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ABSTRACT

In this work we present a new approximate Bayesian compiessesing scheme. The new method is
based on a unique type of sparseness-promoting prior, tehme semi-Gaussian owing to its Gaussian-
like formulation. The semi-Gaussian prior facilitates dlegivation of a closed-form recursion for solving the
noisy compressed sensing problem. As part of this, theajisercy between the exact and the approximate
posterior pdf is shown to be of the order of a quantity thatisiputed online by the new scheme. In the
second part of this work, a random field-based classifieizintg the approximate Bayesian CS scheme is
shown to attain a zero error rate when applied to fMRI classifn.

1. INTRODUCTION

Recent studies have shown that sparse signals can be red@ageurately using less observations than what
is considered necessary by the Nyquist/Shannon samplingiple; the emergent theory that brought this
insight into being is known as compressed sensing (CS) [TH3& essence of the new theory builds upon
a new data acquisition formalism, in which compression playundamental role. From a signal process-
ing standpoint, one can think about a procedure in whichadiggtovery and compression are carried out
simultaneously, thereby reducing the amount of requiresknlations. Sparse, and more generally, com-
pressible signals arise naturally in many fields of sciemzkengineering. A typical example is the recon-
struction of images from under-sampled Fourier data aswarteced in radiology, biomedical imaging and
astronomy [4,5]. Other applications consider model-réidnenethods to enforce sparseness for preventing
over-fitting and for reducing computational complexity estdrage capacities. The reader is referred to the
seminal work reported in [3] and [2] for an extensive ovenwdd the CS theory.

The recovery of sparse signals is in general NP-hard [1, 6hteSf-the-art methods for addressing
this optimization problem commonly utilize convex relasat, non-convex local optimization and greedy
search mechanisms. Convex relaxations are used in variet®ds such as LASSO [7], the Dantzig selec-
tor [8], basis pursuit and basis pursuit de-noising [9], Eradt angle regression [10]. Non-convex optimiza-
tion approaches include Bayesian methodologies such asléhvance vector machine, otherwise known as
sparse Bayesian learning [11], as well as stochastic saigohthms that are mainly based on Markov chain
Monte Carlo techniques [12—-15]. Notable greedy searchrigiigos are the matching pursuit (MP) [16], the
orthogonal MP [17], and the orthogonal least squares [18].

CS theory has drawn much attention to the convex relaxatiethods. It has been shown that the con-
vex ; relaxation yields an exact solution to the recovery probfgovided two conditions are met: 1) the



signal is sufficiently sparse, and 2) the sensing matrix sitiey so-called restricted isometry property (RIP)
at a certain level. A complementary result guarantees highracy when dealing with noisy observations,
yielding recovery ‘with overwhelming probability’. To pittinformally, it is likely for the convex; relax-
ation to yield an exact solution provided that the involveditities, the sparseness degreand the sensing
matrix dimensionsn. x n maintain relation of the type = O(m/ log(n/m)).

Recently, a Bayesian CS approach has been introduced in fBbpposed to the conventional non-
Bayesian methods, the Bayesian CS has the advantage oflimgtiie complete statistics of the estimate
in the form of a posterior probability density function (pdAdopting this approach, however, suffers from
the fact that rarely one can obtain a closed-form expressidhe posterior and therefore approximation
methods should be utilized.

In this work we present a new approximate Bayesian CS sch&heenew method is based on a unique
type of sparseness-promoting prior, termed here semiskauswing to its Gaussian-like formulation. The
semi-Gaussian prior facilitates the derivation of a cleg®ch recursion for solving the noisy compressed
sensing problem. As part of this, the discrepancy betweerexiact and the approximate posterior pdf is
shown to be of the order of a quantity that is computed onlynéhle new scheme. In the second part of
this work, a random field-based classifier utilizing the @ppnate Bayesian CS scheme is shown to attain
azero error rate when applied to fMRI classification.

2. ANEW COMPRESSED SENSING ALGORITHM

This section derives the approximate Bayesian CS (ABCShaaet The key idea behind the new algo-
rithm is based on an approximate sparseness-promoting ptiich is a mixture of Gaussian and Laplace
distributions. In what follows, we gradually develop thancept.

2.1. Bayesian Estimation

The Bayesian estimation methodology provides a convengmesentation for dealing with complex ob-
servation models. In this work, however, we restrict owselo the conventional linear model used in CS
theory,

yr = HB + ny, 1)

wherey,, H € R™*™ andn; denote thekth R"-valued observation, a fixed sensing matrix, and the
observation noise with a known pgfny), respectively. The sought-after estimator of the randorarpater
(the signal)s is a R™-valued vector of which the prior pdf(5) is given. Following this, the complete
statistics ofs conditioned on the entire observation g6t := {1, ..., yx} can be sequentially computed
via the Bayesian recursion

 plyk | BB i)
P12 = o] Bp(3| #h1)dB

where the likelihood(yx, | 8) = pn, (yr — HB). Unfortunately, rarely can one obtain a closed-form
analytic expression of the posterior pdf (2) and theref@mraximation techniques are often utilized. One
well-known example in which (2) does admit a closed-fornutioh is given by the following well-known
theorem from estimation theory.

(@)

Theorem 1 (Gaussian pdf Update)Assume thap(8 | #i—1) is a Gaussian pdf of which the first two
statistical moments are given by, € R* and P, € R™*", thatisp(8 | %.—1) = N (8| Bk—1, Px—1)-
Assume also that the observatigp satisfies the linear mod€lL) wheren,, is a R™-valued zero-mean



Gaussian random variable,, ~ A/(0, R) that is statistically independent 8f Then the Bayesian recursion
(2)yieldsp(5 | Zk) = N(B | B, Pr) where

B =PBk1+ P H' (HP, 1 H" + R) ™ {yk - HB;H} (3a)

P, = {1 — P HT (HP, 1 H” + R)’l} P, (3b)
The initial values of the above quantities are set accordénthe Gaussian priop(3) = N(S | Bo, Py).

The proof is provided in the Appendix. Note that the quanilyin Theorem 1 is the estimation error
covariance, i.eP, = FE [([)’ - [E’k)([)’ - Bk)T | %} where — 3 is the estimation error of the unbiased

estimator3;,. In addition, under the restrictions of Theor]?mﬁ}, is the maximuma posteriori (MAP)
estimator, i.e.3; = argmaxglogp(3 | %) = argming Y, , || vi — HB |% + || B— 5o H%O where
| a||%:=aTRta.

2.2. Sparseness-Promoting Semi-Gaussian Priors

Compressed sensing was embedded in the framework of Bayestination by utilizing sparseness-promoting
priors [19] such as the Laplace and Cauchy distributions.opysosed to the conventional CS methods,
which provide a point estimate, the Bayesian approach yitld complete statistigg 3 | %) of which
an exact expression is given by Theorem 1 for the linear Gausdbservation model. When resorting to
non-Gaussian priors, however, the conditions of Theoreme vimlated, which renders the recursion (3)
inadequate. For instance, when using a Laplace prior, thghteafter estimator is the one that solves a
problem of the formming S>F | || y; — HB |3 +A | 8 |1

In this work, we consider a new type of prior, which facil@atthe application of the closed-form recur-
sion of Theorem 1. This sparseness-promoting prior is tdiseai-Gaussiarand is given by

2
p(9) = comp (-5 121 @

Comparing to the Laplace distribution, the semi-Gaussiatribution possesses greater concentrations in
the vicinity of the origin. This is further illustrated indri1, in which the level maps are shown for Laplace,
semi-Gaussian and Gaussian pdf’s in the 2-dimensional cHse embedding of the prior (4) within the

-

(a) Laplace (b) Semi-Gaussian (c) Gaussian

Fig. 1. Laplace, semi-Gaussian and Gaussian pdf’s in the 2-diimealcase.

Gaussian variant of the Bayesian recursion in Theorem 1tistraightforward. This follows from the fact



that the restrictions under which Theorem 1 is derived w@@l purely-Gaussian prior and a likelihood pdf
that is based on a deterministic sensing maffix

o | ) o< exp (=~ HOTR (e~ 19)) ®

Theorem 1 provides an exact recursion for computing the Sauposterior based exclusively on the fac-
tors composing the above likelihood: the observatjpnthe sensing matrix/ and the observation noise
covarianceR. This fact has motivated the following approach, whichw#@nforcing an approximate semi-
Gaussian prior without changing the fundamental struatfitbe underlying update equations as obtained
in Theorem 1.

2.3. Approximate Semi-Gaussian Prior

We introduce a state-dependent matkxe R'*" of which the entries are set @' = sign(3'), i =
1,...,n(.e.,H = +1andH = —1for ' > 0 and3’ < 0, respectively). Now, the semi-Gaussian prior
can be expressed based on (5) while replagirand R with 2 ands, respectively, and assuming a fictitious
observatiory = 0, that is

10— Flﬁ)2> ©)

p(ﬂ)—p(y—0|ﬁ,f{,cr)0<exp<—2 0_2

At this point, the only difficulty preventing us from using){@r enforcing the semi-Gaussian prior (6) is the
dependency off upong. We recall that Theorem 1 relies on a possibly varying — alibetierministic -,
as opposed to the formulation in (6). This problem can beialled by letting

ﬁi:sign(ﬁfc), 1=1,....n @)

i.e., by substituting the conditional mean instead of theuac3. This modification renders! a %,-
measurable quantity, as it dependsknwhich is a function of the entire observation set. This s not
affect the expressions in Theorem 1 as the derivations amgittaned on?;, (see Appendix). Applying this
approximation facilitates the implementation of Theorebaed on the likelihood (6). Hence, an additional
processing stage is obtained as

. PAET
- e —— 8a
Br+1 = B AP + o2 (8a)
. P.HT
k+1 l HPkHT T 2 k ( )

The above CS stage is implemented after the usual procesfding observations sé¥, (see (3)) where the
initial covariance is taken a&, — oo.

At this point a natural question is raised concerning théitslof the approximation suggested above.
The following theorem bounds the discrepancy between thetgosterior, which uses the semi-Gaussian
prior (4), and the approximate posterior in terms of thenestion error covariancg,.

Theorem 2 Denotep(3 | %) the Gaussian posterior pdf obtained by using the approxéreami-Gaussian
prior technique, and lep(3 | %4) be the posterior pdf obtained by using the exact semi-Gangsior (4).
Then

KL (3 | %) || (8] %)) = O (o= max { Te(Py), Tx(P0) /2 }) ©)
whereKL andTr denote the Kullback-Leibler divergence and the matrixéraperator, respectively.



The proof is provided in the Appendix.

2.4. Discussion

The fundamental observation conveyed by Theorem 2 is teadpproximation error of the new scheme in
(3) and (8) is affected by both the prior varianceand the estimation error covariangg. Consequently,
regulating these factors is beneficial in getting close ¢écetkact CS solution in the Bayesian sense. This can
be attained by either increasiagor having a sufficiently smalP,. The former approach, however, might
bring upon an adverse effect as the sparseness constrigiss iestrictive in such cases.

A prominent advantage of the bound (9) is that it involvesrii@s that are either knowns¢) or
computed £,). Whereas is a predetermined tuning parameter, the estimation eonar@ance?,;, which
is computed at every step, decreases rapidly as oo (in the sense thaP;, ., < P.). This fact can be
easily verified by recognizing that (3b) and (8b) translat®e iP,C_1 = Pk__l1 + HTR™'H and 15,;31 =
P,;l + o~ 2HT H owing to the matrix inversion lemma. This observation alevith Theorem 2 further
imply that it is advantageous to perfordrconsecutive updates of (8) usidg?, d > 1 rather than a single

update withr2. This approach, motivated by the equivalence reIation(@)aﬂZ:1 exp (—ﬁ (I?Iﬁ)Q) =
exp (— # (HB)Q) relieves the conservative bound (9),/asdecreases after each update in which the prior

variance is larger tham?.
The suggested ABCS algorithm is summarized below.

Algorithm 1 ABCS

. Obtaingx and P, using (3).
. CS stagelet P, = P,
cforr=k+1,...,k+ diterationsdo
Compute3, and P, using (7) and (8) withlo as the prior variance.
end for

It should be clarified thaf’, does not represent the exact estimation error covarianuehvis based
on the semi-Gaussian prior (4). The only purposé’pfstated by Theorem 2, is to indicate the proximity
of the obtained solution (3), (8) to the exact Bayesian one.upper bound on the exact estimation error
covariance can be obtained based on the result in [2] (Thedr&). Thus, assuming is at mosts-sparse
and H satisfies the RIP at the lev&); + 045 < 2, we have

~ N 2
T B[(8= 308 = 5" | %] < (er/Te(R) + eze) (10)
wheree denotes the reconstruction error in the noiseless casee&sonable values 6f,, the constants;
andcs in (10) are well behaved [2].
2.5. Simple Example

The estimation performance of the ABCS is demonstratedyussimple example similar to the one in [8].
The new algorithm is compared with the Dantzig Selector (M)ch is aimed at solving the CS problem

k
min | st Y | H (yi = HP) [|oo< € (11)
i=1



The sensing matrif/ € R72*256 consists of entries that are sampled accordiny €6, 1/72). This type of
matrix has been shown to satisfy the RIP with overwhelmirmdppbility for sufficiently sparse signals. The
sparseness degree of the parameter vettlves not exceed 8.

The distributions of the estimation errors over 100 Montel@€eauns of both the DS and the ABCS
are depicted in Figs. 2d and 2b, respectively. In these figuree histograms of the normalized errors
defined in [8] as| 8 — B |3 / S, min ((5°)?, Tr(R)) are shown. It can be clearly seen that the ABCS
outperforms the DS in terms of estimation accuracy. Whike dkieraged normalized error of the DS is
around 300, the ABCS attains an average of approximately 16.

The actual (lines) and reconstructed (markers) signalsotif the ABCS and DS in a typical run are
shown in Figs. 2¢ and 2d, respectively. In these figures, thgnitudes of the 256 entries Gfand3; are
shown along the abscissa.

The remaining figures, Figs. 2e, 2f, show the behavior of thenalized estimation error and @,
with respect to the iteration of the ABCS method. Both these figures further demonstragthviously
discussed concepts.
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Fig. 2: Estimation performance of the ABCS and the Dantzig Setecto

3. LEARNING COMPRESSED RANDOM FIELD MODELS

Inwhat follows, we demonstrate the application of the ABG8éarning sparse random field (RF) structures
that are used for classifying high-dimensional data sete fflew classification method, termed here RF-
ABCS, is tested and compared with an RF-based LASSO classiftba naive Bayes (NB) classifier using
multi-class (fMRI) data.



3.1. Classification Problem

LetV = [v(1),...,v(n)] be a feature space. Here we assume that the feafuftég?_, are vectors in
R which in turn renderd” a vector space. It is known th&t is associated in some manner wita
dimensional response vectbrof which the entrieg);, j = 1,...,m take values on some discrete space
% . Now, given a new feature space (testing $ét)= [v'(1),...,v'(n)], v'(i) € R! we are interested in
predicting the response vectbrassociated witl’ based on the pait,Y).

3.2. Sparse and Compressible Model Learning

A learning algorithm usegV, Y for constructing a model that encompasses significanioembetween
features. Usually the number of featuress much larger tham, the number of training samples (entries of
v(i)). This fact has motivated the incorporation of various migeéé&ction techniques as part of the learning
process. The resulting algorithm generally seeks to retheenodel complexity in terms of parameters,
thereby promoting interpretable and robust structures.
The classification method derived in the ensuing learns @aarfield model individually for each value

in 2 (class). Following this approach, the predicted classkertaas the one of which the model best
“explains” the new feature space in terms of likelihood.

3.2.1. Random Field Model

LetG = (E™, V™) be afinite graph with a vertex sgt” and an edge séi”. The sample spade consists
of all possible assignments of the verticed/ift. A random field on is a probability distribution of.

At this point we assume that our random field model obeys a<=dligiribution. This, in turn, allows us
to specify linear Gaussian connections of the form

V™ (i) = H()B(0) +C(0), () ~ N (ps, 171) (12)

where H (i) = [V™(j), j # i] is a matrix composed of the entire vertex set excludingittreone, and
B(i) is a parameter vector associated with tith vertex. An alternative formulation of (12) embeds a bias
term within 3(i) and assumes a zero-mean noise, thaf($) is replaced byH (i) 1] wherel is a vector

of which the entries are all 1's. Following this, we may wiite conditional probabilities describing the
connections as

PV 0) | HG), 00,0 s oxp (57

2

V™) — [HG) 166)) ||%) (13)

3.2.2. Learning over the Feature Space

Let V™ be a set ofiy features from/. The random field structure associated with a given @ldss”?” can
be then learned by locally solving (12) for every feattingsing ABCS, LASSO or any other CS method.
The obtained parametesé (i), i = 1,...,n, associated with a clagscan be then used for approximating
the corresponding noise varianeés

ko

()" = (ko — )72 V() - [H;() 18°(0))° (14)

j=1

where the subscriptdenotes thg-th sample, an@, denotes the total number of samples for the cfass

IHere, a feature consists of all samples that are associatiec wpecific class.



3.2.3. Classification Rule

Having the random field parameters for all claggegbe predicted class of each and every sample in the new
feature space” is chosen as the one which maximizes the posterior probapifi V)™ | {%(i),r?}"" )
where the subscript denotes the-th sample. In practice, the exact posterior may not be easpin-
pute. This, however, can be alleviated by computing the gisdilielinood over the entire network. An

approximate solution is then given as

ny
j; = arg gggzlogp (V)5 G) | H(i), 8°(i), 7)) (15)
T =1

where the conditionals are givenin (13).

3.3. Multi-Class Example

The RF-ABCS is applied for fMRI classification using the satiaga set of [20]. The performance of the
new classifier is compared to both NB and RF-LASSO. The lattethod uses a least angle regression
(LARS) implementation of LASSO for solving (12) at each nodibe fMRI data set consists of 20 samples
of a subject viewing 8 types of images which are labeled as & (ice., total of 160 fMRI scans). The
experimental setup uses 8-out cross-validation in whichr8mes, one of each label, are taken as a test set
while the remaining samples are used for training the diassi

In all tests we have used a limited number of features, whiaretbeen selected as those with the
highest correlation with the response variable (i.e., albels). The number of features used for each method
varies between 5 to 100. Additionally, two of the methods, RF-ABCS and the RF-LASSO, are tested
using data sets on which an isometric transformation has apglied. The purpose of this procedure is to
produce rotated RIP data sets based on the original ones.eAtianed previously, both; andc; in the
upper bound (10) are well-behaved owing to this propertye fidader is referred to the appendix and [21]
for further discussions and derivations pertaining to ttaasformation.

The prediction error rates of all methods are depicted wttsel number of selected features (variables)
in Fig. 3a. This figure shows a clear advantage of the RF-AB&&sifier when using more than 40 features.
The error rates of the NB, RF-LASSO and RF-ABCS using 10Qifeatare approximate.4, 0.2 and0.1,
respectively. The affect of the isometric transformationtioe prediction accuracy of the RF-LASSO and
RF-ABCS is demonstrated in this figure and in Fig. 3b, whidvjites a clearer picture of the corresponding
error rates. With no exception, in this case as well, the BEA outperforms the RF-LASSO essentially
attaining azero error rate when using more than 80 features.

4. CONCLUSIONS

A new approximate Bayesian compressed sensing algoritderiged based on a unique type of sparseness-
promoting prior. The semi-Gaussian prior, which forms tbeecof the new method, yields a closed-form
recursion for solving the noisy compressed sensing problEne discrepancy between the exact and the
approximate posterior pdf obtained by using the new allgoriis of the order of?;, a quantity which is
computed online. In the last part of this work, a random fleéded classifier utilizing the approximate
Bayesian scheme is shown to attaipesio error rate when applied to fMRI classification.
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Appendix

A. PROOF OF THEOREM 1

Proof We first notice that
1 _
p(yr | B) o< exp (—5 (yo — HB)" B~ (1 — Hﬁ)) (16)

Recognizing that the denominator in (2) is independerit while using the above likelihood immediately
gives

p(8 | %) o< exp (—% (e~ HO' R (e — D) — 5 (5 ) Py (5 Bkl)) (7)

Now, the mean op(3 | %) can be obtained by solving

dlogp(B | %)

55 =0 (18)

This in turn yields
b= (P + HTRUH) ™ [P B + HOR 'y (19)
which translates into
~ —1 _1 5 _
B = (1= Por BT (HPrHT + R) " H) Picy [P Booa + HOR '
= Bi1 + PorHT (HPuaHT + R) [~ Ho]
+ (Pk,lHTzr1 — P HT (HPy  HT + R)' HP,HHTRfl) ur (20)
by applying the matrix inversion lemma. Further elabogtime parentheses in the last term in (20) yields
P H'R™' — P H" (HP,_H" +R)” HP, \H'R ' =
P \HTR™ — P, yH"R™ (HP, yHTR™ + 1) ' HP,  H"R™
=P HTR™ [T = (HP HTR™ +1) " HPo HTR ™
— Py H R [ (HP,  H"R™ + 1) (HP, H R ' +1)
— (HPe yH"R™ '+ 1) HP, yH"R™]

— Py H R (HP, yH' R +1)" [(HP, \H"R™' 4+ T — (HP, H"R™"]
— P H" (HP, H" +R)" (21)

Finally, substituting (21) into (20) and collecting ternislgs (3a).
The covariance of(5 | %) is obtained as

Po=E (8- 53— 5" | %] (22)



with

B—Pr=8~(I—PyH (HP—1H" + R H) Bj_1 — Poor H'(HPy_ H” + R) 'y,
= —-PH"(HP,-1H" + R)"'H) (ﬁ - Bk_l) — P HY'(HP,_1H" + R)"'n;,  (23)

where the fact thag, = Hf + ni, was used for obtaining the 2nd line in (23). Substituting) (28 (22)
and after a few (albeit tedious) algebraic manipulationgetethe simple recursion in (3bQED.

B. PROOF OF THEOREM 2

Proof The exact and the approximate posterior pdf’s are given by

2

(3190 = cexp (~5 1200 ) (s | o) (242)
] 2

PO | 94) = eexp (—%”ﬁ? )p’(ﬁ %) (240)

wherec and ¢ denote the appropriate normalization constants, @0@ | %) is the Gaussian posterior
without any sparseness promoting prior (i.e., With — oc). Now, explicitly writing the KL divergence
between these two pdf’s yields

KL (3 [ Z) | p(B | Z4))
(B %)

= 5| 2y rox B TR a5 0o/ + 55 [603 190 (118 1~ a5

= 108(e/c) + 5o B I 8 131 %) — 5og B [0 | %] (25)

whereE[- | %] denotes the expectation operator with respeg( | #;). Applying the Jensen inequality
while recalling thatd 3, =|| G |1, Br = E[8 | %], gives

1 - 1 -7 2

KL (p(3 | %) || p(8 | %)) < log(e/e) + 7 E [ B3 4] — 57 £ [HB | %] =
1 - 1 R
log(¢/e) + 55 B [ 8 131 %] — 55 | B I} (26)
Further lettingd 3 := 3 — Gk, Eq. (26) yields

1 - 1 .

KL (5(8 | %) || (8 | %)) < log(é/e) + 5 B [Il B 131 24] — 55 || A IIt
1 - X 2 1.
< t0s(c/e)+ 558 (1Bl +116913) 1 4] - 50 1 I

1 - A 1 -
= log(¢/c) + ;E[H B 11| %] || B |Ih +FE 613 2] (27)



owing to the triangle inequality. Recalling thgt 5 |1 < /n || 65 |2 we may then write

KL (31 %) | p(8 | 24) < log(e/e) + Yo B1I 68 o] 241 | B s+ 1108 131 24)

Vn 1/2

<log(e/c) + B (1168131 2] "7 Il B I +505 B (108 131 2] (28)

where the 2nd line in (28) is due to the Jensen inequalityoBeizing that
B (166 131 2] = T (B (8- (8 — )" | 2] ) = Te(Py) (29)
Eq. (28) can be written as
KL (3(8 | %) || (8 | %)) < log(¢/c) + O (o~ max { Tr(Pe), Tr(Pe) 2} ) (30)

At this point the theorem immediately follows based on thegimlitylog(é/c) < 0. In order to show this
we first note thaf| ( ||2> (H3)? owing to the fact that the left hand expression consists ofrsation of
positive terms whereas the same terms on the right side efjination have either positive or negative signs.
This further implies

— | BIP< —(HB)? = exp <_% [ ﬂ2||%> o <_; (H6)2>

o 2 o2
1 2 1 (Hp)?
— [ow (-5 L20) w1 80ds < [ e (——( ) )p’(ﬁl%)dﬂ
o 2 o
~ —1
Nk - 1 (Hp)? .
— ([ew (5120 ) w1 000a5) > (/exp <—5( L )ﬂ(ﬁ%dﬂ) Cen
(31)
QED.
C. ISOMETRIC DATA TRANSFORMATIONS
The theory of CS shows that the solutions of the noiselesgssgoroblem
min || 3|y stY =Vp (32)
B

and the original NP-hard problem, in which thenorm in (32) is substituted by thig norm, coincides
under the restriction that the sensing matrixobeys a so-called restricted isometry property (RIP) at a
certain level. In detail, the RIP is defined as

(10 [ I3<] Va [3< A +65) 1= |13 (33)

for someds € (0,1) and anyz that iss-sparse at most. In other words, every subsét aff dimension

m X s acts as nearly orthonormal system. The RIP constagives an indication of the actual proximity
of any subset to orthogonality. In the noisy case (i.e.,lgsinto the model in (14)) the RIP constant sets an
upper bound on the norm estimation erfof — 3 || whereg is the actual sparse solution. The reader is
referred to [1, 2] for an extensive discussion about the RiPits role in CS.



C.1. Main Result

The classification method suggested in the Section 3.2ljosalves a regression problem for each feature
in V™, This is accomplished by applying a CS-based method or stegle regularized technique using
(14). Recalling that both; andc, in (12) are well behaved whenever the sensing matrix saitiie RIP,

it is desired to have this property locally for every nodelid); However, this cannot be guaranteed for the
original data set’. Bearing this in mind, we provide a detailed description téehnique for producing an
RIP data matrix out of the original one while preserving aligte ratios in the transformed space. Before
proceeding, however, we introduce the notion of block-spaess which is used in the ensuing.

Definition 1 A vectorz € R%™ with d, m € N is m-block-sparse if its non zero entries are concentrated in
blocks of dimensiom. That s, if

T

T2

xr =
Zq
wherez; € R™,¢1=1,...,d, and
#{ZCZ| I1¢O, ’L:L,d}<<d

thenz is said to bem-block-sparse.

The following theorem is proved in [21].

Theorem 3 (Isometric Transformation) Suppose thakl € R™*™ for somed, m € N, and let
T = diag(H; ' P1,...,H;'Py), Ker(T)=10 (34)

whereH; €¢ R™*™ and P, €¢ R™*™,{ = 1,...,d are the partitiqns offf and some RIP matri® €
R™*dm respectively. Then there exists an orthogonal transfoiond” € R%* 4™ and scalarsx > 0 and
§ € (0,1) for which

(1=0) ||« |3<]| VaTz [3< (146) || =[5

for m-block-sparser. In particular
T = diag(C, DY, ..., C4DY)

whereC;A; DT, A; = diag(\}, ..., A\), A} > A2 > ... > \™ is the singular values decomposition (SVD)
of H{lPi. Letting Amax = argmax;e(i q) A and Apin = arg min;ep g A, the scaling factor can be
approximated by

am V2 (h +Ank) T

and the RIP constant is given as

5= (1 + 6m)/\r;111n B (1 B 6m)/\r:1211x <1
(14 8m)Anl + (1 = 8n) Amax

whered,,, € (0,1) is the RIP constant associated with



Proof Notice that by definition (34)P = HT obeys the RIP
(1 =0m) | 2 I3l HT2 3 (1 +6m) || 2 13 (35)
for somem-sparse:. Now, let us set
z=DA DTz (36)

whereCA DT is the SVD ofT'. Notice thatA —! exists owing tdKer(T) = ().

The transformation of the parameter space in (36) changespirsity basis of. In general, we cannot
expect that both vectors, the original and transformed,haive the same sparseness degree. However, the
following subtle observation changes the whole pictureaht be easily verified that the block structure of
T in (34) induces a similar structure &A~'D7 in (36). This further implies that if is m-block-sparse
then soz.

The definition ofz implies

| z 3= 2" DAT'DTDA' DTz =|| A" DTz || (37)
Substituting (37) and the SVD df into (35) yields
(1= 0m) | A7'D"a |3<| HOD @ [3< (1 +6m) | A7 DT |I3 (38)
Without any loss of generality let us assume at this poirttftha| .= 1. Hence,
Amax(8) = Amin(A7IDT) <[ AT DT [5< Amax (A7 DT) = A, (A) (39)

Using the above in (38) while multiplying by some> 0 yields

0*(1 = 0m) A pax < aHOD  |5< 0 (1 + 6m) A5, (40)

Finally setting
(1= 0p) A =1 =6 (41a)
(1 +0m)Apin =146 (41b)

and solving fota and¢ yields the theorem QED.

C.2. Block Sparseness Equivalence and Column Ordering

As can be easily recognized from (36) and the definitiof’ @f (34), the isometric transformation assumes
a block sparse form of the projected linear space. This &sés a question. How can we impose the block
sparse form orb, our original parameter space. A straight forward apprdachlleviating this problem is

to reorder the columns df or more precisely of/” so as to group significant features in blocks. This in
turn increases the chance of having a block sparse solutithetCS problem

min 18°G) [ st | V(i) = H(@)B(i) [|l2< e (42)
which forms the heart of the random field classifier of Sec8ch
Reordering of columns can be carried out using either a ngnikiethod or a feature selection technique
(e.g., correlation, t-test, LDA and Fisher linear discniant). The columns will be then reordered according
to their measure of significance. Notice, however, that tideiong of columns within then x m blocks of
V' does not really affect the block sparseness degrée of



C.3. Practical Implementation: Random Projections

The isometric transformation relies on the existence ofes®tP matrix of the same dimension as the
original data set. Constructing such a matrix is generatipm@ trivial task. Nevertheless, it is well known
fact that some random matrices obey the RIP with high prdibhafi, 2].

Consider a matrix’ € R™*™ of which the entries are independent identically distéolufiid) samples
from (0, m~1). Then if s, the maximal sparseness degree of the underlying paravester, satisfies

s = O (m/log(n/m)) (43)

the matrix P obeys the RIP with probability exceeding— O (exp(—~vyn)) for somey > 0 [2]. Similar
result exists for a binary measurement matrix of which theiehare sampled according to

Pr (P = +1/v/m) = 0.5 (44)

In the case of high dimensional feature space it seems thatattdom approach is the only one that
can guarantee the RIP to some extent. Taking ranéoinowever, imposes a conceptual problem. Thus,
we can expect that there might be realizationg’athat render the new data set less informative thereby
deteriorating the classification accuracy. In order to @wnich instances we propose an additional stage in
which a proper realization aP would be chosen by cross-validating over a transformedldpu@ent set.
This technique is demonstrated in the numerical study@eatithe ensuing.

C.4. Transductive Approach

In practice the isometric transformation can be appliedfeature space that is augmented by the (testing)
data set”’

V= {H e Rim+hxn (45)

This technique, which can be thought of as a form of unsupedjiearning, yields a transformation that de-
pends on both the training and the unlabeled testing dataBleis approach, which is used in the numerical
study part of this work, has shown to significantly improve thassification accuracy.

C.5. Summary

Given an arbitrary (augmented) data matfix € R(™*t0)x» wheren = d(m + 1) andd,m,l € N, the
transformation is carried out as follows.

1. Generate a realization of an isometric (Gaussian or Bjrandom matrixP of the same dimensions
asH.

. Reorder the columns @f according to some ranking or feature selection technique.
. PartitionH = [Hy,...,Hy), P = [Py,..., Py whereH;, P; € RUn+0x(m+1),
. Compute the transformatidn = C; D7 foralli = 1,...,d whereC;A; DT is the SVD ofH, ' P;.

a A W N

. Compute the scaling factor.

6. The transformed data setis = a [HlTl, s Hde]
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