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Abstract. Imposing sparsity constraints (such as l1-regularization) on
the model parameters is a practical and efficient way of handling very
high-dimensional data, which also yields interpretable models due to em-
bedded feature-selection. Compressed sensing (CS) theory provides guar-
antees on the quality of sparse signal (in our case, model) reconstruction
that relies on the so-called restricted isometry property (RIP) of the
sensing (design) matrices. This, however, cannot be guaranteed as these
matrices form a subset of the underlying data set. Nevertheless, as we
show, one can find a distance-preserving linear transformation of the
data such that any transformed subspace of the data satisfies the RIP at
some level. We demonstrate the effects of such RIP-enforcing data trans-
formation on sparse learning methods such as sparse and compressed
Random Fields, as well as sparse regression (LASSO), in the context of
classifying mental states based on fMRI data.

1 Introduction

Sparse modeling techniques, such as sparse regression, sparse graphical models,
and sparse component analysis, just to name a few, became a popular topic of
research in the recent few years. The rise of interest in sparse learning is moti-
vated by an increasing number of practical applications where the dimensionality
of the problem is significantly larger than then the number of available samples
(e.g., in bio-informatics and medical imaging), and thus an efficient regulariza-
tion is required. A popular l1-norm regularization seems to prevent overfitting
quite well while yielding tractable optimization problems. Moreover, sparsity-
enforcing l1-regularization (and in general, lq-regularization with 0 ≤ q ≤ 1)
facilitates ”embedded” feature-selection which has an important benefit of in-
terpretability, the property of a model that is often as important as (or even
more important than) its predictive accuracy.

This paper proposes a novel approach to improving the performance of sparse
classification models, such as sparse Random Fields, Markov Networks, and
LASSO-based classifiers, via linear transformation of the data that aims at en-
forcing a property known as the Restricted Isometry Property (RIP) in Com-
pressed Sensing (CS) literature [1, 2]. RIP is an important condition on the
design (data) matrix that facilitates accurate recovery of sparse signals (i.e.,



models). In this paper, we provide both theoretical analysis of the proposed
transformation, proving that it indeed enforces the RIP at certain level on an
arbitrary data matrix, and empirical evaluation on real-life datasets from medical
imaging domain, specifically, from functional MRI (fMRI) studies.

Moreover, our approach can be viewed as a semi-supervised technique, since it
assumes availability of unlabeled test data at the training phase. A combination
of such transductive setting with the RIP-enforcing transformation can lead
to dramatic improvements in prediction accuracy of certain sparse methods,
such as compressed Random Fields, and often improve the performance of other
sparse methods such as sparse Markov networks (sparse MRFs) and sparse linear
regression (LASSO).

2 Problem Formulation

Let {v(1), . . . , v(n)} be a set of features (predictive variables), and let Y be
the class label (response variable) taking values {+1,−1}3. We assume a given
set of m training data samples, and a set of l test samples. We will use V =
[v(1), . . . , v(n)], v(i) ∈ Rm to denote the training set, and V ′ = [v′(1), . . . , v′(n)],
v′(i) ∈ Rl to denote the test set. Given (V, Y ) and V ′, we are interested in
predicting the response vector Y ′ associated with V ′. It is important to note that
we will focus on the transductive setting rather than the classification setting,
i.e. we will assume that unlabeled test data can be used by a learner at the
training phase.

3 Sparse and Compressible Model Learning

In many practical applications (e.g., computational biology, medical imaging,
etc.), the number of features n can be much larger than the number of training
samples m. Thus, some form of regularization is necessary in order to prevent
overfitting. One common approach is to follow Occam’s razor principle and seek
the simplest model that adequately describes the data. Simple models are often
more interpretable as well.

Suppose for a moment that Y is a real-valued response vector. Following the
usual regression set-up one may write

Y = V β + ζ (1)

where ζ and β ∈ Rn denote a noise random vector and the model parameters,
respectively. It can be recognized that the ordinary least-squares (OLS) solution
is infeasible in case of n > m, owing to the rank deficiency of V T V . Nevertheless,
an accurate and sometimes even exact solution can be obtained by assuming that
β is sufficiently sparse, i.e., most of its entries vanish.

3 In this work we restrict ourselves to the binary classification, although our approach
can be easily extended to the multi-class case.



Definition 1. A vector x is said to be s-sparse if the number of its non-zero
entries equals s, that is ‖ x ‖0:= #{supp(x)} = s, where supp(x) denotes the
support of x, and ‖ x ‖0 is called l0-norm of x.

It has already been shown that in the noiseless case where Y = V β, a unique
and exact solution exists assuming β is at most m-sparse [1, 3]. However, the
problem of finding the sparsest model β is known to be NP-hard in general. Its
noisy version which is associated with (1) is given by

min
β̂
‖ β̂ ‖0 s.t. ‖ Y − V β̂ ‖2≤ ε (2)

An alternative approach utilizes an l1 relaxation for formulating a convex
problem instead of (2). The LASSO [4], for instance, solves a dual problem of
the form

min
β̂
‖ Y − V β̂ ‖2 s.t. ‖ β̂ ‖1≤ t (3)

This formulation promotes sparse solutions of which the sparseness degree (i.e.,
#{supp(β̂)}) depends on the tuning parameter t.

3.1 Compressed Learning

A remarkable result that has emerged from the new theory of compressed sensing
(CS) [1–3] shows that under certain conditions on the sensing matrix V , the l1-
relaxation yields the exact solution for the noiseless case in the sense that it
coincides with the solution of the NP-hard problem mentioned above. In the
noisy case, the same conditions ensure accurate recovery up to a certain level.
We will wait a few sections before elaborating on such conditions and focus now
on the formulation of the CS problem.

The noisy CS problem replaces the l0 norm in (2) with the l1 norm

min
β̂
‖ β̂ ‖1 s.t. ‖ Y − V β̂ ‖2≤ ε (4)

Following the underlying arguments of CS theory, Candes and Tao [5] suggest
an estimator to the CS problem known as the Dantzig Selector (DS). The DS is
essentially aimed at solving

min
β̂∈Rn

‖ β̂ ‖1 s.t. ‖ V T (Y − V β̂) ‖∞≤ (1 + t−1)
√

2 log nσ (5)

where σIm×m denotes the standard deviation matrix of the noise ζ in (1). The
DS share some similarities with the LASSO where the later is expressed in its
dual form as in (4). Both estimators promote sparse solutions to the regression
problem (1).

In some cases the obtained solution is not sparse but rather is compressible.
A compressible vector consists of significant amount of negligible entries. The
formal definition follows below.



Definition 2. A compressible vector x ∈ Rn obeys

#{xi | |xi| > ε, i = 1, . . . , n} << n (6)

for some sufficiently small ε > 0.

In a recent work [6] it has been shown how a compressible solution to a stochastic
CS (SCS) problem can be recursively obtained using the well-known Kalman
filter (KF). The class of algorithms, which was termed CSKF in [6, 7], is aimed
at solving a generalized problem of the form

min
β̂

Eβ|Y
[
‖ β − β̂ ‖2

]
s.t. ‖ β̂ ‖1≤ t (7)

where EA|B [·] denotes the conditional expectation operator. In contrary to the
previous formulations, here β is assumed to be a random vector. If it is further
assumed that this vector has a stationary distribution p(β), then the above
problem can be written in a similar fashion to the LASSO objective in (3)

min
β̂

Eβ|Y
[
‖ Y − V β̂ ‖2

]
s.t. ‖ β̂ ‖1≤ t (8)

It is worthwhile mentioning that the CSKF method is not directly tuned by
the parameter t. The technique used to regulate the compressibility degree of
the obtained solution is based on replacing the l1 constraint with the pseudo-
measurement [6]

‖ β̂ ‖1 −e = 0 (9)

where e ∼ N (0, Re). Thus, instead of tuning a deterministic threshold parameter
we set the variance Re of the random variable e.

In virtue of its KF mechanism, the CSKF can process each sample of V
individually. A single iteration of this algorithm is given in the pseudo-code in
Algorithm 1.

4 Compressed Random Field Classifiers

Lets get back to our classification problem in which the response space consists
of only two outcomes. All the above mentioned algorithms can be used to learn
a sparse or compressible model β̂ which then can be used to predict the response
Y ′ for the unlabeled test data V ′ by

Y ′ = sign(V ′β̂) (12)

Other classification methods construct a typical model for each class. The
predicted class is then taken as the one of which the model best “explains” the
test data. The base classifiers that are derived in this work learn a sparse or
compressible random field model for each class. Such models have the advantage
of avoiding overfitting by eliminating insignificant statistical relations between



Algorithm 1 CSKF
1: Set P0 as the prior covariance of β. Set R as the covariance of the noise ζ. Let

β̂0 = 0. Let also Vk be the k-th sample in V .

Kk = PkV T
k

(
VkPkV T

k + R
)−1

(10a)

β̂k+1 = β̂k + Kk

(
yk − Vkβ̂k

)
(10b)

Pk+1 = (I −KkVk)Pk(I −KkVk)T + KkRKT
k (10c)

2: CS stage: Let P 1 = Pk+1 and β̂1 = β̂k+1.
3: for τ = 1, 2, . . . , Nτ − 1 iterations do
4:

Hτ =
[
sign(β̂τ

1 ), . . . , sign(β̂τ
n)

]
(11a)

Kτ = P τHT
τ

(
HτP τHT

τ + Re

)−1

(11b)

β̂τ+1 = (I −KτHτ )β̂τ (11c)

P τ+1 = (I −KτHτ )P τ (11d)

5: end for
6: Set Pk+1 = P Nτ and β̂k+1 = β̂Nτ .

features.

The Random Field Model.
Let G = (Em, V m) be a finite graph with a vertex set V m and an edge set Em.
The sample space Ω consists of all possible assignments of the vertices in V m. A
random field on G is a probability distribution on Ω. The random field is Markov
whenever each vertex assumes a value depending exclusively on its immediate
neighbors, or in terms of conditional probabilities

p (V m(i) = vm(i) | V m(j) = vm(j), i 6= j) =
p (V m(i) = vm(i) | A(i), (A(i), V m(i)) ∈ Em) (13)

where A(i) denotes the Markov blanket of the i-th vertex V m(i).
At this point we assume that our random field model obeys a Gibbs dis-

tribution. This in turn allows us to specify linear Gaussian connections of the
form

V m(i) = H(i)β(i) + ζ(i), ζ(i) ∼ N (µi, σ
2
i I) (14)

where H(i) = [V m(j), j 6= i] is a matrix composed out of the entire vertex set
excluding the i-th one, and β(i) is a parameter vector associated with the i-th
vertex. An alternative formulation of (14) embeds a bias term within β(i) and
assumes a zero-mean noise

V m(i) = [H(i) 1]β(i) + ζ(i), ζ(i) ∼ N (0, σ2
i I) (15)



where 1 is a vector of which the entries are all 1’s. It can be easily verified that
the conditional probabilities associated with (15) are given by

p(V m(i) | H(i), β(i), σi) ∝ exp
(
− 1

2σ2
i

‖ V m(i)− [H(i) 1]β(i)) ‖22
)

(16)

Learning Over The Feature Space.
Let V m be a set of nf features from V . The random field structure associated
with a given class θ in Y can be then learned by locally solving either (14) or
(15) for every feature 4 using any of the methods mentioned in Section 3. The
obtained parameters βθ(i), i = 1, . . . , nf associated with a class θ can be then
used for approximating the corresponding noise variances σθ

i

(
σθ

i

)2
= (kθ − 1)−1

kθ∑

j=1

[
V m

j (i)− [Hj(i) 1]βθ(i)
]2

(17)

where the subscript j denotes the j-th sample, and kθ denotes the total number
of samples for the class θ.

Classification Rule.
Having the random field parameters for both classes θ = ±1, the predicted class
of each and every sample in the new feature space V ′ is chosen as the one which
maximizes the posterior probability

y′j = arg max
θ={+1,−1}

log p
(
(V ′)m

j | {βθ(i), σθ
i

}nf

i=1

)
(18)

where the subscript j denotes the j-th sample. In practice, the exact posterior
may not be easy to compute. This, however, can be alleviated by computing the
pseudo-likelihood over the entire network. An approximate solution to (18) is
then given as

y′j = arg max
θ={+1,−1}

nf∑

i=1

log p
(
(V ′)m

j (i) | H(i), βθ(i), σθ
i

)
(19)

where the conditionals are given in (16).

4.1 Relation to Other Methods

When the random field models are Markov, and the variables are assumed to be
Gaussian, one can use existing approaches to learning sparse Gaussian MRFs
[8,9]. Since the structure of the Gaussian MRF is encoded by the zero-pattern of
the corresponding inverse-covariance matrix C, the problem is therefore reduced
to recovering a sparse inverse covariance matrix from data. Note that simply
inverting the empirical covariance matrix, i.e. obtaining a maximum-likelihood
4 Here, a feature consists of all samples that are associated with a specific class.



estimate of C, does not typically produce any elements that are exactly zeros;
thus an explicit sparsity-enforcing constraint is required, and a popular approach
is to use l1 regularization. Particularly, we will follow the approach of [9] that
solves

max
CÂ0

ln det(C)− tr(SC)− λ||C||1 (20)

where S is the empirical covariance matrix, and where det(A) and tr(A) denote
the determinant and the trace (sum of the diagonal elements) of matrix A,
respectively. The advantage of the above approach is that the problem in eq. 20
is convex, its optimal solution is unique [9] and can be found efficiently using
recently proposed methods such as, for example, COVSEL of [9] or glasso [10].
The regularization parameter λ controls the sparsity of the solution.

5 Isometric Data Transformations

The theory of CS shows that the solutions of the noiseless convex problem (the
deterministic variant of (4))

min
β̂
‖ β̂ ‖1 s.t. Y = V β̂ (21)

and the original NP-hard problem, in which the l1 norm in (21) is substituted
by the l0 norm, coincides under the restriction that the sensing matrix V obeys
a so-called restricted isometry property (RIP) at a certain level. In detail, the
RIP is defined as

(1− δs) ‖ x ‖22≤‖ V x ‖22≤ (1 + δs) ‖ x ‖22 (22)

for some δs ∈ (0, 1) and any x that is s-sparse at most. In other words, every
subset of V of dimension m × s acts as nearly orthonormal system. The RIP
constant δs gives an indication of the actual proximity of any subset to orthogo-
nality. In the noisy case (4) the RIP constant sets an upper bound on the norm
estimation error ‖ β − β̂ ‖2 where β is the actual sparse solution. The reader is
referred to [1, 3] for an extensive discussion about the RIP and its role in CS.

5.1 Main Result

The classification method suggested in the previous section locally solves a re-
gression problem for each feature in V m (see Section 4.2). This is accomplished
by applying a CS-based method or some other l1-regularization technique using
either (14) or (15). Following the above argument, it is preferable to have an
RIP-satisfying sensing (i.e., data) matrix locally at each node. However, this
cannot be guaranteed for the original data set V whatsoever. Bearing this in
mind, we provide a detailed description of a technique for producing an RIP-
satisfying data matrix out of the original one while preserving distance ratios in
the transformed space. Before proceeding, however, we introduce the notion of
block-sparseness which is used in the ensuing.



Definition 3. A vector x ∈ Rdm with d,m ∈ N is m-block-sparse if its non-zero
entries are concentrated in blocks of dimension m. That is, if

x =




x1

x2

...
xd




where xi ∈ Rm, i = 1, . . . , d, and

#{xi | xi 6= 0, i = 1, . . . , d} << d

then x is said to be m-block-sparse.

Theorem 1 (Isometric Transformation). Suppose that H ∈ Rm×dm for
some d,m ∈ N, and let

T = diag(H−1
1 P1, . . . , H

−1
d Pd), Ker(T ) = ∅ (23)

where Hi ∈ Rm×m and Pi ∈ Rm×m, i = 1, . . . , d are the partitions of H and some
RIP-satisfying matrix P ∈ Rm×dm, respectively. Then there exists an orthogonal
transformation T̂ ∈ Rdm×dm and scalars α > 0 and δ ∈ (0, 1) for which

(1− δ) ‖ x ‖22≤‖ αHT̂x ‖22≤ (1 + δ) ‖ x ‖22
for m-block-sparse x. In particular

T̂ = diag(C1D
T
1 , . . . , CdD

T
d )

where CiΛiD
T
i , Λi = diag(λ1

i , . . . , λ
m
i ), λ1

i ≥ λ2
i ≥ · · · ≥ λm

i is the singular
values decomposition (SVD) of H−1

i Pi. Letting λmax = arg maxi∈[1,d] λ
1
i and

λmin = arg mini∈[1,d] λ
n
i , the scaling factor can be approximated by

α ≈ 2
(
λ−1

min + λ−1
max

)−1

and the RIP constant is given as

δ =
(1 + δm)λ−1

min − (1− δm)λ−1
max

(1 + δm)λ−1
min + (1− δm)λ−1

max

< 1

where δm ∈ (0, 1) is the RIP constant associated with P .

Proof. Notice that by definition (23), P = HT obeys the RIP

(1− δm) ‖ z ‖22≤‖ HTz ‖22≤ (1 + δm) ‖ z ‖22 (24)

for some m-sparse z. Now, let us set

z = DΛ−1DT x (25)



where CΛDT is the SVD of T . Notice that Λ−1 exists owing to Ker(T ) = ∅.
The transformation of the parameter space in (25) changes the sparsity basis

of x. In general, we cannot expect that both vectors, the original and trans-
formed, will have the same sparseness degree. However, the following subtle
observation changes the whole picture. It can be easily verified that the block
structure of T in (23) induces a similar structure of DΛ−1DT in (25). This
further implies that if x is m-block-sparse then so z.

The definition of z implies

‖ z ‖22= xT DΛ−1DT DΛ−1DT x =‖ Λ−1DT x ‖22 (26)

Substituting (26) and the SVD of T into (24) yields

(1− δm) ‖ Λ−1DT x ‖22≤‖ HCDT x ‖22≤ (1 + δm) ‖ Λ−1DT x ‖22 (27)

Without any loss of generality let us assume at this point that ‖ x ‖2= 1. Hence,

λ−1
max(Λ) = λmin(Λ−1DT ) ≤‖ Λ−1DT x ‖22≤ λmax(Λ−1DT ) = λ−1

min(Λ) (28)

Using the above in (27) while multiplying by some α > 0 yields

α(1− δm)λ−1
max ≤‖ αHCDT x ‖22≤ α(1 + δm)λ−1

min (29)

Finally setting
α(1− δm)λ−1

max = 1− δ (30a)

α(1 + δm)λ−1
min = 1 + δ (30b)

and solving for α and δ yields the theorem.

5.2 Block Sparseness Equivalence and Column Ordering

As can be easily recognized from (25) and the definition of T in (23), the isometric
transformation assumes a block sparse form of the projected linear space. This
fact raises a question. How can we impose the block sparse form on β, our original
parameter space? A straightforward approach for alleviating this problem is to
reorder the columns of V or more precisely of V m (see Section 4.2) so as to
group significant features in blocks. This in turn increases the chance of having
a block sparse solution to the CS problem

min
βθ(i)

‖ βθ(i) ‖1 s.t. ‖ V m(i)−H(i)βθ(i) ‖2≤ ε (31)

which forms the heart of the random field classifiers of Section 4.
Reordering of columns can be carried out using either a ranking method or

a feature selection technique (e.g., correlation, t-test, LDA and Fisher linear
discriminant). The columns will be then reordered according to their measure
of significance. Notice, however, that the ordering of columns within the m×m
blocks of V does not really affect the block sparseness degree of β.

In this work we have used either t-test or (slightly modified) correlation
method, described below; the columns are sorted in either descending or ascend-
ing order according to their associated rank.



A Linearized Correlation Coefficient The idea that motivates the following
derivation is to somehow take into account the unlabeled testing samples in the
computation of the correlation coefficient. The sample correlation of the i-th
feature is given by

ρi =
m

∑m
j=1 vj(i)yj −

∑m
j=1 vj(i)

∑m
j=1 yj

(m
∑

j vj(i)2 − (
∑

j vj(i))2)1/2(m
∑

j y2
j − (

∑
j yj)2)1/2

(32)

In practice, however, ρi cannot be computed over the entire set of samples owing
to the fact that the testing set (which in our case consists of 2 samples) is
unlabeled, i.e., the corresponding values in the response vector are unspecified.
To alleviate this, we treat Y as a real-valued vector for obtaining a first-order
expansion of ρi,

ρ̂i = ρi(ym = 0)± ∂ρi

∂ym

∣∣∣∣
ym=0

(33)

where it is assumed, without any loss of generality, that the m-th sample is used
for testing. Since the m-th sample is unlabeled the sign in (33) is undetermined.
Nevertheless, the ranking is carried out by taking the absolute value of ρi which
in turn sets an upper bound on ρ̂i

|ρ̂i| ≤
∣∣ρi(ym = 0)

∣∣ +
∣∣∣∣
∂ρi

∂ym

∣∣∣∣
ym=0

(34)

that can be used instead of |ρ̂i|. This approach can be easily extended to more
than one testing sample. In addition, we suggest to add a tuning constant a ∈
(0, 1] for tightening the bound. Thus,

ρ̃i =
∣∣ρi(ym−l+1 = 0, . . . , ym = 0)

∣∣ + a

m∑

j=m−l+1

∣∣∣∣
∂ρi

∂yj

∣∣∣∣
yj=0

(35)

for l testing samples, ym−l+1, . . . , ym. In our case, assuming that the training
data set is balanced (i.e.,

∑m
j=1 yj = 0) the derivative in (35) is obtained as

∂ρi

∂yj

∣∣∣∣
yj=0

=
mvj(i)(

m2
∑m

j=1 vj(i)2
∑m

j=1 y2
j −m

(∑m
j=1 vj(i)

)2 ∑m
j=1 y2

j

)1/2
(36)

In this work we have set a = 0.5 which seemed to yield improved accuracy in all
cases.

5.3 Practical Implementation: Random Projections

The isometric transformation relies on the existence of some RIP-satisfying ma-
trix of the same dimension as the original data set. Constructing such a matrix is
generally a non-trivial task. Nevertheless, it is well known fact that some random
matrices obey the RIP with high probability [1, 3].



Consider a matrix P ∈ Rm×n of which the entries are independent identically
distributed (iid) samples from N (0,m−1). Then if s, the maximal sparseness
degree of the underlying parameter vector, satisfies

s = O (m/ log(n/m)) (37)

the matrix P obeys the RIP with probability exceeding 1 − O (exp(−γn)) for
some γ > 0 [1]. Similar result exists for a binary measurement matrix of which
the entries are sampled according to

Pr
(
Pij = ±1/

√
m

)
= 0.5 (38)

In the case of high dimensional feature space it seems that the random ap-
proach is the only one that can guarantee the RIP to some extent. Taking random
P , however, imposes a conceptual problem. Thus, we can expect that there might
be realizations of P that render the new data set less informative thereby dete-
riorating the classification accuracy. In order to avoid such instances we propose
an additional stage in which a proper realization of P would be chosen by cross-
validating over a transformed development set. This technique is demonstrated
in the numerical study section in the ensuing.

5.4 Transductive Approach

In practice the isometric transformation can be applied to a feature space that
is augmented by the test data set V ′

V̄ =
[

V
V ′

]
∈ R(m+l)×n (39)

This technique, which is similar to the transductive learning, and can be also
thought of as a form of semi-supervised learning, yields a transformation that
depends on both the training and the unlabeled testing data sets. This approach,
which is used in the numerical study part of this work, has shown to significantly
improve the classification accuracy.
Summary of our Approach.
Given an arbitrary (augmented) data matrix H ∈ R(m+l)×n where n = d(m + l)
and d, m, l ∈ N, the transformation is carried out as follows.

1. Generate a realization of an isometric (Gaussian or Binary) random matrix
P of the same dimensions as H.

2. Reorder the columns of H according to some ranking or feature selection
technique.

3. Partition H = [H1, . . . ,Hd], P = [P1, . . . , Pd] where Hi, Pi ∈ R(m+l)×(m+l).
4. Compute the transformation T̂i = CiD

T
i for all i = 1, . . . , d where CiΛiD

T
i

is the SVD of H−1
i Pi.

5. Compute the scaling factor α.
6. The transformed data set is H̄ = α

[
H1T̂1, . . . , HdT̂d

]
.



6 Empirical Evaluation

The concepts of previous sections are demonstrated in fMRI classification. In
particular, the effect of the isometric transformation on the classification accu-
racy of various compressed random field classifiers is studied. The random field
classifiers that are considered herein are: 1) RF-CSKF that utilizes the CSKF
for locally learning the random field structure as described in Section 4.2, 2)
RF-Dantzig that is based on a similar approach where the learning is carried
out using the Dantzig selector, and 3) Sparse-MRF that learns the covariance
structure while assuming a Markov property of the random field model. We also
asses the effects of the transformation on the LASSO-based classifier.

All classifiers were coded in Matlab’s environment. The Dantzig selector im-
plementation uses the built-in function ‘linprog’ that is based on a linear interior
point solver. Sparse MRF uses the COVSEL package5 for learning sparse inverse-
covariance matrices that define a sparse Gaussian MRF for each class; the most
likely class label is then selected based on the likelihood predicted by each sparse
MRF model. LASSO classifier uses the MATLAB implementation [11] of LARS
algorithm [12] to solve the linear regression problem with the class label treated
as a real-valued response variable; in order to obtain binary prediction on a test
sample, we simply threshold the output of LASSO model (i.e., predict +1 if the
output is positive and -1 otherwise).

6.1 fMRI Data Sets

The fMRI data sets are those that were used in [13]. The detailed description of
these sets can be found at the StarPlus web-site at
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-81/www/. The data con-
sists of a series of trials in which the subject is being shown either a picture
(+1) or a sentence (−1). The brain activity is monitored over a time interval of
9 seconds during which a fMRI scan is performed every 1 second. We have used
this set-up for producing two data sets for each subject. The first set, which
we termed ‘sliced’, consists of the 1st scan in each trial whereas the second one
involves the average of 6 fMRI scans (from 1 to 6). The resulting data sets con-
sist of nearly 2000 features, and 40 relevant samples (see the website for more
detail).

6.2 Experimental Setup

We use a 2-out cross-validation scheme for testing the underlying classifiers. This
procedure involves 20 trials in which 2 samples (one of each class) are taken as
a testing set while the remaining samples are used for training. The classifiers
are applied using 12 data sets, these account for 6 sets (sliced and averaged for
each of the 3 subjects) and their transformed versions. In all tests, the random
field-based methods utilize a total of 100 nodes taken as those with the highest
5 Available at http://www.princeton.edu/ aspremon/CovSelCode.htm.



ranking based on either t-test or cross-correlation. In case of Sparse-MRF on
the original data, we select from 30 to 100 variables using a particular ranking
method before learning Sparse-MRF; we use same ranking method to generate
the transformed data, as well as to select a subset of the transformed data to learn
a Sparse-MRF on (the reason for variable selection here is the efficiency concerns
related to learning large sparse inverse covariance matrices). Finally, the LASSO
classifier approach runs on all features, and selects a desired number of variables
(that is specified as an input parameter to LARS procedure) automatically.

For clarity we detail the testing procedure below.

1. Reorder the columns of the augmented data matrix V̄ (see (39)) according
to some ranking or feature selection technique using the training set only
(see section 5.2).

2. Obtain a transformed augmented data matrix using some realization of the
random matrix P .

3. Split the transformed data into testing and training sets.
4. Perform feature selection/ranking using the training set.
5. Learn the random field structure based on the training set.
6. Classify the testing set.

In all tests a binary random matrix P (see Section 5.3) was used for producing
the transformed set. The realization of P is chosen as the one that yields the best
classification accuracy when applying the above procedure on a predetermined
development set which in our case was composed out of 20 samples from the
training set.

6.3 Results

The classification accuracy of the various methods are shown for the sliced and
the averaged data sets in Tables 1 and 2, respectively. The boldface font is used to
highlight cases when transformation improves the prediction accuracy. The fact
that becomes clear from both these tables is that the isometric transformation
significantly improves the classification accuracy of the CS-based random field
classifiers the RF-CSKF and RF-Dantzig. In the least informative case, when
using the sliced data sets, the accuracy increases by more than 30% for both these
methods. For the averaged data sets, however, a relatively modest improvement
of around 5% is gained for the first two subjects. The transformed data set of
the remaining subject, 04820, in this set shows, once again, an improvement of
nearly 30%.

As for the Sparse-MRF, the advantage of using the transformation is promi-
nent for the sliced sets in Table 1. It seems that these sets, which tend to be
less informative than the averaged ones, pose difficulties to the Sparse-MRF.
Nevertheless, the transformation frequently helps to increase the prediction ac-
curacy in this case, sometimes dramatically (e.g., by more than 25% in case of
subject 04820). However, the transformation seems to be less useful for Sparse-
MRF on averaged datasets (Table 2). It still helps sometimes to improve the



Method 04847 05680 04820
Original Transf. Original Transf. Original Transf.

RF-CSKF 0.50 0.92 0.52 0.87 0.55 0.82
RF-Dantzig 0.50 0.87 0.55 0.87 0.50 0.75

Sparse-MRF(30 vars, ttest) 0.75 0.78 0.75 0.87 0.48 0.75
Sparse-MRF(50 vars, ttest) 0.77 0.75 0.80 0.80 0.52 0.82

Sparse-MRF (100 vars, ttest) 0.70 0.78 0.73 0.83 0.70 0.82

Sparse-MRF(30 vars, lin.corr) 0.70 0.80 0.70 0.85 0.48 0.75
Sparse-MRF(50 vars, lin.cor) 0.78 0.83 0.80 0.77 0.55 0.75

Sparse-MRF (100 vars, lin.corr) 0.68 0.80 0.75 0.77 0.70 0.80

LASSO(100 vars, ttest) 0.85 0.90 0.90 0.90 0.45 0.65
LASSO(100 vars, lin.corr) 0.85 0.70 0.90 0.90 0.45 0.70

Table 1. Classification accuracy on Sliced data sets.

Method 04847 05680 04820
Original Transf. Original Transf. Original Transf.

RF-CSKF 0.87 0.92 0.85 0.90 0.65 0.92
RF-Dantzig 0.80 0.87 0.85 0.90 0.65 0.92

Sparse-MRF(30 vars, ttest) 0.85 0.88 0.80 0.83 0.75 0.80
Sparse-MRF(50 vars, ttest) 0.87 0.80 0.90 0.83 0.82 0.78

Sparse-MRF (100 vars, ttest) 0.95 0.80 0.95 0.78 0.90 0.78

Sparse-MRF(30 vars, lin.corr) 0.85 0.85 0.80 0.80 0.77 0.78
Sparse-MRF(50 vars, lin.corr) 0.87 0.83 0.83 0.83 0.77 0.78

Sparse-MRF (100 vars, lin.corr) 0.85 0.85 0.83 0.83 0.77 0.78

LASSO(100 vars, ttest) 0.95 0.95 1.00 0.95 0.75 0.90
LASSO(100 vars, lin.corr) 0.95 1.00 1.00 0.95 0.75 0.95

Table 2. Classification accuracy on Averaged data sets.

accuracy by 3-5%, especially when the number of variables is small; most of
the time it matches already quite high accuracy of Sparse-MRF on the original
averaged data, but in some cases it could actually hurt the performance, espe-
cially when the original accuracy is already very high (e.g., 95%). In general, we
expect the transformation to help Sparse-MRFs when their performance has a
room for improvement, but possibly avoid it when the performance is already
nearly-perfect.

Similar observations can be made for LASSO: transformation improves LASSO’s
performance on challenging sliced data, but on the easier averaged data the
performance remains roughly unchanged, except for the case of subject 04820
(column 3 in Table 2) where transformation appears to help dramatically.

We have assessed the effect of the linearized correlation ranking over the
prediction accuracy of the RF-CSKF classifier. Thus, the accuracies that were
obtained when using a standard correlation coefficient for column reordering of
the sliced data sets are 0.85 for subject 04847, 0.82 for subject 05680, and 0.75



for subject 04820. The corresponding accuracies that were obtained when using
the linearized correlation method are shown in Table 1.

Figure 1 demonstrates the role of the random RIP matrix P . Shown in this
figure are histograms of classification accuracies over 20 runs each of which is
based on a distinct realization of P . Here we have used the sliced data set for
subject 04820. It can be clearly shown that the classification accuracy greatly
depends on the realization used. Therefore, a selection mechanism for picking a
“good” realization (e.g., cross-validating over a development set) is crucial. It
is worthwhile noting that the mean prediction accuracy in this example is still
higher than the obtained one when using the non transformed data set.

0.7 0.75 0.8 0.85
0
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Classification Accuracy

Fig. 1. The effect of the random projection on the classification accu-
racy. Showing the accuracy for sliced data set 04820 using 20 different
realization of P .

7 Summary and Discussion

The isometric transformation, which is essentially random by nature, signifi-
cantly improves the performance of the random field compressed sensing-based
classifiers presented in this work. In the case where the least informative sliced
data sets are used the transformation improves the prediction accuracy, though
by a much modest percentage, of the Sparse-MRF and LASSO classifiers. How-
ever, it is shown that for the averaged data sets which yields already high pre-
dictive accuracies the transformation may not always help. The transformation
is proved to enforce the RIP on an arbitrary data matrix while assuming block-
sparse structure of the parameter space. This property explains the improvement
gained by the compressed sensing-based classifiers. The transductive approach
which consists of applying the transformation to the augmented data matrix that
is composed of both the training and (unlabeled) test samples may be regarded
as a form of semi-supervised learning (or adaptation).

It is shown that the realization of the random matrix P used for producing
the transformed data set greatly effects the classification accuracy. It is therefore
suggested that a “good” realization would be selected based on some preprocess-
ing such as the cross-validation method used in this work. One possible reason



for the relatively wide span of accuracies produced by randomly picking P is
related to the RIP constant δs of the chosen realization. It is well known fact
that evaluating this constant for a given matrix is generally intractable. This
problem is a part of the authors future research plans that is aimed at devising
a computational method for picking the best realization out of a few possible
outcomes.
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