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End-to-End Automated Analytics for CBM+ 
Abstract  
End-to-End Condition Based Maintenance Plus (CBM+) requires careful balances 
between data generation, filtering, preprocessing, compression, secure 
communications, cleansing/validation, persistence, categorization, classification, 
analysis, summarization, reporting and distribution.  Often, the conditions 
themselves demand flexibility within the CBM+ framework to adapt for data 
volumes, traffic priority, and critical impact on safety and operations.  Intelligent 
services distributed across disparate operational environments and varying data 
schemas enable collaborative applications to strike the balance needed for effective 
operation of CBM+ systems.  Open standards in a service oriented architecture 
enable cooperating processes to provide synergy and expand opportunities for 
discovery and insight to diagnostic procedures and predictive maintenance. 
 
Too often, CBM+ has focused on the data structures and detailed component 
structure models resulting in overly rigid designs that are labor intensive and have 
difficulty accommodating change brought on by varying platform configurations 
and new insights from analysis. This paper discusses how automating data analysis 
for CBM+ is possible in a distributed, open standards based SOA environment from 
the embedded applications on monitored platforms through intermediate processing 
/ communications gateways to the enterprise repository and among collaborative 
service providers and consumers.  In particular, we draw from experience gained in 
US Army and commercial automotive applications to highlight challenges and 
possible solutions.  We discuss data synchronization strategies, distributing 
cooperative analytics, data compression and summarization strategies, how 
automated analysis of CBM data can improve OLTP and OLAP management and 
performance strategies for CBM+, and how to simplify SOA implementations for 
quick adoption while retaining open standards and flexibility.  We also discuss 
driving factors for CBM+ framework requirements and their affect on selecting 
among alternative implementation strategies. 
CBM Goals 
The simplified goal of Condition Based Maintenance (CBM) is to adapt service 
schedules to individual components based on their needs, as opposed to elapsed 
time.  Goals that are more aggressive include evaluating the conditions of actual 
and predicted use to plan for preventative maintenance.  Regardless, the desire to 
tailor individual maintenance schedules can reduce costs while improving 
availability by avoiding unwarranted repairs.  If done well, and with enough 
foresight, it does not preclude improving the logistics supply chain, maintenance 
resource scheduling, parts distribution strategies and equipment availability.  
However, being able to glean what conditions drive necessary maintenance is more 
complicated than purely time-scheduled maintenance as they require usage models 
and fault impact analysis. 
Correlation 
Sensors monitoring equipment operations need to include enough information to 
supplement direct measurements (observations) with correlated associative or 
model-based derived measurements describing the regime at the time the direct 



measurements were observed.  This may require only capturing enough hooks for 
late binding with other data sources or to enable algorithms to deduce the regime 
based on systematic review of multiple data sources and behavior models.  
Correlation of direct measurements is an important aspect of CBM as it provides 
the basis for deriving operational states, higher-level activities (events), health 
assessments, alerts, and generation of actionable advice.  Correlation often involves 
time sequencing of related measurements or commonly observed events. 
Time as a Correlator 
One important correlator for CBM involves time of day, relative time, or 
sequencing.  Time of day measurements facilitate late binding with other data 
sources.  However, unless a common, reasonably accurate timing source as is found 
in GPS measurements or from time synchronization infrastructures (e.g., NNTP) 
this measure will only provide loose correlation at best.  It may still be suitable for 
late binding with temperature, pressure and/or weather measurements where change 
occurs relatively slowly.  Relative time measurements are more important for 
correlation across multiple sensors / multiple measurements provided they share a 
common timing source.  This may require additional communications among 
sensors to ensure their timing sources do not drift beyond an acceptable distance.  
Timing made relative to a common event may also require less storage than 
calendar date / time, as only 8 bytes may be sufficient to hold high precision 
timestamps for a long enough period to cover the recording period.  Depending on 
the environment, time may not be able to be synchronized across sensors.  
However, sequence counters may still enable correlation across measurements if 
they are made frequently enough and there is an abundance of shared event activity 
between different sensors to allow for periodic alignment.  Sequences can also help 
to differentiate gross level sets of measurements.  For example, when time is 
maintained by a battery backed time of day clock, and the battery fails or other error 
causes the clock to be reset to the beginning of its epoch, sequence numbers can 
still position one set of measurements relative to others.  Later analysis and best 
guess estimates may allow for reasonable recovery of the measurement period. 
Events as Correlators 
Often, sensors monitor pieces of equipment that communicate with other each other 
on an ongoing basis.  An event may be shared between the equipment (e.g., as 
conveyed in a communications message sent from one to the other) and be seen by 
both sensors.  The propagation delay for communications across a bus or LAN may 
not be significant or at least may be constant enough to permit alignment of two 
independently operating sensors output.  At the very least, relative sequencing 
should be possible to enable analytics to glean which sensor readings occurred after 
others, or between "significant" events.   
Measurements vs. Events 
Events may also be deduced through modeled behavior and algorithms identifying a 
sequence or pattern.  While an event may map directly to an observation, in this 
context we differentiate derived events as representing an observation about the 
system's state and may or may not be directly observable by an individual sensor.  
For example, the determination that a misfire has occurred, or when the system has 
transitioned from a running state to an idle state, or inappropriate operation when 
shifting gears may all reflect events requiring assessment of multiple observable 



measurements and take some subjective analysis into account to determine when 
the event has occurred. 
Data Inundation 
Initially, CBM suffered for lack of observed measurements.  There were not enough 
strategically placed sensors to provide insight to system behavior.  Luckily, as more 
software-based systems came on-line, the measures needed by the embedded 
software to make decisions also provide data for CBM analysis.  Today, unless the 
system is antiquated and/or still relies heavily on pure physical linkages for 
operation, there is no dearth of operational data.  In many cases, the opposite 
problem exists with too many low-level data packets, and the problem is how to 
archive, filter, consolidate, and analyze them for actionable intelligence. 
 
CBM systems design involves maximizing coverage of system operations through 
strategic placement of sensors, minimizing data sizes and transmission times, and 
distributing analysis for tactical (e.g., safety, availability, mission readiness) and 
strategic (e.g., mission planning, parts availability) benefit. 
Sensing Sensor Behavior 
Having many sensors presents a new problem -- how to know when to trust the 
sensors' observations.  Derived events, based on modeled behavior can play an 
important role in determining whether sensors are behaving properly.  While 
sensors may be thought to be reporting observed states, they can break, overheat, or 
misbehave when inappropriate voltages or vibrations are present.  We have 
observed broken temperature sensors that reported valid but inaccurate readings, 
and airflow sensors that became fouled over time and reported false airflow 
problems.  We have also observed inaccurate readings due to unforeseen 
circumstances when mice had eaten the air filter and paper crumbs had been sucked 
into the airflow preheat chamber affecting the heating elements effect on circulating 
air.  To help determine whether to trust sensor readings, operational models may be 
used to derive expected states for comparison against sensor readings.  For 
example, a comparison of the actual and demand torque readings from the engine 
may provide a check and balance against sensed airflow readings.  If the engine is 
able to provide the torque demanded, then it may be safe to assume airflow is not 
restricted and the sensor should be checked. Ideally, such checks and balances 
should be performed in close proximity to the sensors to alert operators so 
mechanics can affect repairs. 
When / Where to Perform Analysis 
Data analysis may not always be possible on-platform, and needs to be deferred 
until more time, CPU power, or other information is available.  For example, it may 
be desirable to review every possible message that could flow across the bus, but to 
do so would involve soliciting data from embedded controllers that might overload 
the bus bandwidth and block crucial messages from flowing.  Constant 
interrogation of the embedded controllers may affect their operation by using CPU 
to reply instead of doing expected work. This identifies three other CBM system 
design challenges: 

• How should the "monitoring" infrastructure interact with the "natural" 
system so it does not interfere (can additional probing be performed for 
short bursts that would otherwise not be supported on a continuing basis)? 



• How close should filtering be performed to the generation source to reduce 
storage / communications bandwidth requirements without hiding needed 
detail from downstream analytics? 

• How should analysis of operational and/or derived data be distributed to 
achieve minimal impact on the system and maximum awareness of 
problems, in a manner that balances these other two considerations? 

Contextual, Temporal Data 
CBM typically requires access to historic data for comparison against current 
operations in order to determine degrading conditions.  Consider monitoring fuel 
consumption over time to infer a blocked / dirty fuel filter, or dirty / worn out spark 
plugs, or a weakened fuel pump.  These subtle changes may not be easy to notice 
within a short time window or small set of measurements.  However, by comparing 
current consumption against history spanning days or weeks, one could identify a 
downward performance trend.  Even better, accurate assessment is more likely 
when considering the regime so comparisons are made for similar stresses on the 
system.  Historic comparative analysis requires data persistence for lengthy periods.  
Unless the domain being monitored is relatively stable and well understood, it is 
likely that sensor software, as well as the models and rules used for filtering, 
collation and correlation will change.  To ensure fair comparisons are made, the 
data recorded for historic comparisons will need to be tagged with the version of 
logic used to produce them. 
Parameter Set Definitions 
The set of parameter definitions of measurements provides other utility.  When data 
are managed over lengthy periods, one may need to transform the strategy used on 
earlier "recordings" to match current strategies.  For example, a change from 
kilometers per hour to miles per hour, or Fahrenheit to Celsius is simple, but still 
required to enable accurate comparison.  In cases where data need to be normalized 
to be fed into algorithms like neural networks the parameter definitions for the 
minimum and maximum allowed values can be used for this transformation. 
Measurement Types 
Knowing the reporting frequency for a parameter, and whether a measurement is 
one of the following is useful when needing to generate values for curve fitting or 
time alignment: 

• Enumeration: where state transitions or sequence cannot be inferred (e.g., 
colors, or circuit breaker state (e.g., on, off, tripped) or the gear name) 

• Discrete: where measurements are integers (e.g., cyclic counters) 
• Continuous: where measurements are rational numbers (e.g., RPM, 

voltages, temperatures) 
Filtering 
While not long ago, the focus was on whether or not sensors existed to produce 
measurements, today the problem is managing too many low level details.  Not only 
is this a storage issue when memory is constrained, but also effects transmission 
times and operations used to collect data.  Filtering can begin as early as the initial 
visibility of the data presented to sensors.  For example, monitoring messages on a 
communications bus may employ filters to determine whether messages have 
changed enough to warrant further analysis by the sensor.  Filters can mask off the 



portions of messages expected to change (e.g., a timestamp, or sequence counter) 
and may mask off insignificant changes in precision.  Another type of filter may 
compare the current against past measurements to report only significant changes. 
Band Filters 
While similar to precision filters, banding can be used to track significant changes 
in data.  Imagine measurements for revolutions per minute (RPM).  Unless the 
RPM are being analyzed to deduce vibration requiring relatively high precision, it 
may be suitable to track changes that are a distance of +/- 5 (or possibly even 10 or 
25).  This distance is considered the filter band width, and the center of the band 
will move when an observed measurement occurs outside the current band's 
perimeter.  In other words, values observed within the same band are considered not 
to have changed significantly enough to warrant recording them.  Band filters differ 
from precision filters because precision bands are spaced equally, and separate the 
possible range of measures into fixed bands, one on top of the other.  Band filters 
are set based on using the first value observed outside the current band as the center 
of the new band.  Using distribution counts for predefined value ranges (that may 
not be evenly distributed (e.g., using a logarithmic scale)) is another way to reduce 
the data storage and reporting requirements. 
Time Frequency Alignment 
In order to align different measures occurring on different reporting frequencies or 
that are reported sparsely due to filtering on a common timeline, it might be 
necessary to generate representative values when none were reported, or that were 
previously filtered.  In these cases, the parameter definitions and knowledge of the 
filters employed are useful to know what strategy should be used to generate 
missing values.  For example, when precision or band filtering is employed, it may 
be best to consider a value retains its last known value until one reporting period 
before a new value is reported.  For values within a reporting period, linear 
interpolation, or polynomial splines can be used.  The candidate generated value 
needs to take into account the parameter measurement type so generated values 
make sense (e.g., you would not want to report that the gear was 2.5). 
Parameter Semantics 
Managing the semantic namespace for parameters is important when similar but 
different machinery is to be compared.  Attempting to use the same semantic 
meaning from one parameter set to another can enable common references used by 
rules or algorithms to evaluate states of operation.  For example, the state of being 
at idle may differ from one type of engine to another, but each can achieve this 
state.  For higher-level analysis, it may be necessary to know whether the engine is 
idling (e.g., has achieved a desired state) when evaluating or correlating other 
measurements.  Idle definitions may differ depending on the context.  For example, 
while a range for RPM may be defined for engine idle, it may be important to 
consider the gear position, throttle position, load from other equipment (e.g., air 
conditioning), and the period over which the RPM remains within the idle range.  
These nuances will often be refined over time based on the development of more 
advanced analytics used to derive health or status measures.  The possible change in 
meaning as knowledge about the measurements becomes more refined, demands 
that the context under which measurements are produced be recorded along with the 
measurements themselves.  Tracking the semantics of the logic under which data is 



being produced along with the data is the only way to ensure the CBM data 
warehouse can be used for historic comparison and trend analysis. 
Fault Tree Diagnostic Model 
Too often, diagnostics use a singular approach based on a fault tree to resolve 
issues.  This approach is based on first identifying the configuration of parts 
assembled to comprise the whole system.  Then, each part is reviewed to identify 
each of the failure modes it can produce.  The diagnostic process becomes an 
iterative testing process where each failure mode is examined to determine if the 
part is working as designed.  When a failure mode is detected, the part becomes a 
candidate as the cause of the problem being researched (part of an ambiguity 
group).  Finally, review of the set of failed parts and their failure modes is 
performed to try to reduce the ambiguity group to the final set of causal failures, 
and parts are repaired or replaced.  This diagnostic approach makes sense given the 
history of physical interactions of hardware, where linkages can be traced from one 
activity to another.  It is very time consuming to construct these models because 
each part's failure modes must be identified, and then diagnostic procedures to 
determine if a failure has occurred must be developed.  For systems that do not 
change very often, and whose behavior is largely tied to the physical aspects of its 
construction, the time investment may be justified.  However, with the advent of 
software-controlled functions becoming pervasive in complex systems, the rate of 
change and/or flexibility in operating models makes fault tree maintenance very 
labor intensive.  Alternative approaches must be considered to reduce the time 
needed to build and test the fault tree model and to accommodate systematic 
problems that result from the logical connections between physical parts that are not 
easily associated with single part fault modes.  For example, when an operator 
shifts from forward to reverse when the vehicle is still moving forward and/or the 
engine RPM's are excessive, the system can be compromised.  In this case, the 
"fault" is with the operator, not a specific part.  This problem may present as wear 
or cracks on the gears without any causal explanation without appropriate analytics. 
Analytic Semantics 
Where the fault tree approach provides a single model for physical behavior, other 
semantics used for analysis allow behavior to be expressed using multiple, 
concurrent models.  By approaching a problem from different perspectives, it may 
be possible to simplify the complex system into a subset of related functions:  
communications, electrical, power, physical, safety, comfort, replenishment, and 
operations.  Sensors and analytics can be developed for individual behavior models 
and their output / results can be fed into other models, or into higher-level systemic 
models. By using semantics to present sensor and derived data from a particular 
perspective allows domain experts helping to define and develop diagnostics to use 
familiar reference labels.  Any logic embodied within the diagnostic rules can also 
present their results from the perspective of the semantic model, yet these results 
may be cast using other reference labels in other semantic models, and become 
useful within other diagnostic domains.  Allowing multiple views of the data adds 
flexibility, can focus studies on a smaller, related set of data, and simplify 
communications and interactions with non-IT oriented diagnosticians.  Using 
semantics also allows a layer of indirection from the raw data values, and enables 
experimentation with new models that would not otherwise interfere with existing 



semantic models.  This flexibility enables diagnostics to be built in short order for 
the well understood and/or frequently encountered problems, while more advanced, 
complicated diagnostics can be developed and enhanced over time.  This relieves 
the need to build the system configuration completely, then overlaying the 
monitoring locations for sensor or derived data, identifying the fault modes and 
defining the diagnostics to determine whether these faults have occurred.  The 
semantic diagnostics system can begin to produce benefit much sooner while still 
enabling the fault tree diagnostics to be built and used where appropriate. 
Distributing Analysis 
It may not be possible to perform all analysis on measured data depending upon the 
environment where measurements are produced.  It may be that the CPU has 
limited processing capability, or that storage is limited due to constraints 
prohibiting less expensive, spinning recording media due to temperature or 
vibration.  When analysis is distributed and communications are required to move 
data from one analysis location to another, there are operational considerations.  For 
example, is there a stable, available network for on-demand transmission of data 
from one location to the other, or is network connectivity intermittent?  What is the 
available bandwidth for data transmission compared with the data production rates? 
Can analysis be performed by nodes within the communications network on data 
destined for the CBM data warehouse? 
Opportunistic Data Collection 
To move large amounts of data to more suitable analysis environments involves 
picking suitable communications paths, and additional processing to reduce the 
transmission size and time as much as possible.  When mobile assets are being 
monitored, communications may not be available 100% of the time, or operations 
may not allow extended connectivity periods to allow large bulk transfers to occur.  
In this case, sufficient storage should be planned for the data generator balanced 
with sufficient contact with data collectors to allow accumulated data to be 
collected.  We have experienced 200MB recordings collected over several days, 
and transmission over wireless communications were limited to 3-5 minute 
intervals to avoid interrupting normal operations.  To operate under these 
conditions, we needed to provide multiple data collection points and to break apart 
these large recordings into smaller, self-contained units of work that can be moved 
during the collection interval. Frequent collections of partial data introduces its own 
set of problems as transfers can be interrupted and either need to be resumed with 
the same collector, or cleaned up if a second collector successfully retrieves the 
content. However, allowing for parallel transmission and collection paths provides a 
more robust net-centric approach to data retrieval and can allow speedier processing 
of the data. 
Fragments and Chunking 
Breaking a large recording or document into smaller, more manageable pieces can 
be as simple as picking a number of bytes that would normally be able to be sent 
within the collection time interval.  However, these "chunks" of the larger "whole" 
require that the recipient has collected all the chucks to reassemble the whole before 
it can process the content.  Large zipped binary files, or XML documents are 
examples of content where chunking may apply.  However, if the data to be 
transferred can be broken into transactions or other self-contained units of work 



containing header information to describe how each "fragment" relates to the 
whole, then each fragment can be sent ahead and be processed upon receipt before 
waiting for the entire collection of fragments to arrive.  Additional accounting logic 
needs to be employed to ensure no duplicate posting occurs, and to track missing 
chunks or fragments for subsequent retrieval.  Note that chunking and fragmenting 
can be performed as a background task while waiting for communications to 
become available. 
 
In network situations where content may be significantly delayed or lost (e.g., a 
collection node is destroyed), chunked content and its "all or nothing" requirement 
is less flexible than fragments because the latter allows for some of the information 
to be processed while attempting to request retransmission of the missing chunks or 
fragments.  In either case, bidirectional communication between the intended 
recipient and the generation or staging source is needed to ensure content is retained 
for a reasonable period to support retransmission requests. Once the intended 
recipient has processed the content, it can send a "receipt acknowledgement" 
allowing the original data to be deleted if desired to reclaim space for subsequent 
data generation needs. 
Data Compression 
Whether sending the original content, chunks or fragments, it makes sense to 
compress the content to save transmission time.  As when partitioning large data 
into smaller pieces, the type of content should be evaluated when choosing the 
compression algorithm.  Zip algorithms may work very well for binary data, while 
specialized Base64 encoding may work well for textual representation of numeric 
data, and XML can be highly compressed when considering its schema.  If 
compression is part of the infrastructure, take care that previously compressed data 
is not being compressed again as this rarely results in improvement (it may actually 
add to the size) and wastes CPU cycles. 
Data Security 
When working with CBM data, there are security concerns.  How secure are the 
communications and/or the data?  Who is allowed to access the data?  At what point 
does unclassified data require increased security due to aggregation?  For example, 
knowing where a particular vehicle is located, or its health status may not be 
classified, but knowing the health and/or location of all military vehicles in a 
Battalion or Brigade could convey effective or potential force which is classified. 
Data Synchronization 
Moving data from the generation location to the warehouse should focus on the 
interoperability services used by communicating nodes, and not on the underlying 
data store schema.  By providing a public interface to access and manage the data, 
implementers of software can have freedom to select the appropriate storage 
paradigms for their environments.  Exposing the data store for direct access is often 
against Information Assurance (IA) regulations as this introduces denial of service 
attacks, and requires the data consumer to have intricate knowledge of the schema.  
This design is brittle as it requires heavy software blocking to introduce changes in 
the data persistence model, whereas having the indirection layer of the public 
service interface allows multiple interaction models to coexist.  The public service 
layer also permits changes for new data structures or for performance reasons with 



minimal disruption of service.  Finally, the service interfaces can permit disparate 
environments to communicate without placing explicit demands on development 
languages or implementation details.  The freedom of well-designed SOA helps to 
ensure data consumers and providers can be added to existing systems with relative 
ease. 
Automated Analysis 
Data collection strategies will vary depending on the amount of data, frequency of 
access, and use cases for data consumption needs.  Using opportunistic data 
collection and data partitioning using fragments and chunks requires that data 
arriving out of sequence can be processed.  This means a transactional data store at 
the final destination is best suited to persisting incoming data so partial updates can 
occur with minimal churn to retrieve / update / store data.  However, for longer-
term use of the data, maintaining access to individual records is inefficient as 
volumes can easily reach trillions of records.  Instead, transitioning from an OLTP 
based schema to an OLAP schema where data are organized according to 
descriptive attributes should be performed as soon as practical.  By using the 
service interface, public requests from data need not know whether the data resides 
in the OLTP or OLAP schema.  To facilitate migration of data from OLTP to 
OLAP, automated analysis of the high volume, time series operational data can be 
performed to derive the lower volume, semantic attributes used to classify and 
describe aspects of the data.  Automated analysis typically includes routing select 
related transactional data (e.g., records from the same, recorded trip or mission) 
through a battery of analytics that determine whether certain conditions were 
present.  When conditions like inappropriate operation, or faults, or out of spec 
measurements are identified, these become attributes of the trip itself.  The actual 
details can be stored as files or BLOBs and only need to be retrieved for in-depth 
studies.  The majority of analysis can be performed on the metadata derived through 
automated analysis.  Ad hoc analysis performed on through reporting against these 
attributes allows for further refinement of knowledge about the study being 
performed and may cause temporary expansion of the archived details.  This is true 
for data mining use cases where a flatter schema is used to expose common 
attributes of select data content but does not need to be saved beyond the mining 
exercise. 
Summary 
End-to-End Condition Based Maintenance Plus (CBM+) requires careful balances 
between data generation, filtering, preprocessing, compression, secure 
communications, cleansing/validation, persistence, categorization, classification, 
analysis, summarization, reporting and distribution.  We have attempted to surface 
various areas for consideration in designing and implementing CBM+ systems.  
Undoubtedly, the initial design will need significant revision due to unforeseen 
performance problems, interrupted and unstable communications, and the need for 
more detailed data, or smarter analytics to reduce data volumes.  Focus the design 
on the public interfaces in a service oriented architecture for maximum flexibility to 
accommodate these changes and allow the existing system to remain functional as 
change is introduced.  CBM+ is an iterative process much like data mining.  The 
more you experience, the more you will want to refine and improve. 



Author 
Mr. Mills is the Chief Architect and Lead Engineer for Vehicle Health Management 
at IBM Research.  Mr. Mills has won Outstanding Technical Achievement, and 
Research Accomplishment awards for the design and development of the 
Parametric Analysis Center, and Page Detailer commercial assets.  Mr. Mills 
provides technical leadership for IBM service engagements for Condition Based 
Maintenance and Vehicle Health Management in both government and commercial 
/ industrial sectors. 
 
Author: Nathaniel Mills 
Senior Technical Staff Member 
IBM T. J. Watson Research Center 
1101 Kitchawan Road, Route 134 
Yorktown Heights, NY, 10598 
wnm3@us.ibm.com
 
Direct mailing address: 
16 Deer Hill Lane 
Coventry, CT, 06238 
860 760 3764 (voice and fax) 
 

mailto:wnm3@us.ibm.com

	Title: End-to-End Automated Analytics for CBM+
	Abstract 
	CBM Goals
	Correlation
	Time as a Correlator
	Events as Correlators
	Measurements vs. Events
	Data Inundation
	Sensing Sensor Behavior
	When / Where to Perform Analysis
	Contextual, Temporal Data
	Parameter Set Definitions
	Measurement Types
	Filtering
	Band Filters
	Time Frequency Alignment
	Parameter Semantics
	Fault Tree Diagnostic Model
	Analytic Semantics
	Distributing Analysis
	Opportunistic Data Collection
	Fragments and Chunking
	Data Compression
	Data Security
	Data Synchronization
	Automated Analysis
	Summary
	End-to-End Condition Based Maintenance Plus (CBM+) requires careful balances between data generation, filtering, preprocessing, compression, secure communications, cleansing/validation, persistence, categorization, classification, analysis, summarization, reporting and distribution.  We have attempted to surface various areas for consideration in designing and implementing CBM+ systems.  Undoubtedly, the initial design will need significant revision due to unforeseen performance problems, interrupted and unstable communications, and the need for more detailed data, or smarter analytics to reduce data volumes.  Focus the design on the public interfaces in a service oriented architecture for maximum flexibility to accommodate these changes and allow the existing system to remain functional as change is introduced.  CBM+ is an iterative process much like data mining.  The more you experience, the more you will want to refine and improve.
	 Author

