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Abstract
We present a new algorithm for lossy speech com-
pression. The new algorithm is based on a simple
technique for embedding a compressed sensing mech-
anism within a conventional Kalman filter. As such, it
is capable of constructing compressed representations
using significantly less samples than what is usually
considered necessary.
Index Terms: Lossy Compression, Compressed Sens-
ing, Speech coding

1. Introduction
Recent studies have shown that sparse signals can be
recovered accurately using less observations than what
is considered necessary by the Nyquist/Shannon sam-
pling principle; the emergent theory that brought this
insight into being is known as compressed sensing
(CS) [1,2]. The essence of the new theory builds upon
a new data acquisition formalism, in which compres-
sion plays a fundamental role. From a filtering stand-
point, one can think about a procedure in which sig-
nal recovery and compression are carried out simulta-
neously, thereby reducing the amount of required ob-
servations. Sparse, and more generally, compressible
signals arise naturally in many fields of science and
engineering. A typical example is the reconstruction
of images from under-sampled Fourier data as encoun-
tered in radiology, biomedical imaging and astronomy.
Other applications consider model-reduction methods
to enforce sparseness for preventing over-fitting and
for reducing computational complexity and storage ca-
pacities. The reader is referred to the seminal work re-
ported in [2] and [1] for an extensive overview of the
CS theory.

The CS paradigm was used for audio compression
in [3]. Relying on some classical techniques for solv-
ing the CS problem, such as basis pursuit and orthog-
onal matching pursuit, the method derived in [3] con-
structs a sparse discrete cosine transform representa-
tion of the underlying audio signal.

In this work we utilize a newly developed CS-
based Kalman-filtering algorithm for obtaining a com-

pressed frequency-domain representation of a speech
signal from under-sampled time sequence.In virtue
of its CS mechanism, the new algorithm, which is
termed CSKF in [4], reconstructs an approximate
short-time discrete Fourier transform (DFT) of the
signal using significantly less samples than conven-
tional methods. The method derived here shows
the potential of the CS approach in reducing the
amount of acquired samples in parametric audio
compression methods such as harmonic and indi-
vidual lines and noise (HILN) algorithm [5].

This paper is organized as follows. The next sec-
tion briefly reviews the CS approach in the framework
of linear estimation. Section 3 presents the CSKF al-
gorithm. The application of the CSKF to lossy speech
compression is discussed in Section 4. Finally, a nu-
merical example and conclusions follow thereafter.

2. Sparse Linear Estimation
Consider anRn-valued random discrete-time process
{xk}∞k=1 that is sparse in some known orthonormal
sparsity basisψ ∈ R

n×n, that is

zk = ψTxk, #{supp(zk)} < n (1)

wheresupp(zk) and# denote the support ofzk and
the cardinality of a set, respectively. Assume thatzk

evolves according to

zk+1 = Azk + wk, z0 ∼ N (µ0, P0) (2)

whereA ∈ R
n×n and{wk}∞k=1 is a zero-mean white

Gaussian sequence with covarianceQk ≥ 0. Note that
(2) does not necessarily imply a change in the support
of the signal. For example,A can be a block-diagonal
matrix decomposed ofAd andAn corresponding to
the statistically independent elementszd /∈ supp(zk)
andzn ∈ supp(zk) where the respective noise covari-
ance sub-matrices satisfyQd = 0 andQn ≥ 0. The
processxk is measured by theRm-valued random pro-
cess

yk = Hxk + ζk = H ′zk + ζk (3)



where {ζk}∞k=1 is a zero-mean white Gaussian se-
quence with covarianceRk > 0, andH := H ′ψT ∈
R

m×n is a sensing matrix.
Letting yk := [y1, . . . , yk], our problem is de-

fined as follows. We are interested in finding ayk-
measurable estimator,̂xk, that is optimal in some
sense. Often, the sought after estimator is the
one that minimizes the mean square error (MSE)
E
[

‖ xk − x̂k ‖2
2

]

. It is well-known that if the linear
system (2), (3) is observable then the solution to this
problem can be obtained using the Kalman filter (KF).
On the other hand, if the system is unobservable, then
the regular KF algorithm is useless; if, for instance,
A = In×n, then it may seem hopeless to reconstruct
xk from an under-determined system in whichm < n
andrank(H) < n. Surprisingly, this problem may be
circumvented by taking into account the fact thatzk is
sparse.

2.1. Compressed Sensing

Refs. [1, 2] have shown that in the deterministic case
(i. e., whenz is a parameter vector), one can accurately
recoverz (and therefore alsox, i.e.,x = ψz) by solv-
ing the optimization problem

min ‖ ẑ ‖0 s.t.
k
∑

i=1

‖ yi −H ′ẑ ‖2
2≤ ε (4)

for a sufficiently smallε, where

‖ v ‖p=

(

n
∑

j=1

vp
j

)1/p

(5)

is thelp-norm ofv, and the zero-norm,‖ v ‖0, is de-
fined as1 ‖ v ‖0 := # {supp(v)}.

Following a similar rationale, in the stochastic
case the sought-after optimal estimator satisfies [6]

min ‖ ẑk ‖0 s.t.Ezk|yk

[

‖ zk − ẑk ‖2
2

]

≤ ε (6)

Unfortunately, the above optimization problems are
NP-hard and cannot be solved efficiently. Recently,
it has been shown that if the sensing matrixH ′ obeys
a so-calledrestricted isometry property(RIP) whilez
is sparse enough possibly with [6]

s = O(m/ log(n/m)) (7)

wheres = #{supp(z)}, then the solution of the com-
binatorial problem (4) can almost always be obtained
by solving the constrained convex optimization [1,6]

min ‖ ẑ ‖1 s.t.
k
∑

i=1

‖ yi −H ′ẑ ‖2
2≤ ε (8)

1For 0 ≤ p < 1, ‖ v ‖p is not a norm; the common
terminology iszero normfor p = 0 andquasi-normfor 0 <

p < 1.

This is a fundamental result in the new emerging the-
ory of compressed sensing (CS) [1, 6]. The main idea
is that the convexl1 minimization problem can be ef-
ficiently solved using a myriad of existing methods,
such as LASSO [7], the Dantzig selector [8], Basis
pursuit and Basis pursuit de-noising [9], to mention
only a few.

3. The CSKF
For the system described by (2) and (3) the classical
KF provides an estimatêzk that is a solution to the
unconstrainedl2 minimization problem

min
ẑk

Ezk|yk

[

‖ zk − ẑk ‖2
2

]

Inspired by the CS approach while retaining the KF
objective function, we replace (6) by the dual con-
strained optimization [4]

min
ẑk

Ezk|yk

[

‖ zk − ẑk ‖2
2

]

s.t. ‖ ẑk ‖1≤ ε′ (9)

The constrained optimization problem (9) can be
solved in the framework of Kalman filtering using the
pseudo-measurement (PM) technique [4]. The idea is
fairly simple: the inequality constraint‖ zk ‖1≤ ε′ is
incorporated into the filtering process using a fictitious
measurement0 =‖ zk ‖1 −ε′, whereε′ serves as a
measurement noise. This PM can be rewritten as

0 = H̄zk−ε′, H̄ := [sign(zk(1)), . . . , sign(zk(n))]
(10)

wheresign(zk(i)) denotes the sign function of theith
element ofzk (i.e., sign(zk(i)) = 1 if zk(i) > 0 and
equals 0 otherwise) . In this setting, the covariance
Rε of ε′ is regarded as a tuning parameter, which can
be determined based on simulation runs. A single it-
eration of the CS-embedded KF is detailed in Algo-
rithm 1 2.

4. Lossy Speech Compression
Speech is a compressible signal. Usually, vowels can
be represented using a limited number of frequencies
for which the human hear is most sensitive. The cardi-
nality of this set of significant frequencies may serve as
an analog measure to sparseness degree#{supp(z)}.
A more formal argument proceeds as follows.

Let z ∈ R
n be the DFT ofyk over the discrete

timesk = 1, . . . , n, that is

z(j) =
√
n
−1

n
∑

k=1

yk exp

(

−2πi

n
(j − 1)(k − 1)

)

(14)

2Notice that this is an unusual implementation of the KF
as the matrixH̄τ is state dependent.



Algorithm 1 CSKF-1 [4]

1: Prediction
ẑk+1|k = Aẑk|k (11a)

Pk+1|k = APk|kA
T +Qk (11b)

2: Measurement Update

Kk = Pk+1|kH
′T
(

H ′Pk+1|kH
′T +Rk

)−1

(12a)
ẑk+1|k+1 = ẑk+1|k +Kk

(

yk −H ′ẑk+1|k

)

(12b)
Pk+1|k+1 = (I −KkH

′)Pk+1|k (12c)

3: CS Pseudo Measurement:Let P 1 = Pk+1|k+1

andẑ1 = ẑk+1|k+1.
4: for τ = 1, 2, . . . , Nτ − 1 iterationsdo
5:

H̄τ = [sign(ẑτ (1)), . . . , sign(ẑτ (n))] (13a)

Kτ = P τH̄T
τ

(

H̄τP
τ H̄T

τ +Rε

)−1

(13b)

ẑτ+1 = (I −Kτ H̄τ )ẑτ (13c)

P τ+1 = (I −Kτ H̄τ )P τ (13d)

6: end for
7: SetPk+1|k+1 = PNτ andẑk+1|k+1 = ẑNτ .

for j = 1, . . . , n, which can be compactly written as

z = Fy (15)

whereF andy ∈ R
n denote the DFT matrix and a

vector whose components are the time pointsyj , re-
spectively. DenoteFε the set ofε-significant frequen-
cies, and let

Fε = {z(j) | 10 log |z(j)| > ε} (16)

that is, all frequencies for which the amplitude is
greater thanε dB. Following this definition,#Fε is
an analog measure to sparseness degree wheren/#Fε

is the compression ratio.
In this work we use the CSKF for reconstructing

a frequency representationz of a speech signal from
under-sampled time series. In other words, our recon-
struction algorithm solves the following problem

y = F∗
mz + ζ, y ∈ R

m, m < n (17)

whereF∗
m ∈ R

m×n denotes a sub-matrix obtained by
samplingm rows from the inverse DFT matrix (which,
in this case, is the conjugate transpose ofF). If we fol-
low the arguments presented in [6] (Theorem 2.1) for
sparse signals, we may say that in this case an adequate
frequency representation is highly probable provided
that

m ≥ c · #Fε log n (18)

5. Numerical Study

The CSKF was for reconstructing the short time DFT
of a speech recording from a series of overlapping
Hamming windows. The algorithm utilizedNτ = 200
PM iterations withRε = 1002 andα = 1. The win-
dow size was set to 256 with only 6 non-overlapping
elements. In this example, our DFT vectorz is com-
posed out ofn = 256 elements corresponding to the
amplitude and phase of 128 frequencies. Taking the
frequency threshold parameterε = 0 in (16) yields
#Fε between 10 to 20 for the specific signal consid-
ered. A rough estimate based on (18) suggests that
we need aroundm = 110c samples picked at each
time window for a ‘good’ frequency representation.
We have tested the algorithm withm = 165 samples,
i.e., the algorithm uses 65% of the available data. The
results of this experiment are summarized in Figs. 1
and 3.

5.0.1. Results

The entire time series is shown in Fig. 2a. A typical
random sampling pattern when using 65% of the sam-
ples in a single time window is shown in Fig. 2b. The
original short time DFT of the signal (i.e., when us-
ing all available data) is depicted via a spectrogram in
Fig. 1a. The reconstructed short time DFT based on
the under-sampled data is shown in Fig. 1b. The 128
original (dotted line) and reconstructed (solid line) am-
plitudes of Fourier coefficients at a single time point
are shown in Fig. 3.

6. Conclusions

A new lossy compression algorithm is presented. By
embedding a compressed sensing mechanism within a
conventional Kalman filter, the new algorithm is ca-
pable of obtaining an approximate frequency-domain
representation of the speech signal using under-
sampled time sequence. The method derived here
shows the potential of the compressed sensing ap-
proach in reducing the amount of acquired samples in
parametric audio compression methods.

An extended version of this algorithm is currently
being developed for introducing smoother transitions
between windows using autoregressive models.
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Figure 1: Original and reconstructed short time DFT
of a speech signal.
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Figure 2: The time domain signal and a typical sam-
pling window.
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