K ⊆ Rm be a maximal positive lattice point free set. If RC(K)∩Rm
+ = {0}, then24

K is polyhedral.25

Proof. First note that K 6= ∅ as it is maximal. Moreover, K ∩ Rm
+ cannot be empty, otherwise26

convex hull of K and the origin contains K and is a positive lattice point free set, a contradiction.27

Since K ∩ Rm
+ 6= ∅, we have that the condition RC(K) ∩ Rm

+ = {0} is equivalent to K ∩ Rm
+ is28

bounded.29

As K∩Rm
+ is bounded, there exists numbers ui ∈ R+ for all i ∈ I = {1, . . . , n} such that xi ≤ ui30

for all x ∈ K ∩Rm
+ . For i ∈ I, define the sets Ci = {x ∈ Rm : x ≥ 0, xi ≥ ui + 1}. Note that if K31

is a positive lattice point free set, so is its closure and therefore by maximality, K has to be closed.32

12



Therefore K and all Ci are non-empty, convex and closed sets. Furthermore, for all i ∈ I the sets1

K and Ci are pairwise disjoint and have no common directions of recession.2

Therefore, for each i ∈ I there exits a hyperplane αix = βi that strongly separates K and Ci3

(see, for example, [18] Separation Theorems). In other words, there exists αi ∈ Rm and βi ∈ R4

such that for all x′ ∈ K and x′′ ∈ Ci we have αix′ < βi and αix′′ > βi. Notice that for all i, j ∈ I5

the unit direction ej is a direction of recession for Ci and therefore αi ≥ 0 for all i ∈ I.6

As K ∩ Rm
+ is not be empty, there exists some x̄ ∈ K ∩ Rm

+ . Combining this with αi ≥ 0 and7

αix̄ < βi, we therefore have βi > 0 for all i ∈ I. Finally, let x̃i be a vector of all zeroes except the8

i’th component which is equal to ui + 1. Note that x̃i ∈ Ci and as αix̃i > βi > 0, we have αii > 0.9

Now, let ᾱ =
∑

i∈I α
i and β̄ =

∑
i∈I β

i and note that ᾱx < β̄ for all x ∈ K. Therefore,
K ∩Rm

+ ⊆ X = {x ∈ Rm : x ≥ 0, ᾱx ≤ β̄}. Let XL = X ∩Zm+ be the collection of lattice points in
X and note that XL contains a finite number of points as ᾱ > 0 and β̄ > 0. As K does not contain
positive lattice points in its interior, for each p ∈ XL, there exists a closed half-space defined by
αpx ≤ βp that contains K and has p on its boundary. Therefore the following polyhedral set

P = {x ∈ Rm : ᾱx ≤ β̄, αpx ≤ βp for all p ∈ XL}

contains K and does not contain any positive lattice points. As K is assumed to be maximal,10

K = P and the proof is complete.11

Notice that if B is a full-dimensional maximal positive lattice point free set with dim(RC(B)) =12

0, then RC(B) ∩ Rm
+ = {0} and hence Lemma 3.4 implies that B is polyhedral. Lemmas 3.5 and13

3.6 complete the proof that B is polyhedral by considering other possible dimensions RC(B).14

Lemma 3.5 Let S ⊆ R2 be a positive lattice point free set such that there is a point f > 0 in its15

interior. If dim(RC(S)) = 2 then RC(S) ∩ R2
+ = {0}.16

Proof. Suppose there is a vector v ∈ RC(S) such that v ≥ 0 and v 6= 0. Since v 6= 0, we may17

assume, by symmetry, that v1 = 1. Since RC(S) is full-dimensional, there exists a nonzero vector18

u such that u1 = 0 and such that v + εu ∈ RC(S) for some ε small enough. Now, for any α > 019

we have that w = f + αv ∈ S and z = f + α(v + ε)u ∈ S. But then choose α > 1/|εu2| such that20

f1+α ∈ Z+. Then |w2−z2| = |αεu2| > 1. Since w1 = z1 = f1+α ∈ Z+, then we have a nonnegative21

integer point in the interior of the line segment between w and z and hence a nonnegative integer22

point in the interior of S, which is a contradiction.23

Lemma 3.6 Let S ⊆ R2 be a maximal positive lattice point free set that contains a point f > 0 in24

its interior. If dim(RC(S)) = 1, then S is a polyhedron.25

Proof. If for all r ∈ RC(S) we have that r 6≥ 0, then by Lemma 3.4 the result follows. Thus, we26

may assume that there exists r ∈ RC(S) such that r ≥ 0. In addition, we can assume that there27

exists a point ȳ ∈ Z2 in the interior of S such that ȳ 6≥ 0, since otherwise, S is maximal lattice-free28

and hence, by [17], it polyhedral. We will next show that if all these assumptions are made, then29

S has a nonnegative lattice point in its interior, which is a contradiction.30
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Case 1: r has one zero component.1

Without loss of generality, assume that r1 = 0. In addition, after scaling, we can assume that2

r2 = 1. In this case, if ȳ1 ≥ 0, then ȳ + |ȳ2|r is a nonnegative integer point in the interior of S,3

which is a contradiction. Therefore, we may assume that ȳ1 < 0. But since f > 0 is a point in4

the interior of S, then there exists a point w in the interior of S such that w1 = 0. But then there5

exists λ > 0 such that w + λr is a nonnegative integer point in the interior of S.6

Case 2: r > 0.7

If r is rational, then we may assume that r is integer and thus, there exists λ ∈ Z+ such that8

ȳ + λr is a nonnegative integer point in the interior of S. Thus, we may assume that r is not9

rational. Without loss of generality, let r1 = 1.10

Now consider the line −r2x1 + x2 = b generated by ȳ + λr for λ ∈ R. Note that r2 and11

b = −r2ȳ1 + ȳ2 are irrational numbers. From the approximation of r2 by continued fractions (see12

for instance [20]), it follows that there exists a sequence (pn, qn) such that pn ∈ Z+ and qn ∈ Z+13

and lim
n→∞

pn = lim
n→∞

qn = ∞ and such that 0 ≤ pn
qn
− r2 ≤ 1

q2n
. Since ȳ is in the interior of S, there14

exists ε > 0 such that if ||x− ȳ||2 ≤ ε, then x ∈ int(S).15

But then, pick n large enough such that 1/qn < ε and pn > |ȳ2|, qn > |ȳ1|. Notice that16

the point w = (ȳ1 + qn, ȳ2 + pn) is a nonnegative integer point. Moreover, w = x + qnr where17

x = (ȳ1, ȳ2 + pn − r2qn) and since 0 ≤ pn
qn
− r2 ≤ 1

q2n
⇒ 0 ≤ pn − r2qn ≤ 1

qn
< ε, we have that18

||x− ȳ||2 ≤ ε so x ∈ int(S). This in turn implies that w ∈ int(S), which contradicts the fact that19

S does not have nonnegative integer points in its interior.20

Lemmas 3.4, 3.5 and 3.6 show that in R2 any maximal positive lattice point free set that contains21

f > 0 in its interior is polyhedral. The following corollary follows immediately from the proofs of22

Lemmas 3.5 and 3.6 and will be used to bound the number of facets that such a maximal positive23

lattice point free set has.24

Corollary 3.7 If S ⊆ R2 is a full-dimensional maximal positive lattice point free set then S is25

either a maximal lattice-free convex set or RC(S) ∩ R2
+ = {0}.26

We now use Corollary 3.7 to show that, when m = 2, maximal positive lattice point free sets27

have a nonnegative integer point in the relative interior of each of their facets, which will imply28

that there are at most 4 facets. Notice that the fact that a polyhedral maximal positive lattice29

point free set has at most 2m facets for general m can be proven by adapting the proof of a theorem30

in Schrijver [21] (credited to Bell [4], Doignon [11] and Scarf [19]) directly, without using this fact.31

However, this fact is helpful in identifying when a positive lattice point free set is not maximal and32

will be used in Section 4 where we are concerned with strengthening inequalities that are defined33

by non-maximal positive lattice point free sets.34

Lemma 3.8 Let B = {x ∈ R2 : aTi x ≤ bi,∀i = 1, . . . , k} be a full-dimensional maximal positive35

lattice point free set. Then there exists a nonnegative integer point in the relative interior of each36

one of its facets.37
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Proof. If B is a maximal lattice-free convex set, then the result was proven by Bell [4], Doignon [11]1

and Scarf [19], so we may assume that B is not maximal lattice-free convex set and hence, by2

Corollary 3.7, RC(B)∩R2
+ = {0}. Without loss of generality we assume the inequality description3

of B is minimal and each inequality describes a facet. We also assume that bi ∈ Q for all i ∈ I =4

{1, . . . , k}. Consider the face Fj = B∩{x ∈ R2 : aTj x = bj} defined by the jth inequality and assume5

that Fj does not contain a nonnegative integer point in its relative interior. Let F+
j = Fj ∩ R2

+.6

Notice that RC(F+
j ) ⊆ RC(B) and hence RC(F+

j ) = {0} so F+
j is bounded. We next consider 27

cases.8

Case 1: aj ∈ Q2. In this case, let τ be such that τaj ∈ Z2 and consider replacing aTj x ≤ bj in the9

description of B with τaTj x ≤ τbj + 1/2. Clearly, the new set contains B strictly and is positive10

lattice point free, a contradiction.11

Case 2: aj 6∈ Q2. Since F+
j is bounded, there exists vectors l, u ∈ Rn

+ be such that for B = {x ∈
Rm : uj ≥ xj ≥ lj} we have

∆ = {x ∈ Rm
+ : aTi x ≤ bi∀i ∈ I \ {j}, aTj x > bj , a

T
j x ≤ bj + 1} ⊆ B.

Let T = {x ∈ B : aTj x > bj} ∩ Zm and note that T is finite. Notice that ∆ gives the points12

that will be included in B if bj is increased by 1 in the description of B, and, T contains all13

nonnegative integer point that would be contained in B if bj is increased by 1. If T = ∅ then14

replacing bj in the description of B with bj + 1 gives a strictly larger positive lattice point free15

set, a contradiction. If T 6= ∅ then let b̂j = minx∈T {aTj x} > bj and note that in this case, we can16

replacing bj in the description of B with b̂j to obtain a strictly larger positive lattice point free set,17

again a contradiction.18

From Lemma 3.8 it is straightforward to obtain a bound on the number of facets of maximal19

positive lattice point free sets by the following simple argument due to Bell [4] (also see Borozan20

and Cornuéjols [5]).21

Lemma 3.9 Let B ∈ R2 be a full-dimensional maximal positive lattice point free set. Then it is a22

polyhedron with at most 4 facets.23

Proof. Each facet F of B has a point xF in its relative interior. If there are more than 4 facets,24

two nonnegative integral points xF and xF
′

must be identical modulo 2. Then their middle point25

1
2(xF + xF

′
) is integral, nonnegative and interior, which is a contradiction.26

The following lemma is true for any arbitrary number of rows, and is just stated here for27

completeness of the characterization of maximal positive lattice point free sets in R2.28

Lemma 3.10 Let S be a maximal positive lattice point free set that is not full-dimensional. Then29

S is an irrational hyperplane.30

Proof. If S is not full dimensional then all x ∈ S satisfy ax = b for some b ∈ R and a ∈ Rm.31

Therefore S ⊆ {x ∈ Rm : ax = b} and as S is maximal positive lattice point free, S = {x ∈ Rm :32
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ax = b}. If b is not integral, it is possible to rewrite the equation defining S as (1/b)ax = 1 and1

therefore, without loss of generality, we assume that b ∈ Z. Now, if a is rational there exists a large2

enough τ ∈ Z such that τa ∈ Zm. In this case, S ⊂ {x ∈ Rm : τax ≥ τb, τax ≤ τb + 1} which3

contradicts the maximality of S. Therefore, a /∈ Qm, and S indeed is an irrational hyperplane.4

3.2 Minimal valid functions for m = 25

We are finally ready to characterize minimal valid functions for P+
f by relating them to maximal6

positive lattice point free sets, as stated in the following theorem.7

Theorem 3.11 Let ψ : Q2 → R be a minimal valid function for P+
f . If S(ψ, f) contains f in its8

interior, then S(ψ, f) is a maximal positive lattice point free set.9

Proof. Let B = S(ψ, f) and note that as ψ is a valid function, B is positive lattice point free.10

Also remember that, by Lemma 3.1, ψ = ψB. For the sake of contradiction, assume that B is11

not maximal, and let B′ be a maximal positive lattice point free set strictly containing B. If12

int(RC(B)) = ∅, then ψB′ dominates ψB, a contradiction. Therefore, we assume that RC(B) is13

full-dimensional.14

Let RC = {x ∈ R2 : cix ≤ 0, i ∈ J} be a minimal description of the recession cone of B and15

let di = sup{cix : x ∈ B} for i ∈ J . Notice that B ⊆ C = {x ∈ R2 : cix ≤ di, i ∈ J}. Now let16

B′′ = B′ ∩ C and note RC(B′′) = RC and therefore ψB(r) = ψB′′(r) for all r ∈ RC. Furthermore,17

as B′′ ⊃ B, by Lemma 2.4, ψB′′(r) ≤ ψB(r) for all r /∈ RC. As ψ is minimal, ψ = ψB′′ and hence18

B = B′′. Therefore, B is polyhedral as B = B′ ∩ C where both B′ and C are polyhedral.19

Let B = {x : aix ≤ bi, i ∈ I}. By Lemma 3.8, a polyhedral set is maximal positive lattice point20

free, if and only if, there exists a nonnegative integer point in the relative interior of each one of21

its facets. As B is not maximal, for some t ∈ I, the facet Ft defined by atx ≤ bt does not contain22

any nonnegative integer points in its relative interior. If Ft is bounded, that is if atx ≤ 0 does not23

define a facet of RC, then for some ε > 0, the set B̄ = {x : aix ≤ bi, i ∈ I \ {t} ; atx ≤ bt + ε} is24

positive lattice point free. Therefore, ψB̄ is a valid function and as B̄ ⊃ B, ψB̄ dominates ψB, a25

contradiction. Hence, we assume that Ft is unbounded and atx ≤ 0 defines a facet of RC.26

We now argue that there is another facet of RC defined by akx ≤ 0 where ak and at are linearly
independent. If there is no such ak then RC = {x ∈ R2 : atx ≤ 0}. As f = (f1, f2)T /∈ Z2, not all
of the following four points are the same

p1 =

(
bf1c
bf2c

)
, p2 =

(
bf1c
df2e

)
, p3 =

(
df1e
bf2c

)
, p4 =

(
df1e
df2e

)
and since f > 0, they are non-negative and integral. Furthermore, f ∈ conv(p1, p2, p3, p4) and27

hence, there exist two distinct points p′, p′′ ∈ {p1, p2, p3, p4} such that atp′ ≤ atf ≤ atp
′′. This28

implies that at(p′ − f) ≤ 0 and hence r′ = p′ − f ∈ RC(B). As f ∈ int(B), we have that29

p′ = f + r′ ∈ int(B), contradicting the fact that B is positive lattice point free.30

Therefore, RC indeed has a facet defined by akx ≤ 0 where ak and at are linearly independent.31

This also implies that B has an unbounded facet defined by akx ≤ bk. Now, in the linear description32
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of B, replace atx ≤ bt by (at + εak)x ≤ bt + εbk for some small ε > 0 and call the resulting set Bε.1

Clearly, Bε ⊃ B. In addition, if ε is small enough the new inequality is facet defining for Bε and2

also it induces a facet of RC(Bε).3

We next show that, if ε > 0 is sufficiently small, then Bε would be positive lattice point free.
To see this, note that, by Lemma 3.5, B does not have nonnegative rays in its recession cone RC,
and therefore, there exists ε′ > 0 such that for every ε < ε′ we have that Bε also has no nonnegative
rays in its recession cone. Therefore, if ε > 0 is small enough, Bε ∩ R2

+ is bounded and therefore
Bε ∩ Z2

+ is finite. Let U = (Bε \ B) ∩ Z2
+ and note that for all points x ∈ U we have (i) atx > bt

and (ii) akx < bk. Let

β = min
x∈U
{atx− bt} and α = max

x∈U
{bk − akx}

and reduce ε, if necessary, so that ε < β/α. If Bε is not positive lattice point free, there is a
nonnegative integer point y ∈ int(Bε). As Ft, the face of B defined by atx ≤ bt, has no integer
points by assumption, aty > bt and therefore y ∈ U . But then,

(at + εak)y < bt + εbk ⇒ aty − bt < ε(bk − aky) < εα < β ≤ aty − bt.

This is a contradiction and therefore int(Bε) ∩ Z2
+ = ∅ and Bε is positive lattice point free.4

As the final step, we will next show that ψBε dominates ψB which will imply that ψB can not
be minimal, a contradiction. First note that as Bε is larger than B, we have ψBε(r) ≤ ψB(r) for all
r /∈ RC(Bε). Moreover, RC(Bε) ) RC and therefore ψBε(r) < ψB(r) for all r ∈ RC(Bε)\int(RC).
Finally, for r ∈ int(RC), first note that

ψB(r) = max
{
γ,

rTat
bt − fTat

}
and ψBε(r) = max

{
γ,

rT (at + εak)
(bt + εbk)− fT (at + εak)

}
where γ = max

i∈J\{t}

{
rT ĉi

}
. First note that as f ∈ int(B),

(bt + εbk)− fT (at + εak) = (bt − fTat) + ε(bk − fTak) < bt − fTat.

In addition for r ∈ int(RC) we have rTak < 0 and therefore rT (at + εak) < rTat implying that5

ψB(r) ≥ ψBε(r). Therefore, ψBε indeed dominates ψB which contradicts the starting assumption6

that ψB is minimal.7

3.3 Geometry of positive lattice point free sets in R2
8

So far in this section we established a strong relationship between minimal functions and maximal
positive lattice point free sets for m = 2. In particular, Theorem 3.11 shows that any minimal
function is generated by a maximal positive lattice point free set, which by Theorem 3.2 is polyhedral
and therefore, by Lemma 3.8, has at most 4 facets. In other words, if ψ : Q2 → R is a minimal
valid function for P+

f , then ψ = ψB where B is full-dimensional and has a minimal description

B = {x ∈ R2 : aTi x ≤ bi,∀i = 1, . . . , k}

with k ≤ 4. We next show that if k = 4 then B is a maximal lattice point free set.9
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Lemma 3.12 Let B be a maximal positive lattice point free set in R2 that contains a point f > 01

in its interior. If B has 4 facets, then it contains no lattice points in its interior and therefore it is2

a maximal lattice point free set. Furthermore, B is bounded.3

Proof. Assume that B contains lattice points in its interior and let x̄ be one such point with4

the property that d(x) = max{−x1,−x2} is smallest. As B is positive lattice point free, x 6∈ R2
+5

and d(x) > 0. As every facet of B has to have a positive lattice point in its relative interior by6

Lemma 3.8, B has to contain, on its boundary, 4 positive lattice points with all 4 possible odd/even7

parity. Let y ∈ B be a positive lattice point that has the same odd/even parity as x and notice8

that z = x/2 + y/2 is integral and z ∈ int(B) and therefore z is not a positive lattice point. But9

then, as y ≥ 0 we have d(z) ≤ d(x/2) < d(x), a contradiction. Therefore, B is a maximal lattice10

point free set with 4 facets and as such it has to be a quadrilateral (see [2]) and therefore, it is11

bounded.12

Remember that Pf is the relaxation of P+
f where integer variables are not required to be non-13

negative, see [5]. Also remember that minimal valid inequalities for Pf are defined by maximal14

lattice point free sets. More precisely, if B is a maximal lattice point free set, then ψB is a minimal15

valid function for Pf , and if ψ is a minimal valid function for Pf , then S(ψ, f) is a maximal lattice16

point free set.17

From a practical point of view, Lemma 3.3 implies that any minimal valid inequality ψ : Q2 → R18

for P+
f is also valid and minimal for Pf provided that S(ψ, f) is a quadrilateral. The converse,19

however, is not true as minimal valid inequalities for Pf that are associated with quadrilaterals20

might need to be strengthened to obtain minimal valid inequalities for P+
f . To see this point notice21

that the maximal lattice point free quadrilateral Q = conv{A,B,C,D} shown in Figure 2(a) is22

strictly contained in the maximal positive lattice point free cone K defined as the convex hull of23

the rays
−−→
EF and

−−→
EG. The maximal lattice point free quadrilateral Q′ = conv{H, I, J,K} shown24

in Figure 2(b), on the other hand, is both maximal lattice point free and maximal positive lattice25

point free and therefore the function ψQ′ is a minimal valid function for both sets P+
f and Pf .26

The cone K shown in Figure 2(a) also shows another difference between maximal positive lattice27

point free and maximal lattice point free sets. In the case of maximal lattice point free sets, if a28

set is full dimensional and unbounded, then it is a split which does not have a full-dimensional29

recession cone. On the contrary, as shown in Figure 2(a), maximal positive lattice point free sets30

can have full-dimensional recession cones.31

When a maximal positive lattice point free set has 3 facets it can be a bounded set (triangle)32

or an unbounded set. In both cases, the set might contain lattice points and therefore might lead33

to minimal valid inequalities that are not valid for Pf . Figure 3 shows these cases. Finally, if a34

maximal positive lattice point free set has 2 facets, it can be a split, in which case the set is also35

maximal lattice point free, or, it might be a translated cone as shown in Figure 2(a).36
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Figure 2: (a) A maximal lattice free quadrilateral contained in a positive lattice free cone, and,
. (b) a maximal lattice free quadrilateral which is also maximal positive lattice point free.
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Figure 3: Bounded and unbounded maximal positive lattice point free sets with 3 facets
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Figure 4: Two positive lattice point free sets B′ and B′′ that contain B. ψB′ 6≤ ψB whereas
ψB′′ ≤ ψB.

4 Strengthening valid inequalities for P +
f .1

In the previous section we showed that when m = 2, it is sufficient to consider polyhedral positive2

lattice point free sets to obtain all minimal valid functions for X+ . This result motivates the3

following question addressed in this section: given a polyhedral positive lattice point free set B ⊂4

Rm which is not maximal, how can one obtain a positive lattice point free set B′ ) B such that5

ψB′ ≤ ψB? One possibility is to start with a maximal lattice-free convex set as in Example 1.16

and try to obtain a positive lattice point free set that strictly contains it. It is important to note,7

however, that B′ ) B does not imply ψB′ ≤ ψB. In other words, larger sets do not necessarily lead8

to better valid inequalities. This is an important difference between the relaxation P+
f studied in9

this paper and relaxation Pf studied in [5]. The following example illustrates this fact.10

Example 4.1 Let f = (0.8, 0.2) and consider the following two positive lattice point free sets11

B = {x ∈ R2 : −x1 + x2 ≤ −1/2 ; x1 ≤ 1} and B′ = {x ∈ R2 : −x1 + x2 ≤ 0 ; x1 ≤ 1}.12

Figure 4(a) illustrates this example. Notice that B′ ) B and both sets contain f in their interior.13

For r = (−0.3,−0.9) we have that14

ψB(r) = max{ (−1, 1)T (−0.3,−0.9)
−0.5− (−1, 1)T (0.8, 0.2)

,
(1, 0)T (−0.3,−0.9)
1− (1, 0)T (0.8, 0.2)

} = max{−6,−1.5} = −1.5, and15

ψB′(r) = max{ (−1, 1)T (−0.3,−0.9)
0− (−1, 1)T (0.8, 0.2)

,
(1, 0)T (−0.3,−0.9)
1− (1, 0)T (0.8, 0.2)

} = max{−1,−1.5} = −116

and therefore ψB(r) < ψB′(r) even though B′ contains B. As all minimal functions are associated17

with maximal sets in R2, there exists a different maximal positive lattice point free set B′′ ) B that18

gives a stronger valid inequality.19

The set B′′ = {x ∈ R2 : −1/2x1 + x2 ≤ 0 ; x1 ≤ 1} ⊃ B shown in Figure 4(b), on the other20

hand, gives a valid inequality that dominates ψB. The fact that ψB′′ ≤ ψB follows from Lemma 4.2.21

22
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The following Lemma gives sufficient conditions under which B′ ⊇ B implies that ψB′ dominates1

ψB (i.e. ψB′ ≤ ψB and ψ(r̄) < ψB(r̄) for some r̄ ∈ Qm.) We assume that all polyhedral descriptions2

given are minimal, in other words, all inequalities given define facets of the corresponding polyhedra.3

Lemma 4.2 Let B = {x ∈ Rm : aix ≤ bi, i ∈ I} and RC(B) = {x ∈ Rm : aix ≤ 0, i ∈ Ic} where4

Ic ⊆ I. Assume B is positive lattice point free and 0 < f ∈ int(B). Let B′ ) B. If one of the5

following conditions hold, then ψB′ dominates ψB.6

(i) int(RC(B)) = ∅.7

(ii) B′ is obtained from B by dropping a constraint, i.e., B′ = {x ∈ Rm : aix ≤ bi, i ∈ I \ {k}}.8

(iii) B′ is obtained from B by relaxing a constraint that does not give a facet of the recession cone,9

i.e., B′ := {x ∈ Rm : aix ≤ bi, i = I \ {k} ; akx ≤ bk + ε} where k ∈ I \ Ic and ε > 0.10

(iv) B′ is obtained from B by rotating a facet-defining inequality of B using another one, i.e.,11

B′ := {x ∈ Rm : (al + εak)x ≤ bl + εbk ; aix ≤ bi, i ∈ I \ {l}} where l, k ∈ I and ε > 0.12

Proof. Let x̄ ∈ B′ \ B and define r̄ = x̄ − f so that f + r̄ ∈ B′ \ B. Note that r̄ 6∈ RC(B) as13

f + r̄ 6∈ B. By Lemma 2.4, for this choice of r̄ we have ψB′(r̄) < ψB(r̄). We next consider each14

case separately and show that ψB′ ≤ ψB also holds.15

(i) Follows directly from Lemma 2.4 as ψB ≥ 0 when int(RC(B)) = ∅.16

(ii) Follows from the definition of ψ as ψB(r) = maxi∈I
{
rT âi

}
and ψB′(r) = maxi∈I\{k}

{
rT âi

}
.17

(iii) As B′ ⊇ B, Lemma 2.4 implies that ψB′(r) ≤ ψB(r) for all r 6∈ int(RC(B)). In addition, for18

r ∈ int(RC(B)) by Lemma 2.9, ψB(r) = âjr for some j ∈ Ic and as RC(B) = RC(B′), we have19

ψB′(r) = ψB(r).20

(iv) Let c = (al + εak) and d = bl + εbk. We will show that cr/(d− cf) ≤ max{âlr, âkr}. This fact,
together with the fact that ψB′(r) = max{cr/(d− cf),maxI\{l} âir} implies that ψB′(r) ≤ ψB(r).
Suppose, for the sake of contradiction that ĉr = cr/(d− cf) > max{âlr, âkr}. Then ĉr > âlr

implies
alr + εakr

(bl − alf) + ε(bk − akf)
>

alr

bl − alf
.

As all the denominators are positive, we have

alr(bl − alf) + εakr(bl − alf) > alr(bl − alf) + εalr(bk − akf)

and hence akr(bl − alf) > alr(bk − akf). Similarly, ĉr > âkr implies akr(bl − alf) < alr(bk − akf),21

which is a contradiction and thus the result follows.22

Figure 1 shows an example of B and B′ satisfying conditions (i) and (ii) of Lemma 4.2, while23

Figure 5 shows an example of B and B′ that satisfy conditions (iii) and (iv). Also note that the set24

B′ in Figure 4(a) does not satisfy condition (iii) as the relaxed constraint of B is associated with25

a facet of RC(B). The set B′′ in Figure 4(b), however, satisfies condition (iv), as it is obtained by26

rotating one facet defining inequality of B is using another facet-defining inequality.27

Notice that Lemma 4.2 states conditions under which B′ ⊇ B gives a function ψB′ ≤ ψB.28

However, such a function ψB′ is not useful for generating valid inequalities for P+
f unless B′ is29
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x1

x2

BB′

Figure 5: Example of a positive lattice point free set B′ that contains another positive lattice point
free set B such that ψB′ ≤ ψB.

positive lattice point free. Therefore, one needs to be able to check if B′ is positive lattice point1

free in order to apply Lemma 4.2 to strengthen a valid inequality for P+
f . In general, checking this2

condition can be as difficult as solving an IP in m dimensions. However, there are some sufficient3

conditions that can be checked that guarantee that B′ is positive lattice point free.4

We next identify simple conditions under which dropping a constraint from B leads to a positive
lattice point free set. We are not able to establish easily checkable conditions for the remaining
operations described in Lemma 4.2. Formally, let B = {x ∈ Rm : aix ≤ bi,∀i = 1, . . . , k} be a
polyhedral positive lattice point free set that contains f > 0 in its interior (we also assume that all
inequalities describing B define facets). Let

Bj = {x ∈ Rm : aix ≤ bi, ∀i ∈ {1, . . . , k} \ {j}}

denote the polyhedron obtained by dropping the jth inequality and let

F j = {x ∈ B : ajx = bj}

denote the facet defined by the jth inequality of B. It is easy to see that Bj can not be positive5

lattice point free if F j contains a nonnegative integer point in its relative interior. The following6

observation establishes the reverse condition.7

Lemma 4.3 Assume that F k does not contain a nonnegative integer point in its relative interior.8

In addition, if Zm+ ∩ int(Bk) ⊆ {x : akx ≤ bk}, then Zm+ ∩ int(Bk) = ∅, that is, Bk is positive lattice9

point free.10

Proof. If Zm+ ∩ int(Bk) 6= ∅, let y ∈ Zm+ ∩ int(Bk) and note that by assumption aky ≤ bk. If11

aky < bk, then y ∈ int(B), which contradicts the fact that B is positive lattice point free. Hence12

aky = bk and y has to be in the relative interior of F k, again a contradiction.13
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Note that Zm+ ∩ int(Bk) ⊆ Rm
+ ∩Bk. Based on this observation and Lemma 4.3, we next present1

two conditions that can be checked easily to verify that Bk is positive lattice point free.2

Corollary 4.4 Assume that F k does not contain a nonnegative integer point in its relative interior.3

Then Bk is a positive lattice point free provided that Rm
+ ∩Bk ⊆ {x : akx ≤ bk}.4

Also note that if ak ≤ 0 and bk ≥ 0, then Rm
+ ⊆ {x : akx ≤ bk} and the above condition holds5

trivially. Another condition that can be checked is the following.6

Lemma 4.5 If F k ∩ Rm
+ = ∅ then Bk is positive lattice point free.7

Proof. Suppose not. Then there exists y ∈ Zm+ such that aky > bk and ajy < bj for all j =8

1, . . . , k− 1. In addition, as f > 0 is in the interior of B, we have that ajf < bj for all j = 1, . . . , k.9

But then for all λ ∈ [0, 1] we have that xλ = λf + (1−λ)y satisfies ajxλ < bj for all j = 1, . . . , k−110

and xλ ≥ 0. Moreover there exists λ such that akxλ = bk, but this contradicts the assumption that11

F k ∩ Rm
+ = ∅12

Remember Example 1.1 and note that the inequality that was dropped to obtain the maximal13

positive lattice point free set satisfies the conditions of both Corollary 4.4 and Lemma 4.5. Also14

note that in order to apply Lemma 4.3 or Corollary 4.4, one needs to check if int(F k) contains15

nonnegative integer points, which requires solving an integer program in Rm. The condition F k ∩16

Rm
+ = ∅ in Lemma 4.5, however, can be checked by solving a linear program.17

5 Conclusion18

In this paper, we defined a new relaxation for mixed-integer sets and studied valid inequalities19

associated with it. Our relaxation can be seen as a tightening of the relaxation defined by Borozan20

and Cornuéjols [5] and Andersen et. al. [2]. The difference between the two relaxations is the21

presence of non-negativity constraints in our set. In this respect, the difference between the two22

relaxations is similar to the difference between the master equality polyhedron [7] that we studied23

recently and the cyclic group polyhedron of Gomory. In both cases, exploiting non-negativity leads24

to stronger inequalities.25

Even though some of our results generalize easily for m > 2 constraints, there are others that26

we were not able to extend. For instance, for m > 2, are maximal positive lattice point free sets27

polyhedral? If so, do they always have a nonnegative integer point in the relative interior of each of28

their facets? Moreover, can there be minimal functions that arise from non-maximal positive lattice-29

free convex sets? Even though we only derived a one-to-one correspondence between maximal30

positive lattice point free sets and minimal functions for m = 2, we believe such correspondence31

also exists for m > 2.32

Finally, notice that the nonnegativity on the integer variables is an arbitrary choice of con-33

straints. In principle, one could impose any additional set of constraints to the integer variables34
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and use this additional information to strengthen the inequalities obtained. A case of particular in-1

terest is when the basic variables are all between given bounds [0, u] (for example binary variables)2

and hence we only need to focus on convex sets that don’t have integer points in [0, u] in their3

interior. We believe, for instance that Theorems 3.2 and 3.11 can be generalized for such cases.4
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