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Sparse MRF Learning with Priors on Regularization Parameters

Abstract

In this paper, we consider the sparse inverse
covariance selection problem which is equiv-
alent to structure recovery of a Markov Net-
work over Gaussian variables. The prob-
lem of regularization parameter(s) selection
is addressed in a Bayesian way, by assum-
ing a prior on the parameter(s) and by us-
ing MAP optimization to find both the in-
verse covariance matrix and the unknown pa-
rameters. Our general formulation extends
prior art by allowing a vector of regulariza-
tion parameters and is well-suited for learn-
ing structured graphs such as scale-free net-
works where the sparsity of nodes varies sig-
nificantly. We also introduce a novel and ef-
ficient approach to solving the sparse inverse
covariance problem that compares favorably
to the state-of-art. Our empirical results
demonstrate advantages of our approach on
structured (scale-free) networks.

1 INTRODUCTION

We address the problem of learning the structure of
a sparse Markov network (Markov Random Field, or
MRF) over Gaussian variables, which is equivalent to
learning the zero-pattern of the inverse covariance ma-
trix. The accuracy of the structure reconstruction can
be very sensitive to the choice of this regularization pa-
rameter(s), and the problem of the “proper” selection
of this parameter in practical settings remains open,
despite theoretical advances that analyze asymptotic
behavior 1.

1As mentioned in [6], ”the general issue of selecting a
proper amount of regularization for getting a right-sized
structure or model has largely remained a problem with
unsatisfactory solutions”.

Our approach suggests an automated way of selecting
the regularization parameter(s) in sparse MRF learn-
ing, and generalizes a previously proposed approach of
[1] to the vector of regularization parameters. In our
framework, the regularization parameter(s) controlling
the sparsity of solution is considered to be a random
variable with certain prior, and the objective is to find
a maximum a posteriory probability (MAP) solution
(Θ, Λ), where Θ is the set of model parameters and
Λ is the set of regularization parameters. Our algo-
rithm is based on alternating optimization over Θ and
Λ, respectively.

Our general formulation is well-suited for learning
structured networks with potentially very different
node degrees (and thus different sparsity of the
columns in the inverse covariance matrix). One com-
mon practical example of such networks are networks
with heavy-tail (power-law) degree distributions, also
called scale-free networks. Examples of such networks
include social networks, protein interaction networks,
Internet, world wide web, correlation networks be-
tween active brain areas in fMRI studies [8], and many
other real-life networks (see [3] for a survey). Our em-
pirical results compare a wide variety of approaches
to the regularization parameter selection and vector-
based approaches appear to be an attractive choice.

Moreover, we propose a novel algorithm (SINCO) for
sparse inverse covariance matrix reconstruction given
a regularization parameter. SINCO solves the primal
problem (unlike its predecessors such as COVSEL of
[7], using coordinate descent, is very efficient and natu-
rally preserving the sparsity of the solution. As is seen
from our computational results SINCO has better ca-
pability in reducing the false positives error than glasso
[4], since it rarely introduces unnecessary nonzero ele-
ments.



2 MAP APPROACH TO SPARSE
GAUSSIAN MRF LEARNING

Let X = {X1, ..., Xp} be a set of p random variables,
and let G = (V, E) be a Markov network (a Markov
Random Field, or MRF) representing the conditional
independence structure of the joint distribution P (X).
The set of vertices V = {1, ..., p} is in a one-to-one
correspondence with the set of variables in X. The
edge set E contains an edge (i, j) if and only if Xi

is conditionally dependent on Xj given all remaining
variables; the lack of edge between Xi and Xj means
that the two variables are conditionally independent
given all remaining variables [?].

We will assume a multivariate Gaussian probability
density function over X = {X1, ..., Xp}:

p(x) = (2π)−p/2 det(Σ)−
1
2 e−

1
2 (x−µ)TΣ−1(x−µ) (1)

where µ is the mean and Σ is the covariance ma-
trix of the distribution, respectively, and xT denotes
the transpose of the column-vector x. Without loss
of generality we will assume that the data are nor-
malized to have zero mean (µ = 0), and we only
need to estimate the parameter Σ (or Σ−1). Since
det(Σ)−1 = det(Σ−1), we can now rewrite eq. 1, as-
suming C = Σ−1 and µ = 0:

p(x) = (2π)−p/2 det(C)
1
2 e−

1
2xT Cx. (2)

Missing edges in the above graphical model corre-
spond to zero entries in the inverse covariance ma-
trix C = Σ−1, and thus the problem of structure
learning for the above probabilistic graphical model is
equivalent to the problem of learning the zero-pattern
of the inverse-covariance matrix. Note that the in-
verse of the maximum-likelihood estimate of the co-
variance matrix Σ (i.e. the empirical covariance ma-
trix A = 1

n

∑n
i=1 xT

i xi where xi is the i-th sample,
i = 1, ..., n), even if it exists, does not typically contain
any elements that are exactly zero. Therefore an ex-
plicit sparsity-enforcing constraint needs to be added
to the estimation process.

A common approach is to include as penalty the l1-
norm of C, which is equivalent to imposing a Laplace
prior on C in maximum-likelihood framework [7, 4, 10].
Formally, the entries Cij of the inverse covariance ma-
trix C are assumed to be independent random vari-
ables, each following a Laplace distribution p(Cij) =
λij

2 e−λij |Cij−αij | with zero location parameter (mean)
αij and common scale parameter λij = λ, yield-
ing p(C) =

∏p
i=1

∏p
j=1 p(Cij) = (λ/2)p2

e−λ||C||1 ,
where ||C||1 =

∑
ij |Cij | is the (vector) l1-norm of

C. Then the objective is to find the maximum-
likelihood solution arg maxCÂ0 p(C|X), where X is the

n × p data matrix, or equivalently, since p(C|X) =
P (X, C)/p(X) and p(X) does not include C, to find
arg maxCÂ0 P (X, C), over positive definite matrices
C. This yields the following optimization problem con-
sidered in [7, 4, 10]:

max
CÂ0

ln det(C)− tr(AC)− λ||C||1 (3)

where det(Z) and tr(Z) denote the determinant and
the trace (sum of the diagonal elements) of a matrix
Z, respectively.

Herein, we make a more general assumption about
p(C), allowing different rows in C to have different
parameters λi, i.e., p(Cij) = λi

2 e−λi|Cij | This reflects
our desire to model structured networks with poten-
tially very different node degrees (i.e., row densities
in C). This yields p(C) =

∏p
i=1

∏p
j=1

λi

2 e−λi|Cij | =

=
∏p

i=1
λp

i

2p e−λi

∑p
j=1 |Cij |.

Moreover, we will take Bayesian approach and assume
that parameters λi are also random variables following
some joint distribution p({λi}). Given a dataset X of
n samples (rows) of vector X, the joint log-likelihood
can be then written as

ln L(X, C, {λi}) = ln{p(X|C)p(C|{λi})p({λi})} =

const +
n

2
ln det(C)− 1

2

n∑

i=1

xT
i Cxi + p

p∑

i

ln
λi

2
−

−
p∑

i

λi

p∑

j=1

|Cij |+ ln p({λi}),

where const does not depend on C or {λi}.
We can also rewrite

∑n
i=1 xT

i Cxi = ntr(AC) where tr
denotes the trace of a matrix, and A = 1

n

∑n
i=1 xT

i xi

is the empirical covariance matrix.

We will use the maximum a posteriori probability
(MAP) approach that requires maximization of the
above joint log-likelihood, rewritten as

max
CÂ0,{λi}

n

2
[ln det(C)− tr(AC)]−

p∑

i

λi

p∑

j=1

|Cij |+

+p

p∑

i

ln λi + ln p({λi}),

where C Â 0 constraint ensures the solution C (inverse
covariance matrix) is positive definite.

We will consider independent λi following exponential
priors p(λi) = bie

−biλi . This yields:

max
CÂ0,λ∈Rp

n

2
[ln det(C)− tr(AC)]−

p∑

i

λi

p∑

j=1

|Cij |+

p

p∑

i

ln λi −
p∑

i

biλi. (4)



Rather than taking a more expensive, fully Bayesian
approach here and integrating out C in order to ob-
tain the maximum-likelihood type II estimate of bi, we
will use an approximate estimate bi = ||A(i)−1

r ||1/p,
where Ar = A + εI is the empirical covariance ma-
trix2, and Ar(i) denotes its i-th row. In other words,
bi is estimated as an average l1-norm per element of
i-th row. We also considered the truncated (to
exclude negative values of λ) unit-variance Gaussian
prior which replaces

∑p
i biλi in the equation above

with
∑p

i (λi − bi)2/2.

3 SINCO: NEW METHOD FOR
SPARSE INVERSE-COVARIANCE
MATRIX SELECTION

Let S be some given p×p symmetric matrix with non-
negative entries. We are considering the following op-
timization problem:

max
CÂ0

n

2
[ln det(C)− tr(AC)]− λ‖C‖S (5)

Here by ‖C‖S we denote the sum of absolute values of
some elements of the matrix S ·C, where · denotes the
element-wise product. For example if S is a matrix of
all ones, then ‖ · ‖S equals to the sum of the absolute
values of all the element of a matrix and the problem
reduces to the problem addressed in [7] (i.e., eq. 3 with
λ replaced by (2/n)λ).

The dual of this problem can be written similarly to
the dual in [7]

max
WÂ0

{n

2
ln det(W )−np/2 : s.t. −S ≤ n

2
(W−A) ≤ S},

(6)
here the inequalities involving matrices W , A and S
are element-wise.

The optimality conditions for this pair of primal
and dual problems imply that W = C−1 and that
(n/2)Wij −Aij = Sij if Cij > 0 and (n/2)Wij −Aij =
−Sij if Cij < 0. Hence, ‖C‖S = tr(((n/2)W −A)C) =
np/2− tr(AC).

3.1 OPTIMIZATION ALGORITHM

We now consider possible optimization algorithms for
solving problems 5 or 6. These problems are convex
and the interior point method can be applied, however,
the per-iteration cost of the interior point method or
any other second-order method prohibits their use for
many practical instances. Several other methods were
proposed, such as glasso [4] and block coordinate de-
scent [7], Nesterov’s smoothing method [9], [7] and a

2slightly regularized with small ε = 10−3 on the diago-
nal to obtain an invertible matrix when A is not invertible.

projected gradient [?]. With the exception of glasso,
the other proposed methods solve the dual problem
and hence do not exploit the potential sparsity of the
dual solution. Here we describe another version of co-
ordinate descent applied to the primal problems, with
a small cost per iteration. We refer to this method as
SINCO, for Sparse INverse COvariance problem. The
advantage of this method is that it works directly on
the primal matrix and updates it two elements at a
time, hence, naturally preserving the sparsity of the
solution. As is seen from our computational results
SINCO has better capability in reducing the false pos-
itives error than glasso [4], since it rarely introduces
unnecessary nonzero elements to the primal matrix C.
Here we briefly describe the method.

First let us consider a reformulation of the problem 5:

max
C′,C′′

n

2
[ln det(C ′ − C ′′)− tr(A(C ′ − C ′′))]−

−tr(S(C ′ + C ′′)), s.t.C ′ ≥ 0, C ′′ ≥ 0.

The method we propose works as follows:

0. Initialize C
′
= I, C

′′
= 0

1. find W = (C
′ − C

′′
)
−1

;

2. Form the gradient G
′
=

n

2
(W − A)− S and

G
′′

= −S − n

2
(W + A)

3. For each pair (i, j) such that

G
′
ij > 0, C

′′
ij = 0, compute the maximum by

updating C
′

along the direction eie
T

j + eje
T

i

G
′
ij < 0, C

′
ij > 0, compute the maximum by

updating C
′

along the direction − eie
T

j − eje
T

i

G
′′
ij > 0, C

′
ij = 0, compute the maximum by

updating C
′′

along the direction eie
T

j + eje
T

i

G
′′
ij < 0, C

′′
ij > 0, compute the maximum by

updating C
′′

along the direction − eie
T

j − eje
T

i

4. Choose the step which provide the maximum

function improvement

5. Update W
−1

and the function value and repeat.

6. end

The key to this very simple-minded coordinate de-
scent algorithm is the fact that the maximum the one-
dimensional function in Step 3 is available in a closed
form. Indeed, consider the step C̄ ′ = C ′ + θ(eie

T

j +
eje

T

i ).

The inverse W , then, is updated, according to the
Sherman-Morrison-Woodbury formula [?], as follows

W̄ = W − θ(κ1WiW
T

j + κ2WiW
T

i + κ3WjW
T

j + κ1WjW
T

i )

κ1 = −(1 + θWij)/(θ2(Wii ∗Wjj −W 2
ij)− 1− 2 ∗ θ ∗Wij)

κ2 = θWjj/(θ2(Wii ∗Wjj −W 2
ij)− 1− 2θWij)

κ3 = θWii/(θ2(Wii ∗Wjj −W 2
ij)− 1− 2θ ∗Wij).



Let us consider the derivative of the objective function
with respect to θ

f ′(θ) = (nWij − nAij − Sij − Sji) +
Nθ(WiiWjj + W 2

ij)/(θ2(WiiWjj −W 2
ij)− 1− 2θWij)

+2θWij(WiiWjj −W 2
ij)) ;

To find the value of θ for which the derivative of the
objective function equals zero we need to solve the
following quadratic equation

abθ2 + (na− 2Wijb)θ− (nWij −nAij −Sij −Sji) = 0,

where a = WiiWjj −W 2
ij and b = −nAij − Sij − Sji.

Notice that a is always nonnegative, because matrix W
is positive definite, and it equals to zero only when i =
j. We know that at θ = 0 f ′(0) > 0. Let us investigate
what happens when θ grows. The discriminant of the
quadratic equation is

D = (Na + 2Wijb)2 + 4ab2 ≥ 0,

hence the quadratic equation always has a solution. It
is possible to show, by analyzing the quadratic equa-
tion that the maximum of the function of θ can be
found from the solution of this quadratic equations.

The other possible steps listed in Step 3 can be ana-
lyzed analogously. The objective function value is easy
to update using the formula

det(C′−C′′+θ(eie
T

j +eje
T

i )) = det(C′−C′′)(1+2θWij−θ2a));

Each step can be computed by a constant number of
arithmetic operations, hence to find the step that pro-
vided maximum function value improvement it takes
O(n2) operations - the same amount of work (up to a
constant) that it takes to update W and the gradient
after one iteration. Hence the per-iteration complexity
is small. Moreover, this algorithms lends itself readily
to massive parallelization.

The convergence of the method follows from the con-
vergence of a block-coordinate descent method on a
strictly convex objective function. The only con-
straints are box constraints (nonnegativity) and they
do not hinder the convergence.

4 FIXED-POINT METHOD FOR λ
SELECTION

We shall now address the optimization problem arising
in selection of parameter λ as discussed in Section 2.

4.1 SCALAR λ

We consider the following optimization problems:

max
C,λ

n

2
[ln det(C)−tr(AC)]−λ‖C‖S+p2lnλ−θ(λ), (7)

where θ(λ) is some given function of λ derived from the
prior introduced in Sections 2 and 3. By ‖C‖S we de-
note the sum of absolute values of the elements of the
matrix S · C, where · denotes the element-wise prod-
uct, where S is a given p× p matrix with nonnegative
entries.

Let f(C) = n
2 [ln det(C)− tr(AC)], and let us consider

the following function:

φ(λ) = max
C

f(C)− λ‖C‖S .

The function n
2 [ln det(C)−tr(AC)]−λ‖C‖S is strictly

concave and, hence, has a unique maximizer C(λ)
for any value of λ. From general theory of convex
optimization in [?] we know that φ(λ) is a differen-
tiable convex function whose derivative for any given
λ equals ‖C(λ)‖S . The proof of this simple fact can
be found in the Appendix.

Lemma 4.1 φ(λ) is a differentiable convex function
whose derivative for any given λ equals −‖C(λ)‖S.

Now let us consider the following optimization problem

max
λ

ψ(λ) = max
λ

(φ(λ) + p2 ln λ− θ(λ). (8)

Clearly, the optimal solution to this problem is also
optimal for problem (7). To find φ(λ) one needs to
solve the the sparse inverse covariance selection prob-
lem with a fixed value of λ. This can be done by
SINCO method described in the previous section or
by several other methods, see e.g., [7, 4].

Notice that ψ(λ) is a sum of a convex and a concave
functions, hence is neither convex nor concave and may
have multiple local optima. In our experiments with
θ(λ) = bλ we observed that the maximum was unique
in most of the cases. In the rare case when it appeared
to be not unique, it was not clear if such was the true
nature of ψ(l) or a result of inaccuracies in the solution
of the convex subproblems.3

3The derivative of ψ(λ) is p2/λ − ‖C(λ)‖S − b. Here
are some observations which help explain why a unique
stationary point is typical for the case when θ(λ) = bλ. We
are considering all point for which ψ(λ) = 0. Multiplying
the expression for the gradient by nonnegative λ we have
that

λψ′(λ) = p2 − λ‖C(λ)‖S − bλ

If the quantity λ‖C(λ)‖S increases as λ grows (which is ex-
pected since the decrease of λ usually slows down with the
growth of λ) then the right hand side of the last equality is
a decreasing function of λ. Hence the equality to zero can
only be achieved for a single value of λ which would imply
unique maximum. We are not yet aware of any theoretical
result that guarantees that λ‖C(λ)‖S increases monoton-
ically with λ but we have consistently observed it in the
experiments. Note also that for sufficiently small λ the
quantity λψ′(λ) is positive, while for sufficiently large λ it
becomes negative. Hence an existence of at least one local
maximum is always guaranteed.



A similar analysis and an update rule can be derived
for the Gaussian prior on λ.

We will describe the optimization scheme to solve
problem 8 in the next section.

4.2 VECTOR λ

Now let us consider a similar problem to (7), but with
λ - a vector of weights for the S-norm of the columns of
C. Hence we will now consider a vector norm ‖Ci‖Si

which is the same the matrix norm we discussed before,
applied to columns (or rows) of C and S.

max
C,λ

n

2
[ln det(C)− tr(AC)]−

p∑

i=1

λi‖Ci‖Si

+ p

p∑

i=1

lnλi −
p∑

i=1

biλi

As before, let f(C) = n
2 [ln det(C)− tr(AC)], and

φ(λ) = max
C

f(C)− λ‖C‖S .

Notice that, for any fixed λ̄,
∑

i λ̄i‖Ci‖Si = ‖C‖λ·S ,
where λ · S is a matrix whose i-th column equals λiSi

for all i. This implies that for any fixed and given λ
and λ̄ function φ(θ) = φ(λ+θλ̄) reduces to the case of
the univariate φ(λ) described in the previous section.
This implies, for instance, that the multivariate func-
tion φ(λ) is convex in any direction, hence is convex in
general. Also from the analysis in the previous section
it is easy to see that the i-th element of the gradient
of φ(λ) equals −‖Ci(λ)‖Si .

Now we consider ψ(λ) = φ(λ) + p
∑p

i=1 ln λi −∑p
i=1 biλi. This function is again neither concave nor

convex. Its gradient is

(∇ψ(λ))i = −‖Ci(λ)‖Si + p/λi − bi, i = 1, . . . , p,

where C(λ) is, again, the maximizer of f(C)− λ‖C‖S

for a given λ. Hence for λ∗ which maximizes ψ(λ) we
have

‖Ci(λ∗)‖Si + bi = p/λ∗i , i = 1, . . . , p,

or, equivalently,

λ∗i =
p

‖Ci(λ∗)‖Si + bi
, i = 1, . . . , p.

Hence λ∗ is a fixed point of the following operator
T (λ) = p/(‖C(λ)‖S + b), where by p/(‖C(λ)‖S +
b) we mean a p-dimensional vector with entries
p/(‖Ci(λ)‖Si + bi). To solve this problem we consider

applying the following fixed point algorithm

0. Initialize λ1;
1. find C(λk) and φ(λk);

2. If
∑

i

(p/λi − ‖Ci(λk)‖Si
− bi)2 < ε go to step 4.

3. λk+1
i = p/(‖Ci(λk)‖Si

+ bi); go to step 1.

4. end

Note that in Step 1 we perform a standard inverse
covariance selection optimization problem with fixed
λ such as is done in the previous section.

In our experiments the fixed point algorithm presented
above converged in every experiment. While we do not
have theoretical guarantees of the convergence of the
algorithm4, we will present a modification of the al-
gorithm which invokes a line search algorithm in case
the fixed point iteration fails to provide sufficient im-
provement in the objective function ψ(λ).

We apply the following optimization algorithm.

0. Initialize λ1;
1. find C(λk) and φ(λk);

2. If
∑

i

(p/λi − ‖Ci(λk)‖Si − bi)2 < ε go to step 5.

3. λk+1
i = p/(‖Ci(λk)‖Si + bi); (9)

4. find Ci(λk+1) and ψ(λk+1);
if ψ(λk+1) > ψ(λk) k = k + 1, go to step 3.

else λk+1 = (λk + λk+1)/2. Go to step 4.

5. end

The proposed algorithm performs a line search along
the direction d defined by di = p/(‖Ci(λ)‖Si +bi)−λi,
while the gradient of ψ(λ) equals g such that gi =
p/λi−‖Ci(λ)‖Si−bi. If we consider the inner product,

4The fixed point algorithm is known to converge when
the Lipschitz constant of operator T is less than 1. The
Lipschitz constant of T at a given λ can be bounded by

pLC(λ)

(‖C(λ)‖S+mini bi)2
, where LC(λ) is the upper bound of Lip-

schitz constant of ‖C(λ)‖S at λ. If our earlier observation,
that ‖C(λ)‖S typically reduces slower than λ grows, holds,
then LC ≤ 1 and we can estimate the Lipschitz constant
of T during the fixed point algorithm. Moreover, we can
see that, since ‖C(λ)‖S is monotonically decreasing and is
bounded from below, then LC(λ) → 0 as λ →∞ and hence
for large enough λ there is always at least one fixed point
for operator T . Hence we can conclude that the maximum
of ψ(λ) is achieved. Note also that λ∗i ≤ p/bi, i = 1, . . . , p
and due to the fact that we are only interested in solu-
tions C(λ) such that ‖C(λ)‖S is bounded from above by
some predefined constant, we can assume w.l.o.g that we
consider only λi ≥ δ for all i = 1, . . . , p and for some δ > 0.



we have d
T

g =
∑

i

(p2/(λi(‖Ci(λ)‖Si + bi)) + λi(‖Ci(λ)‖Si + bi)− 2p) =

1

p

∑
i

(p/λi(‖Ci(λ)‖Si + bi) + λi(‖Ci(λ)‖Si + bi)/p− 2) ≥ 0.

Hence, unless p = λi‖Ci(λ)‖Si
for all i, then we know

the the direction d makes and obtuse angle with the
gradient and, thus, is an ascent direction. In the case
when p = λi‖Ci(λ)‖Si for all i, then the gradient of
ψ(λ) is zero and the algorithm have converged to a
local stationary point. In fact we can show that

d
T

g/‖d‖‖g‖ ≥ const > 0,

for all cases when ‖d‖‖g‖ > 0, which means that the
cosine of angle between the gradient and the direction
d remains bounded away from zero, which will in turn
imply that sufficient ascent can always be achieved by
a line search along direction d. Indeed, from ‖d‖‖g‖ ≤
‖d‖2+‖g‖2

2 we have d
T

g/‖d‖‖g‖ ≥

2

∑p
i=1(p

2/(λi(‖Ci(λ)‖Si + bi) + λi(‖Ci(λ)‖Si + bi)− 2p)∑p
i=1((

p
λi
− (‖Ci(λ)‖Si + bi))2 + ( p

(‖Ci(λ)‖Si
+bi)

− λi)2)
≥

p∑
i=1

λi(‖Ci(λ)‖Si + bi) ≥ const > 0.

The last inequality comes from the facts that
(‖Ci(λ)‖Si + bi) > bi) and that λi ≥ δ > 0 for all
i = 1, . . . , p.

The advantage of the Algorithm (9) is that, while the-
oretically convergent to the optimum solution, it only
resorts to line search if the initial fixed point iteration
fails. Hence, in practice, no extra work is necessary
to apply this algorithm. In our experiment the num-
ber of fixed point iterations was small compared to
the dimension p and the algorithm worked very effi-
ciently. The work of each iteration is essentially the
same as the work taken by a single solve of the inverse
covariance problem, but since the consecutive solves
are related, one can successfully utilize warm starts.

5 EMPIRICAL EVALUATION

We performed experiments on semi-realistic synthetic
data generated from “structured” random networks
that followed a power-law degree distribution over the
variables. The networks were generated using the
preferential attachment (Barabasi-Albert) model [3] 5,
that produces “scale-free” (power-law) networks con-
taining (relatively few) very highly connected “hubs”
besides a large number of sparsely connected nodes.

5We used the open-source Matlab code available at
http://www.mathworks.com/matlabcentral/fileexchange/11947.

Although such networks are sparse in terms of total
number of edges, their power-law structure is a natural
candidate for using vector rather than scalar sparsity
parameter.

We generated power-law networks with density
5%, 21% and 31%, measured by the % of non-zero
off-diagonal entries. For each density level, we gen-
erated 5 different power-law networks over p = 100
variables, that defined the structure of the “ground-
truth” inverse covariance matrix, and for each of them,
we generated 5 matrices with randomly generated co-
variances corresponding to the non-diagonal non-zero
entries (bounded by 0.1 in order to ensure the re-
sulting matrix is positive-definite)6 We then sampled
n = 50, 100, 200, 500, 1000, 10000 instances from the
corresponding multivariate Gaussian distribution over
p = 100 variables.

We evaluated the following methods of selecting λ
when reconstructing the sparse MRF structure from
data: (1) theoretical λ - theoretically derived λ in [2]7;
(2) cross-validation λ is selected as one giving best av-
erage prediction (i.e. minimizing the sum-squared pre-
diction error) over the network nodes; (3) “exponen-
tial scalar” and (4) “exponential vector” correspond to
parameter selected using our method with exponential
prior, its scalar and vector versions, respectively; (5)
Gaussian scalar and (6) Gaussian vector are defined
similarly for Gaussian prior; (7) fixed λ = 1/b simply
assigns to λ the mean of the exponential distribution
estimated directly from the data as mentioned in sec-
tion 2; finally (8) flat (“regularized likelihood”) corre-
sponds to the flat-prior version described in [1] along
with the other scalar priors. We report the off-diagonal
true positive (TP) and false positive (FP) rates.

Figure 1 summarizes the results on scale-free networks
with density 21%, comparing vector-lambda approach
to the scalar approach and to a wide variety of other
methods mentioned above (we observed similar type
of results for other densities). We observed that:
1. cross-validation (CV) for prediction often selects
nearly-zero λ, and thus is similar to unregularized ML
estimate, selecting too many edges and having very
high false-positive rate; this is not surprising as it
is well known that cross-validated λ for the predic-
tion objective can be a very bad choice for the struc-
ture/model selection in l1-regularized setting (e.g., see
[5] for examples);

6The variance over the results was quite small.
7Theoretically derived λ has asymptotic guarantee of

correct recovery of the connectivity components (rather
than edges), which correspond to marginal rather than con-
ditional independencies, i.e. to the entries in covariance
rather then the inverse covariance matrix. Although such
approach is asymptotically consistent, for finite number of
samples it tends to miss many edges.



10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
SF networks, density = 0.21

N

T
ru

e 
P

os

 

 

Theoretical
Exp. scalar
Exp. vector
Flat (Reg. LL)
Gaussian scalar
Gaussian vector
Lambda=1/b
CV lambda

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
SF networks, density = 0.21

N

F
al

se
 P

os

 

 
Theoretical
Exp. scalar
Exp. vector
Flat (Reg. LL)
Gaussian scalar
Gaussian vector
Lambda=1/b
CV lambda

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

SF networks, density = 0.21

b

la
m

bd
a

 

 
N=50
N=100
N=200
N=500
N=1000
N=5000
N=10000

(a) TP (b) FP (c) lambda vs b

Figure 1: Results on scale-free networks (21% density).

2. theoretical (Banerjee’s) λ is another extreme: its
edge selection is too conservative in order to bound
the false-positive rate of the covariance matrix entries
asymptotically, and thus its true positive rate is close
to zero unless the number of samples becomes very
large;
3. our approaches are in between the two extremes, for
both exponential and Gaussian priors.
4. vector-λ approaches seem preferable in the rela-
tively low-sample regime (especially Gaussian-vector-
method), since their scalar counterparts tend to be too
conservative and yield TP=0 in that regime;
5. regularized likelihood behaves very similar to scalar-
exponential method, but does not require parameter
tuning;
6. simply setting λ = 1/b, i.e. to the mean of the
exponential distribution, does not seem to work well
as its FP rate is very high in both small-sample and
large-sample regimes, only going somewhat doing in
the mid-sample regime.
7. Figure 1(c) shows that λ is not very sensitive to
the choice of b for a wide range of bs when N gets
sufficiently high.

Figure 2 compares SINCO versus glasso in terms of
their solution accuracy. Recall that SINCO solves the
primal problem rather than dual, and its incremental
updates naturally preserve the sparsity of the solution.
Indeed, when we use SINCO vs glasso with the same
λ (e.g., λ = 1/b as shown in the first row of Figure 2),
the false-positive error drops to zero as the number of
samples grows, while glasso yields an increasing error
that approaches 100%! This behavior remains to be
understood better. Apparently, for the same gorwth
rate of λ, the amount of regularization is enough for
SINCO to reach 0%, but for glasso a higher λ may
be required, otherwise the first term in 5 that grows
linearly in n pushes the result towards unregularized
(and dense) ML estimate. On the other hand, since
eventually ML estimate must converge to the true in-

verse covariance matrix, the FP error must dropped,
but apparently it happens later with glasso. Similarly,
the second row of Figure 2 compares the two meth-
ods when used as subroutines at each iteration of our
fixed-point method, for a particular value of the hy-
perparameter b. Apparently, SINCO leads to lower λ,
and thus higher sparsity and (much) lower FP rate,
while its true positive (TP) rate is very similar to the
one of glasso.
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6 Appendix

Proof of Lemma 4.1

Proof. Consider φ(λ+dλ)−φ(λ)
dλ

=

=
f(λ + dλ)− (λ + dλ)‖C(λ + dλ)‖S − f(λ) + λ‖C(λ)‖S

dλ
=

f(λ + dλ)− λ‖C(λ + dλ)‖S − f(λ) + λ‖C(λ)‖S

dλ
− ‖C(λ + dλ)‖S

We will now show that

lim
dλ→0

f(λ + dλ)− λ‖C(λ + dλ)‖S − f(λ) + λ‖C(λ)‖S

dλ
= 0 (10)

Let us consider only dλ > 0 for a moment. Assume that

lim sup
dλ→0

f(λ + dλ)− λ‖C(λ + dλ)‖S − f(λ) + λ‖C(λ)‖S

dλ
≥ 2ε > 0.

This means that there is an infinite sequence dλk → +0
such that

f(λ + dλk)− λ‖C(λ + dλk)‖S ≥ f(λ)− λ‖C(λ)‖S + εdλk.

Since εdλk > 0 this means that for some small enough
dλk C(λ+dλk) is a better solution that C(λ) for the given
λ. Since by assumption C(λ) is the maximizer, then we
have reached a contradiction and the above lim sup equals
to zero.

Now assume

lim inf
dλ→0

f(λ + dλ)− λ‖C(λ + dλ)‖S − f(λ) + λ‖C(λ)‖S

dλ
≤ 2ε < 0.

Again we have a sequence dλk → +0 for which

f(λ + dλk)− λ‖C(λ + dλk)‖S ≤ f(λ)− λ‖C(λ)‖S + εdλk.

or

f(λ + dλk)− (λ + dλk)‖C(λ + dλk)‖S ≤ f(λ)− (λ + dλk)‖C(λ)‖S

+εdλk + dλ(‖C(λ)‖S − ‖C(λ + dλk)‖S).

Since ‖C(λ)‖S − ‖C(λ + dλk)‖S) → 0 as dλk → 0, then
for large enough k we have

f(λ + dλk)− (λ + dλk)‖C(λ + dλk)‖S < f(λ)− (λ + dλk)‖C(λ)‖S ,

which contradicts the fact that C(λ + dλk) is the optimal
solution for λ + dλk. The proof can be repeated almost
identically for dλ < 0, hence we have shown (10).

It is now trivial to conclude that the derivative

φ
′
(λ) = lim

dλ→0

φ(λ + dλ)− φ(λ)

dλ

= lim
dλ→0

−‖C(λ + dλ)‖S = −‖C(λ)‖S

The convexity follows from the simple fact that as λ in-
creases ‖C(λ)‖S has to decrease, hence the derivative of
φ(λ) increases.


