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ABSTRACT

In this work we present a new approximate Bayesian compressed sensing scheme. The new method is
based on a unique type of sparseness-promoting prior, termed here semi-Gaussian owing to its Gaussian-
like formulation. The semi-Gaussian prior facilitates thederivation of a closed-form recursion for solving the
noisy compressed sensing problem. As part of this, the discrepancy between the exact and the approximate
posterior pdf is shown to be of the order of a quantity that is computed online by the new scheme. In the
second part of this work, a random field-based classifier utilizing the approximate Bayesian CS scheme is
shown to attain a zero error rate when applied to fMRI classification.

1. INTRODUCTION

Recent studies have shown that sparse signals can be recovered accurately using less observations than what
is considered necessary by the Nyquist/Shannon sampling principle; the emergent theory that brought this
insight into being is known as compressed sensing (CS) [1–3]. The essence of the new theory builds upon
a new data acquisition formalism, in which compression plays a fundamental role. From a signal process-
ing standpoint, one can think about a procedure in which signal recovery and compression are carried out
simultaneously, thereby reducing the amount of required observations. Sparse, and more generally, com-
pressible signals arise naturally in many fields of science and engineering. A typical example is the recon-
struction of images from under-sampled Fourier data as encountered in radiology, biomedical imaging and
astronomy [4,5]. Other applications consider model-reduction methods to enforce sparseness for preventing
over-fitting and for reducing computational complexity andstorage capacities. The reader is referred to the
seminal work reported in [3] and [2] for an extensive overview of the CS theory.

The recovery of sparse signals is in general NP-hard [1, 6]. State-of-the-art methods for addressing
this optimization problem commonly utilize convex relaxations, non-convex local optimization and greedy
search mechanisms. Convex relaxations are used in various methods such as LASSO [7], the Dantzig selec-
tor [8], basis pursuit and basis pursuit de-noising [9], andleast angle regression [10]. Non-convex optimiza-
tion approaches include Bayesian methodologies such as therelevance vector machine, otherwise known as
sparse Bayesian learning [11], as well as stochastic searchalgorithms that are mainly based on Markov chain
Monte Carlo techniques [12–15]. Notable greedy search algorithms are the matching pursuit (MP) [16], the
orthogonal MP [17], and the orthogonal least squares [18].

CS theory has drawn much attention to the convex relaxation methods. It has been shown that the con-
vex l1 relaxation yields an exact solution to the recovery problemprovided two conditions are met: 1) the



signal is sufficiently sparse, and 2) the sensing matrix obeys the so-called restricted isometry property (RIP)
at a certain level. A complementary result guarantees high accuracy when dealing with noisy observations,
yielding recovery ‘with overwhelming probability’. To putit informally, it is likely for the convexl1 relax-
ation to yield an exact solution provided that the involved quantities, the sparseness degrees, and the sensing
matrix dimensionsm × n maintain relation of the types = O(m/ log(n/m)).

Recently, a Bayesian CS approach has been introduced in [19]. As opposed to the conventional non-
Bayesian methods, the Bayesian CS has the advantage of providing the complete statistics of the estimate
in the form of a posterior probability density function (pdf). Adopting this approach, however, suffers from
the fact that rarely one can obtain a closed-form expressionof the posterior and therefore approximation
methods should be utilized.

In this work we present a new approximate Bayesian CS scheme.The new method is based on a unique
type of sparseness-promoting prior, termed here semi-Gaussian owing to its Gaussian-like formulation. The
semi-Gaussian prior facilitates the derivation of a closed-form recursion for solving the noisy compressed
sensing problem. As part of this, the discrepancy between the exact and the approximate posterior pdf is
shown to be of the order of a quantity that is computed online by the new scheme. In the second part of
this work, a random field-based classifier utilizing the approximate Bayesian CS scheme is shown to attain
a zero error rate when applied to fMRI classification.

2. A NEW COMPRESSED SENSING ALGORITHM

This section derives the approximate Bayesian CS (ABCS) method. The key idea behind the new algo-
rithm is based on an approximate sparseness-promoting prior, which is a mixture of Gaussian and Laplace
distributions. In what follows, we gradually develop this concept.

2.1. Bayesian Estimation

The Bayesian estimation methodology provides a convenientrepresentation for dealing with complex ob-
servation models. In this work, however, we restrict ourselves to the conventional linear model used in CS
theory,

yk = Hβ + nk (1)

whereyk, H ∈ R
m×n and nk denote thekth R

m-valued observation, a fixed sensing matrix, and the
observation noise with a known pdfp(nk), respectively. The sought-after estimator of the random parameter
(the signal)β is a R

n-valued vector of which the prior pdfp(β) is given. Following this, the complete
statistics ofβ conditioned on the entire observation setYk := {y1, . . . , yk} can be sequentially computed
via the Bayesian recursion

p(β | Yk) =
p(yk | β)p(β | Yk−1)

∫

p(yk | β)p(β | Yk−1)dβ
(2)

where the likelihoodp(yk | β) = pnk
(yk − Hβ). Unfortunately, rarely can one obtain a closed-form

analytic expression of the posterior pdf (2) and therefore approximation techniques are often utilized. One
well-known example in which (2) does admit a closed-form solution is given by the following well-known
theorem from estimation theory.

Theorem 1 (Gaussian pdf Update)Assume thatp(β | Yk−1) is a Gaussian pdf of which the first two
statistical moments are given bŷβk−1 ∈ R

n andPk−1 ∈ R
n×n, that isp(β | Yk−1) = N (β | β̂k−1, Pk−1).

Assume also that the observationyk satisfies the linear model(1) wherenk is a R
m-valued zero-mean



Gaussian random variablenk ∼ N (0, R) that is statistically independent ofβ. Then the Bayesian recursion
(2) yieldsp(β | Yk) = N (β | β̂k, Pk) where

β̂k = β̂k−1 + Pk−1H
T
(

HPk−1H
T + R

)−1
[

yk − Hβ̂k−1

]

(3a)

Pk =
[

I − Pk−1H
T
(

HPk−1H
T + R

)−1
]

Pk−1 (3b)

The initial values of the above quantities are set accordingto the Gaussian priorp(β) = N (β | β̂0, P0).

The proof is provided in the Appendix. Note that the quantityPk in Theorem 1 is the estimation error

covariance, i.e.,Pk = E
[

(β − β̂k)(β − β̂k)T | Yk

]

, whereβ − β̂k is the estimation error of the unbiased

estimatorβ̂k. In addition, under the restrictions of Theorem 1,β̂k is the maximuma posteriori (MAP)
estimator, i.e.,̂βk = arg maxβ log p(β | Yk) = arg minβ

∑k
i=1 ‖ yi − Hβ ‖2

R + ‖ β − β0 ‖2
P0

where
‖ a ‖2

R:= aT R−1a.

2.2. Sparseness-Promoting Semi-Gaussian Priors

Compressed sensing was embedded in the framework of Bayesian estimation by utilizing sparseness-promoting
priors [19] such as the Laplace and Cauchy distributions. Asopposed to the conventional CS methods,
which provide a point estimate, the Bayesian approach yields the complete statisticsp(β | Yk) of which
an exact expression is given by Theorem 1 for the linear Gaussian observation model. When resorting to
non-Gaussian priors, however, the conditions of Theorem 1 are violated, which renders the recursion (3)
inadequate. For instance, when using a Laplace prior, the sought-after estimator is the one that solves a
problem of the formminβ

∑k
i=1 ‖ yi − Hβ ‖2

R +λ ‖ β ‖1.
In this work, we consider a new type of prior, which facilitates the application of the closed-form recur-

sion of Theorem 1. This sparseness-promoting prior is termed semi-Gaussian, and is given by

p(β) = c exp

(

−1

2

‖ β ‖2
1

σ2

)

(4)

Comparing to the Laplace distribution, the semi-Gaussian distribution possesses greater concentrations in
the vicinity of the origin. This is further illustrated in Fig. 1, in which the level maps are shown for Laplace,
semi-Gaussian and Gaussian pdf’s in the 2-dimensional case. The embedding of the prior (4) within the
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Fig. 1: Laplace, semi-Gaussian and Gaussian pdf’s in the 2-dimensional case.

Gaussian variant of the Bayesian recursion in Theorem 1 is not straightforward. This follows from the fact



that the restrictions under which Theorem 1 is derived involve a purely-Gaussian prior and a likelihood pdf
that is based on a deterministic sensing matrixH ,

p(yk | β) ∝ exp

(

−1

2
(yk − Hβ)T R−1(yk − Hβ)

)

(5)

Theorem 1 provides an exact recursion for computing the Gaussian posterior based exclusively on the fac-
tors composing the above likelihood: the observationyk, the sensing matrixH and the observation noise
covarianceR. This fact has motivated the following approach, which allows enforcing an approximate semi-
Gaussian prior without changing the fundamental structureof the underlying update equations as obtained
in Theorem 1.

2.3. Approximate Semi-Gaussian Prior

We introduce a state-dependent matrixĤ ∈ R
1×n of which the entries are set aŝHi = sign(βi), i =

1, . . . , n (i.e.,Ĥi = +1 andĤi = −1 for βi > 0 andβi < 0, respectively). Now, the semi-Gaussian prior
can be expressed based on (5) while replacingH andR with Ĥ andσ, respectively, and assuming a fictitious
observationy = 0, that is

p(β) = p(y = 0 | β, Ĥ, σ) ∝ exp

(

−1

2

(0 − Ĥβ)2

σ2

)

(6)

At this point, the only difficulty preventing us from using (3) for enforcing the semi-Gaussian prior (6) is the
dependency of̂H uponβ. We recall that Theorem 1 relies on a possibly varying – albeit deterministic –H ,
as opposed to the formulation in (6). This problem can be alleviated by letting

Ĥi = sign(β̂i
k), i = 1, . . . , n (7)

i.e., by substituting the conditional mean instead of the actual β. This modification renderŝH a Yk-
measurable quantity, as it depends onβ̂k, which is a function of the entire observation set. This factdoes not
affect the expressions in Theorem 1 as the derivations are conditioned onYk (see Appendix). Applying this
approximation facilitates the implementation of Theorem 1based on the likelihood (6). Hence, an additional
processing stage is obtained as

β̂k+1 = β̂k − PkĤT

ĤPkĤT + σ2
Ĥβ̂k (8a)

P̂k+1 =

[

I − PkĤT

ĤPkĤT + σ2

]

Pk (8b)

The above CS stage is implemented after the usual processingof the observations setYk (see (3)) where the
initial covariance is taken asP0 → ∞.

At this point a natural question is raised concerning the validity of the approximation suggested above.
The following theorem bounds the discrepancy between the exact posterior, which uses the semi-Gaussian
prior (4), and the approximate posterior in terms of the estimation error covariancêPk.

Theorem 2 Denotep̂(β | Yk) the Gaussian posterior pdf obtained by using the approximate semi-Gaussian
prior technique, and letp(β | Yk) be the posterior pdf obtained by using the exact semi-Gaussian prior (4).
Then

KL(p̂(β | Yk) ‖ p(β | Yk)) = O
(

σ−2 max
{

Tr(P̂k), Tr(P̂k)1/2
})

(9)

whereKL andTr denote the Kullback-Leibler divergence and the matrix trace operator, respectively.



The proof is provided in the Appendix.

2.4. Discussion

The fundamental observation conveyed by Theorem 2 is that the approximation error of the new scheme in
(3) and (8) is affected by both the prior varianceσ2 and the estimation error covarianceP̂k. Consequently,
regulating these factors is beneficial in getting close to the exact CS solution in the Bayesian sense. This can
be attained by either increasingσ or having a sufficiently small̂Pk. The former approach, however, might
bring upon an adverse effect as the sparseness constraint isless restrictive in such cases.

A prominent advantage of the bound (9) is that it involves quantities that are either known (σ2) or
computed (̂Pk). Whereasσ is a predetermined tuning parameter, the estimation error covarianceP̂k, which
is computed at every step, decreases rapidly ask → ∞ (in the sense that̂Pk+1 < P̂k). This fact can be
easily verified by recognizing that (3b) and (8b) translate into P−1

k = P−1
k−1 + HT R−1H and P̂−1

k+1 =

P−1
k + σ−2ĤT Ĥ owing to the matrix inversion lemma. This observation alongwith Theorem 2 further

imply that it is advantageous to performd consecutive updates of (8) usingdσ2, d > 1 rather than a single

update withσ2. This approach, motivated by the equivalence relation (see(6))
∏d

k=1 exp
(

− 1
2dσ2 (Ĥβ)2

)

=

exp
(

− 1
2σ2 (Ĥβ)2

)

relieves the conservative bound (9), asP̂k decreases after each update in which the prior

variance is larger thanσ2.
The suggested ABCS algorithm is summarized below.

Algorithm 1 ABCS

1: Obtainβ̂k andPk using (3).
2: CS stage:Let P̂k = Pk.
3: for τ = k + 1, . . . , k + d iterationsdo
4: Computeβ̂τ andP̂τ using (7) and (8) withdσ2 as the prior variance.
5: end for

It should be clarified that̂Pk does not represent the exact estimation error covariance, which is based
on the semi-Gaussian prior (4). The only purpose ofP̂k, stated by Theorem 2, is to indicate the proximity
of the obtained solution (3), (8) to the exact Bayesian one. An upper bound on the exact estimation error
covariance can be obtained based on the result in [2] (Theorem 4.1). Thus, assumingβ is at mosts-sparse
andH satisfies the RIP at the levelδ3s + δ4s < 2, we have

Tr E
[

(β − β̂k)(β − β̂k)T | Yk

]

≤
(

c1

√

Tr(R) + c2e
)2

(10)

wheree denotes the reconstruction error in the noiseless case. Forreasonable values ofδ4s, the constantsc1

andc2 in (10) are well behaved [2].

2.5. Simple Example

The estimation performance of the ABCS is demonstrated using a simple example similar to the one in [8].
The new algorithm is compared with the Dantzig Selector (DS), which is aimed at solving the CS problem

min
β

‖ β ‖1 s.t.
k
∑

i=1

‖ HT (yi − Hβ) ‖∞≤ ǫ (11)



The sensing matrixH ∈ R
72×256 consists of entries that are sampled according toN (0, 1/72). This type of

matrix has been shown to satisfy the RIP with overwhelming probability for sufficiently sparse signals. The
sparseness degree of the parameter vectorβ does not exceed 8.

The distributions of the estimation errors over 100 Monte Carlo runs of both the DS and the ABCS
are depicted in Figs. 2d and 2b, respectively. In these figures, the histograms of the normalized errors
defined in [8] as‖ β − β̂k ‖2

2 /
∑n

i=1 min
(

(βi)2, Tr(R)
)

are shown. It can be clearly seen that the ABCS
outperforms the DS in terms of estimation accuracy. While the averaged normalized error of the DS is
around 300, the ABCS attains an average of approximately 16.

The actual (lines) and reconstructed (markers) signals of both the ABCS and DS in a typical run are
shown in Figs. 2c and 2d, respectively. In these figures, the magnitudes of the 256 entries ofβ andβ̂k are
shown along the abscissa.

The remaining figures, Figs. 2e, 2f, show the behavior of the normalized estimation error and of̂Pk

with respect to the iterationτ of the ABCS method. Both these figures further demonstrate the previously
discussed concepts.
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Fig. 2: Estimation performance of the ABCS and the Dantzig Selector.

3. LEARNING COMPRESSED RANDOM FIELD MODELS

In what follows, we demonstrate the application of the ABCS for learning sparse random field (RF) structures
that are used for classifying high-dimensional data sets. The new classification method, termed here RF-
ABCS, is tested and compared with an RF-based LASSO classifier and a naive Bayes (NB) classifier using
multi-class (fMRI) data.



3.1. Classification Problem

Let V = [v(1), . . . , v(n)] be a feature space. Here we assume that the features{v(i)}n
i=1 are vectors in

R
m which in turn rendersV a vector space. It is known thatV is associated in some manner with am-

dimensional response vectorY of which the entriesyj , j = 1, . . . , m take values on some discrete space
Y . Now, given a new feature space (testing set)V ′ = [v′(1), . . . , v′(n)], v′(i) ∈ R

l we are interested in
predicting the response vectorŶ associated withV ′ based on the pair(V, Y ).

3.2. Sparse and Compressible Model Learning

A learning algorithm uses(V, Y ) for constructing a model that encompasses significant relations between
features. Usually the number of featuresn is much larger thanm, the number of training samples (entries of
v(i)). This fact has motivated the incorporation of various model selection techniques as part of the learning
process. The resulting algorithm generally seeks to reducethe model complexity in terms of parameters,
thereby promoting interpretable and robust structures.

The classification method derived in the ensuing learns a random field model individually for each value
in Y (class). Following this approach, the predicted class is taken as the one of which the model best
“explains” the new feature space in terms of likelihood.

3.2.1. Random Field Model

Let G = (Em, V m) be a finite graph with a vertex setV m and an edge setEm. The sample spaceΩ consists
of all possible assignments of the vertices inV m. A random field onG is a probability distribution onΩ.

At this point we assume that our random field model obeys a Gibbs distribution. This, in turn, allows us
to specify linear Gaussian connections of the form

V m(i) = H(i)β(i) + ζ(i), ζ(i) ∼ N (µi, r
2
i I) (12)

whereH(i) = [V m(j), j 6= i] is a matrix composed of the entire vertex set excluding thei-th one, and
β(i) is a parameter vector associated with thei-th vertex. An alternative formulation of (12) embeds a bias
term withinβ(i) and assumes a zero-mean noise, that isH(i) is replaced by[H(i) 1] where1 is a vector
of which the entries are all 1’s. Following this, we may writethe conditional probabilities describing the
connections as

p(V m(i) | H(i), β(i), σi) ∝ exp

(

− 1

2σ2
i

‖ V m(i) − [H(i) 1]β(i)) ‖2
2

)

(13)

3.2.2. Learning over the Feature Space

Let V m be a set ofnf features fromV . The random field structure associated with a given classθ in Y can
be then learned by locally solving (12) for every feature1 using ABCS, LASSO or any other CS method.
The obtained parametersβθ(i), i = 1, . . . , nf associated with a classθ can be then used for approximating
the corresponding noise variancesrθ

i

(

rθ
i

)2
= (kθ − 1)−1

kθ
∑

j=1

[

V m
j (i) − [Hj(i) 1]βθ(i)

]2
(14)

where the subscriptj denotes thej-th sample, andkθ denotes the total number of samples for the classθ.

1Here, a feature consists of all samples that are associated with a specific class.



3.2.3. Classification Rule

Having the random field parameters for all classesθ, the predicted class of each and every sample in the new
feature spaceV ′ is chosen as the one which maximizes the posterior probability p

(

(V ′)m
j |

{

βθ(i), rθ
i

}nf

i=1

)

where the subscriptj denotes thej-th sample. In practice, the exact posterior may not be easy to com-
pute. This, however, can be alleviated by computing the pseudo-likelihood over the entire network. An
approximate solution is then given as

ŷj = arg max
θ∈Y

nf
∑

i=1

log p
(

(V ′)m
j (i) | H(i), βθ(i), rθ

i

)

(15)

where the conditionals are given in (13).

3.3. Multi-Class Example

The RF-ABCS is applied for fMRI classification using the samedata set of [20]. The performance of the
new classifier is compared to both NB and RF-LASSO. The lattermethod uses a least angle regression
(LARS) implementation of LASSO for solving (12) at each node. The fMRI data set consists of 20 samples
of a subject viewing 8 types of images which are labeled as 1 to8 (i.e., total of 160 fMRI scans). The
experimental setup uses 8-out cross-validation in which 8 samples, one of each label, are taken as a test set
while the remaining samples are used for training the classifiers.

In all tests we have used a limited number of features, which have been selected as those with the
highest correlation with the response variable (i.e., the labels). The number of features used for each method
varies between 5 to 100. Additionally, two of the methods, the RF-ABCS and the RF-LASSO, are tested
using data sets on which an isometric transformation has been applied. The purpose of this procedure is to
produce rotated RIP data sets based on the original ones. As mentioned previously, bothc1 andc2 in the
upper bound (10) are well-behaved owing to this property. The reader is referred to the appendix and [21]
for further discussions and derivations pertaining to thistransformation.

The prediction error rates of all methods are depicted versus the number of selected features (variables)
in Fig. 3a. This figure shows a clear advantage of the RF-ABCS classifier when using more than 40 features.
The error rates of the NB, RF-LASSO and RF-ABCS using 100 features are approximately0.4, 0.2, and0.1,
respectively. The affect of the isometric transformation on the prediction accuracy of the RF-LASSO and
RF-ABCS is demonstrated in this figure and in Fig. 3b, which provides a clearer picture of the corresponding
error rates. With no exception, in this case as well, the RF-ABCS outperforms the RF-LASSO essentially
attaining azero error rate when using more than 80 features.

4. CONCLUSIONS

A new approximate Bayesian compressed sensing algorithm isderived based on a unique type of sparseness-
promoting prior. The semi-Gaussian prior, which forms the core of the new method, yields a closed-form
recursion for solving the noisy compressed sensing problem. The discrepancy between the exact and the
approximate posterior pdf obtained by using the new algorithm is of the order ofP̂k, a quantity which is
computed online. In the last part of this work, a random field-based classifier utilizing the approximate
Bayesian scheme is shown to attain azero error rate when applied to fMRI classification.
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Fig. 3: Prediction error rates of the various classifiers based on 8-out cross-validation. Showing the NB (cir-
cles), RF-LASSO (diamonds), RF-ABCS (bold-crosses), RF-LASSO using the transformed data set (line),
and RF-ABCS using the transformed data set (bold-squares).



Appendix

A. PROOF OF THEOREM 1

Proof We first notice that

p(yk | β) ∝ exp

(

−1

2
(yk − Hβ)T R−1 (yk − Hβ)

)

(16)

Recognizing that the denominator in (2) is independent ofβ while using the above likelihood immediately
gives

p(β | Yk) ∝ exp

(

−1

2
(yk − Hβ)

T
R−1 (yk − Hβ) − 1

2

(

β − β̂k−1

)T

P−1
k−1

(

β − β̂k−1

)

)

(17)

Now, the mean ofp(β | Yk) can be obtained by solving

∂ log p(β | Yk)

∂β
= 0 (18)

This in turn yields

β̂k =
(

P−1
k−1 + HT R−1H

)−1
[

P−1
k−1β̂k−1 + HT R−1yk

]

(19)

which translates into

β̂k =
(

I − Pk−1H
T
(

HPk−1H
T + R

)−1
H
)

Pk−1

[

P−1
k−1β̂k−1 + HT R−1yk

]

= β̂k−1 + Pk−1H
T
(

HPk−1H
T + R

)−1
[

−Hβ̂k−1

]

+
(

Pk−1H
T R−1 − Pk−1H

T
(

HPk−1H
T + R

)−1
HPk−1H

T R−1
)

yk (20)

by applying the matrix inversion lemma. Further elaborating the parentheses in the last term in (20) yields

Pk−1H
T R−1 − Pk−1H

T
(

HPk−1H
T + R

)−1
HPk−1H

T R−1 =

Pk−1H
T R−1 − Pk−1H

T R−1
(

HPk−1H
T R−1 + I

)−1
HPk−1H

T R−1

= Pk−1H
T R−1

[

I −
(

HPk−1H
T R−1 + I

)−1
HPk−1H

T R−1
]

= Pk−1H
T R−1

[ (

HPk−1H
T R−1 + I

)−1 (
HPk−1H

T R−1 + I
)

−
(

HPk−1H
T R−1 + I

)−1
HPk−1H

T R−1
]

= Pk−1H
T R−1

(

HPk−1H
T R−1 + I

)−1 [
(HPk−1H

T R−1 + I − (HPk−1H
T R−1

]

= Pk−1H
T
(

HPk−1H
T + R

)−1
(21)

Finally, substituting (21) into (20) and collecting terms yields (3a).
The covariance ofp(β | Yk) is obtained as

Pk = E
[

(β − β̂k)(β − β̂k)T | Yk

]

(22)



with

β − β̂k = β −
(

I − Pk−1H
T (HPk−1H

T + R)−1H
)

β̂k−1 − Pk−1H
T (HPk−1H

T + R)−1yk

=
(

I − Pk−1H
T (HPk−1H

T + R)−1H
)

(

β − β̂k−1

)

− Pk−1H
T (HPk−1H

T + R)−1nk (23)

where the fact thatyk = Hβ + nk was used for obtaining the 2nd line in (23). Substituting (23) into (22)
and after a few (albeit tedious) algebraic manipulations weget the simple recursion in (3b).QED.

B. PROOF OF THEOREM 2

Proof The exact and the approximate posterior pdf’s are given by

p(β | Yk) = c exp

(

−1

2

‖ β ‖2
1

σ2

)

p′(β | Yk) (24a)

p̂(β | Yk) = ĉ exp

(

−1

2

(Ĥβ)2

σ2

)

p′(β | Yk) (24b)

wherec and ĉ denote the appropriate normalization constants, andp′(β | Yk) is the Gaussian posterior
without any sparseness promoting prior (i.e., withP0 → ∞). Now, explicitly writing the KL divergence
between these two pdf’s yields

KL(p̂(β | Yk) ‖ p(β | Yk))

=

∫

p̂(β | Yk) log
p̂(β | Yk)

p(β | Yk)
dβ = log(ĉ/c) +

1

2σ2

∫

p̂(β | Yk)
[

‖ β ‖2
1 −(Ĥβ)2

]

dβ

= log(ĉ/c) +
1

2σ2
Ê
[

‖ β ‖2
1| Yk

]

− 1

2σ2
Ê
[

(Ĥβ)2 | Yk

]

(25)

whereÊ[· | Yk] denotes the expectation operator with respect top̂(β | Yk). Applying the Jensen inequality
while recalling thatĤβ̂k =‖ β̂k ‖1, β̂k = Ê[β | Yk], gives

KL(p̂(β | Yk) ‖ p(β | Yk)) ≤ log(ĉ/c) +
1

2σ2
Ê
[

‖ β ‖2
1| Yk

]

− 1

2σ2
Ê
[

Ĥβ | Yk

]2

=

log(ĉ/c) +
1

2σ2
Ê
[

‖ β ‖2
1| Yk

]

− 1

2σ2
‖ β̂k ‖2

1 (26)

Further lettingδβ := β − β̂k, Eq. (26) yields

KL(p̂(β | Yk) ‖ p(β | Yk)) ≤ log(ĉ/c) +
1

2σ2
Ê
[

‖ β ‖2
1| Yk

]

− 1

2σ2
‖ β̂k ‖2

1

≤ log(ĉ/c) +
1

2σ2
Ê

[

(

‖ β̂k ‖1 + ‖ δβ ‖1

)2

| Yk

]

− 1

2σ2
‖ β̂k ‖2

1

= log(ĉ/c) +
1

σ2
Ê [‖ δβ ‖1| Yk] ‖ β̂k ‖1 +

1

2σ2
Ê
[

‖ δβ ‖2
1| Yk

]

(27)



owing to the triangle inequality. Recalling that‖ δβ ‖1≤
√

n ‖ δβ ‖2 we may then write

KL(p̂(β | Yk) ‖ p(β | Yk)) ≤ log(ĉ/c) +

√
n

σ2
Ê [‖ δβ ‖2| Yk] ‖ β̂k ‖1 +

n

2σ2
Ê
[

‖ δβ ‖2
2| Yk

]

≤ log(ĉ/c) +

√
n

σ2
Ê
[

‖ δβ ‖2
2| Yk

]1/2 ‖ β̂k ‖1 +
n

2σ2
Ê
[

‖ δβ ‖2
2| Yk

]

(28)

where the 2nd line in (28) is due to the Jensen inequality. Recognizing that

Ê
[

‖ δβ ‖2
2| Yk

]

= Tr
(

Ê
[

(β − β̂k)(β − β̂k)T | Yk

])

= Tr(P̂k) (29)

Eq. (28) can be written as

KL(p̂(β | Yk) ‖ p(β | Yk)) ≤ log(ĉ/c) + O
(

σ−2 max
{

Tr(P̂k), Tr(P̂k)1/2
})

(30)

At this point the theorem immediately follows based on the inequalitylog(ĉ/c) ≤ 0. In order to show this
we first note that‖ β ‖2

1≥ (Ĥβ)2 owing to the fact that the left hand expression consists of summation of
positive terms whereas the same terms on the right side of theequation have either positive or negative signs.
This further implies

− ‖ β ‖2
1≤ −(Ĥβ)2 =⇒ exp

(

−1

2

‖ β ‖2
1

σ2

)

≤ exp

(

−1

2

(Ĥβ)2

σ2

)

=⇒
∫

exp

(

−1

2

‖ β ‖2
1

σ2

)

p′(β | Yk)dβ ≤
∫

exp

(

−1

2

(Ĥβ)2

σ2

)

p′(β | Yk)dβ

=⇒
(
∫

exp

(

−1

2

‖ β ‖2
1

σ2

)

p′(β | Yk)dβ

)−1

≥
(

∫

exp

(

−1

2

(Ĥβ)2

σ2

)

p′(β | Yk)dβ

)−1

=⇒ c ≥ ĉ

(31)

QED.

C. ISOMETRIC DATA TRANSFORMATIONS

The theory of CS shows that the solutions of the noiseless convex problem

min
β̂

‖ β̂ ‖1 s.t.Y = V β̂ (32)

and the original NP-hard problem, in which thel1 norm in (32) is substituted by thel0 norm, coincides
under the restriction that the sensing matrixV obeys a so-called restricted isometry property (RIP) at a
certain level. In detail, the RIP is defined as

(1 − δs) ‖ x ‖2
2≤‖ V x ‖2

2≤ (1 + δs) ‖ x ‖2
2 (33)

for someδs ∈ (0, 1) and anyx that iss-sparse at most. In other words, every subset ofV of dimension
m × s acts as nearly orthonormal system. The RIP constantδs gives an indication of the actual proximity
of any subset to orthogonality. In the noisy case (i.e., similar to the model in (14)) the RIP constant sets an
upper bound on the norm estimation error‖ β − β̂ ‖2 whereβ is the actual sparse solution. The reader is
referred to [1,2] for an extensive discussion about the RIP and its role in CS.



C.1. Main Result

The classification method suggested in the Section 3.2 locally solves a regression problem for each feature
in V m. This is accomplished by applying a CS-based method or some otherl1 regularized technique using
(14). Recalling that bothc1 andc2 in (12) are well behaved whenever the sensing matrix satisfies the RIP,
it is desired to have this property locally for every node in (14). However, this cannot be guaranteed for the
original data setV . Bearing this in mind, we provide a detailed description of atechnique for producing an
RIP data matrix out of the original one while preserving distance ratios in the transformed space. Before
proceeding, however, we introduce the notion of block-sparseness which is used in the ensuing.

Definition 1 A vectorx ∈ R
dm with d, m ∈ N is m-block-sparse if its non zero entries are concentrated in

blocks of dimensionm. That is, if

x =











x1

x2

...
xd











wherexi ∈ R
m, i = 1, . . . , d, and

#{xi | xi 6= 0, i = 1, . . . , d} << d

thenx is said to bem-block-sparse.

The following theorem is proved in [21].

Theorem 3 (Isometric Transformation) Suppose thatH ∈ R
m×dm for somed, m ∈ N, and let

T = diag(H−1
1 P1, . . . , H

−1
d Pd), Ker(T ) = ∅ (34)

whereHi ∈ R
m×m and Pi ∈ R

m×m, i = 1, . . . , d are the partitions ofH and some RIP matrixP ∈
R

m×dm, respectively. Then there exists an orthogonal transformation T̂ ∈ R
dm×dm and scalarsα > 0 and

δ ∈ (0, 1) for which
(1 − δ) ‖ x ‖2

2≤‖ √
αT̂x ‖2

2≤ (1 + δ) ‖ x ‖2
2

for m-block-sparsex. In particular

T̂ = diag(C1D
T
1 , . . . , CdD

T
d )

whereCiΛiD
T
i , Λi = diag(λ1

i , . . . , λ
m
i ), λ1

i ≥ λ2
i ≥ · · · ≥ λm

i is the singular values decomposition (SVD)
of H−1

i Pi. Letting λmax = arg maxi∈[1,d] λ
1
i and λmin = arg mini∈[1,d] λ

n
i , the scaling factor can be

approximated by

α ≈
√

2
(

λ−1
min + λ−1

max

)−1/2

and the RIP constant is given as

δ =
(1 + δm)λ−1

min − (1 − δm)λ−1
max

(1 + δm)λ−1
min + (1 − δm)λ−1

max

< 1

whereδm ∈ (0, 1) is the RIP constant associated withP .



Proof Notice that by definition (34),P = HT obeys the RIP

(1 − δm) ‖ z ‖2
2≤‖ HTz ‖2

2≤ (1 + δm) ‖ z ‖2
2 (35)

for somem-sparsez. Now, let us set
z = DΛ−1DT x (36)

whereCΛDT is the SVD ofT . Notice thatΛ−1 exists owing toKer(T ) = ∅.
The transformation of the parameter space in (36) changes the sparsity basis ofx. In general, we cannot

expect that both vectors, the original and transformed, will have the same sparseness degree. However, the
following subtle observation changes the whole picture. Itcan be easily verified that the block structure of
T in (34) induces a similar structure ofDΛ−1DT in (36). This further implies that ifx is m-block-sparse
then soz.

The definition ofz implies

‖ z ‖2
2= xT DΛ−1DT DΛ−1DT x =‖ Λ−1DT x ‖2

2 (37)

Substituting (37) and the SVD ofT into (35) yields

(1 − δm) ‖ Λ−1DT x ‖2
2≤‖ HCDT x ‖2

2≤ (1 + δm) ‖ Λ−1DT x ‖2
2 (38)

Without any loss of generality let us assume at this point that ‖ x ‖2= 1. Hence,

λ−1
max(Λ) = λmin(Λ−1DT ) ≤‖ Λ−1DT x ‖2

2≤ λmax(Λ
−1DT ) = λ−1

min(Λ) (39)

Using the above in (38) while multiplying by someα > 0 yields

α2(1 − δm)λ−1
max ≤‖ αHCDT x ‖2

2≤ α2(1 + δm)λ−1
min (40)

Finally setting
α2(1 − δm)λ−1

max = 1 − δ (41a)

α2(1 + δm)λ−1
min = 1 + δ (41b)

and solving forα andδ yields the theorem.QED.

C.2. Block Sparseness Equivalence and Column Ordering

As can be easily recognized from (36) and the definition ofT in (34), the isometric transformation assumes
a block sparse form of the projected linear space. This fact raises a question. How can we impose the block
sparse form onβ, our original parameter space. A straight forward approachfor alleviating this problem is
to reorder the columns ofV or more precisely ofV m so as to group significant features in blocks. This in
turn increases the chance of having a block sparse solution to the CS problem

min
βθ(i)

‖ βθ(i) ‖1 s.t. ‖ V m(i) − H(i)βθ(i) ‖2≤ ǫ (42)

which forms the heart of the random field classifier of Section3.2.
Reordering of columns can be carried out using either a ranking method or a feature selection technique

(e.g., correlation, t-test, LDA and Fisher linear discriminant). The columns will be then reordered according
to their measure of significance. Notice, however, that the ordering of columns within them × m blocks of
V does not really affect the block sparseness degree ofβ.



C.3. Practical Implementation: Random Projections

The isometric transformation relies on the existence of some RIP matrix of the same dimension as the
original data set. Constructing such a matrix is generally anon trivial task. Nevertheless, it is well known
fact that some random matrices obey the RIP with high probability [1,2].

Consider a matrixP ∈ R
m×n of which the entries are independent identically distributed (iid) samples

fromN (0, m−1). Then ifs, the maximal sparseness degree of the underlying parametervector, satisfies

s = O (m/ log(n/m)) (43)

the matrixP obeys the RIP with probability exceeding1 − O (exp(−γn)) for someγ > 0 [2]. Similar
result exists for a binary measurement matrix of which the entries are sampled according to

Pr
(

Pij = ±1/
√

m
)

= 0.5 (44)

In the case of high dimensional feature space it seems that the random approach is the only one that
can guarantee the RIP to some extent. Taking randomP , however, imposes a conceptual problem. Thus,
we can expect that there might be realizations ofP that render the new data set less informative thereby
deteriorating the classification accuracy. In order to avoid such instances we propose an additional stage in
which a proper realization ofP would be chosen by cross-validating over a transformed development set.
This technique is demonstrated in the numerical study section in the ensuing.

C.4. Transductive Approach

In practice the isometric transformation can be applied to afeature space that is augmented by the (testing)
data setV ′

V̄ =

[

V
V ′

]

∈ R
(m+l)×n (45)

This technique, which can be thought of as a form of unsupervised learning, yields a transformation that de-
pends on both the training and the unlabeled testing data sets. This approach, which is used in the numerical
study part of this work, has shown to significantly improve the classification accuracy.

C.5. Summary

Given an arbitrary (augmented) data matrixH ∈ R
(m+l)×n wheren = d(m + l) andd, m, l ∈ N, the

transformation is carried out as follows.

1. Generate a realization of an isometric (Gaussian or Binary) random matrixP of the same dimensions
asH .

2. Reorder the columns ofH according to some ranking or feature selection technique.

3. PartitionH = [H1, . . . , Hd], P = [P1, . . . , Pd] whereHi, Pi ∈ R
(m+l)×(m+l).

4. Compute the transformation̂Ti = CiD
T
i for all i = 1, . . . , d whereCiΛiD

T
i is the SVD ofH−1

i Pi.

5. Compute the scaling factorα.

6. The transformed data set is̄H = α
[

H1T̂1, . . . , HdT̂d

]

.
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