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Ordering nodes for parameter elicitation in Bayesian belief networks

Abstract

Building Bayesian belief networks in the ab-
sence of data involves the challenging task
of eliciting conditional probabilities from ex-
perts. In this paper, we develop analytical
methods for determining the order in which
parameters are to be elicited, based on a
proximity criteria for the distribution of ei-
ther the entire set of variables, or a subset of
variables of primary interest to the analyst.
We explore the implications of our results for
typical parameter prior distributions used in
the learning community, such as the uniform
Dirichlet distribution. Through experiments,
we compare the influence of the chosen vari-
ables of interest on the ordering.

1 INTRODUCTION

Bayesian belief networks [Pearl, 1988; Howard and
Matheson, 1984/2005] are graphical models that have
become increasingly popular for representing causal re-
lationships and performing inference in probabilistic
domains. When there is no available literature to guide
construction of the model and no data from which the
model can be “learned”, it must be built using the do-
main knowledge of experts. Often the structure of a
belief network is relatively easy to construct; then the
primary task in building these models is the elicita-
tion of the parameters, as characterized by conditional
probability distributions [Henrion, 1989; Druzdzel and
van der Gaag, 1995; 2000; van der Gaag et al, 1999].

The cognitive biases prevalent during assessments are
well known [Kahneman et al, 1982]. However, there
are additional challenges to populating belief networks
through expert elicitation in practice. For instance,
experts may not necessarily report perfectly what they
believe due to a lack of interest, lack of familiarity with
either process or topic, or fatigue. Also, elicitation can

take considerable time and commitment and experts
may drop out before completion. This is particularly
relevant in the case of elicitation administered in an
automated way such as a survey tool. In this paper,
we study the following question: for a particular be-
lief network whose structure is known, and where it
is assumed that all the parameters for a node in the
network will be elicited together, in what order should
the parameters be elicited from a single domain expert
so as to best achieve a set of identified goals?

If the analyst is able to elicit all the parameters from
experts who report exactly what they believe, then the
question of finding the “optimal” order for parameter
elicitation is moot. However in practice, the question
of choosing an order for elicitation is an important
one due to reasons stated above. In this introduc-
tory research work, we take an analytical approach to
addressing the question of optimal parameter order-
ing for expert elicitation. A primary objective is to
identify reasonable criteria for judging the quality of
a partially elicited belief network. Using these crite-
ria, a second objective is to understand how the order
for elicitation is determined for popular priors used in
the learning community. We develop insights for the
case when the priors are uninformative and provide
guidelines for analysts in the case of other application-
specific belief networks. While empirical research on
understanding how experts actually react to different
orders is also an important topic, similar to the empir-
ical work on understanding how experts actually feel
about different probability elicitation tools [Renoij and
Wittemen, 1999; Wang and Druzdzel, 2000], we leave
that as a topic for future research.

The remainder of the paper is organized as follows. In
section 2, we discuss our basic assumptions and no-
tation. In section 3, we describe criteria for selecting
the next node to elicit based on proximity to the joint
distribution of a set of variables, including analytical
results and insights for some particular choices of pri-
ors, and a simulation-based algorithm for the general
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Figure 1: The Burglar network.

problem. Experimental results for some examples are
presented in section 4. Finally, section 5 highlights our
conclusions and directions for future work.

2 ASSUMPTIONS AND NOTATION

In this section we introduce notation for the paper,
and present the assumptions underlying our analytical
approach. We assume that the reader is familiar with
probabilistic modeling using belief networks. Figure 1
shows a popular belief network from the literature, the
Burglar network [Pearl, 1988].

2.1 Preliminaries

We refer to variables and nodes in the belief network
interchangeably. We denote variables by uppercase
and their instantiations by lower case letters. A set
of variables is shown in bold. Let X1, X2, ..., XN be
the nodes in the network, where N is the total num-
ber of nodes. We will also use Z to refer to the set of
all variables.

We say that xi is an instantiation (or state) of variable
Xi, and ui is an instantiation of Xi’s parents Ui. A
node along with its parents constitutes a family. We
denote the conditional probability of xi given ui as
θxi|ui

. The probabilities conditioned on ui must sum
to 1, i.e.

∑
xi

θxi|ui
= 1.

We assume that the variables, their states, and the
structure of the belief network are known before choos-
ing the order in which the parameters will be elicited.
We also assume that all the parameters for a node
are elicited together. Hence the phrase “eliciting a
node” refers to eliciting all the parameters for that
node, which we assume are contained in a conditional
probability table (CPT) representation. While some
nodes may take longer to elicit due to the number
of conditioning parents and their numbers of states,

θx θy|x θy|~x

X Y

Figure 2: Belief network with nodes for variables X and
Y , and their parameters.

we do not consider in this paper the issue of order-
ing the way in which parameters within a node are
elicited. From a practical perspective, it seems natural
to ask the expert to consider all aspects of a particular
scenario at the same time. Indeed, previous research
has shown that presenting all conditioning cases for
a node together during elicitation reduces the effect
of biases [Renooij and Wittemen, 1999; van der Gaag
et al, 1999]. When the sizes of the CPT tables are
substantially different across nodes, it is of interest to
understand the trade-off between the time required to
elicit a node relative to the information that can be
gained from eliciting the node.

Additionally, we assume that the expert response is
exact, i.e. when we elicit a node from an expert, s/he
will tell us exactly what s/he believes. While there
exists some previous research that studies the effect
on elicitation of ‘noise’ in expert responses, through
viewing experts as noisy sensors [Scott and Shachter,
2005], we are not aware of any experimental results
that accurately describe how expert responses are af-
fected by node ordering that may, for example, lead
to fatigue or generate a learning curve during network
elicitation. Thus we focus only on the effect of differ-
ent node orderings, so as not to confound our results
with other effects. The question of the “optimal” order
is still interesting even in the case of exact expert re-
sponse, because experts may drop out of the elicitation
process.

2.2 A Bayesian approach

We take a Bayesian approach to uncertainty about pa-
rameters in the model, similar to that taken in the
learning literature [Heckerman, 1998]. Consider Fig-
ure 2, which shows a belief network representing the
relationship between two binary uncertainties X and
Y and their parameters. Here x and ∼ x denote the
two states of X. Our uncertainty about the parame-
ters is described using prior distributions, represented
by nodes for the θs in Figure 2. For the general prob-
lem with nodes X1, X2, ..., XN , the parameters are de-
noted θxi|ui

. We denote their expected values and their
standard deviations by µxi|ui

and σxi|ui
. Note that pa-



rameters are random variables before they are elicited,
but once elicited, they become constants.

We assume (global and local) parameter independence
[Spiegelhalter and Lauritzen, 1990], i.e. the parame-
ters for every family are independent of each other,
and the parameters for every conditioning case for ev-
ery node are independent of each other. In Figure
2, these independencies are represented by the lack of
arcs between the nodes for the parameters.

A popular prior for parameters is the Dirichlet distri-
bution, since it is conjugate to the multinomial distri-
bution for counts. The Dirichlet distribution for pa-
rameter θ with J states is:

f(θ1, θ2, ..., θJ−1;α1, α2, ..., αJ) =
1

B(α)

J∏
i=1

θ
αi−1
i

where θi ≥ 0∀i,
∑J−1

i=1 θi < 1, θJ = 1 −
∑J−1

i=1 θi and
B(α) is a normalizing constant.

While our methods apply to any prior distribution,
we focus on the Dirichlet distribution in this paper.
We are particularly interested in the uniform Dirich-
let prior, to understand the implications for ordering
nodes for parameter elicitation when there is no infor-
mative prior information about the parameters.

2.3 A myopic approach

We take a myopic heuristic approach for determining
the ordering, i.e. given that a set of nodes (possi-
bly empty) has been elicited, we choose the next node
to elicit based only on its effect on the next evalua-
tion of the joint probability distribution, and not on
long-term implications of that choice. This approach
has also been pursued in the preference elicitation lit-
erature [Chajewska et al, 2000; Scott and Shachter,
2005]. In the case of preference elicitation, the graphi-
cal model is an influence diagram [Howard and Mathe-
son, 1984/2005], i.e. an extension of the belief network
representation that incorporates decisions and values
explicitly. In the case of influence diagrams, the value
of information [Howard, 1966] is a standard criteria
for choosing the next elicitation question. In the next
section we discuss criteria for the case of elicitation in
a belief network.

3 PROXIMITY-TO-DISTRIBUTION
CRITERIA

A belief network represents a joint distribution over
a set of variables, based on the expert’s beliefs. The
joint distribution is typically used for further analysis,
such as inference. Moreover, the analyst may be most

interested in a specific set of variables in the belief net-
work, which we refer to as the variables-of-interest. A
possibly incomplete elicitation of a network may result
in a distribution that is different from the actual joint
distribution, leading to inaccurate inferences. Thus
it seems reasonable to require that a possibly incom-
plete elicitation result in a joint distribution over the
variables-of-interest that is “close” to the actual joint
distribution over these variables. We discuss appropri-
ate measures of proximity below. We study the case
when the variables-of-interest are the entire set of vari-
ables Z, followed by a discussion of the case when the
variables-of-interest are a subset of Z.

3.1 Proximity to the joint distribution of Z

A natural way to select a node to elicit is to get as
“close” to the actual joint distribution of Z as possible,
in the expected sense. Suppose that PZ is the actual
joint distribution of Z, capturing the expert’s beliefs
about all the uncertain variables, and Qκ

Z is the joint
distribution of Z given that only the nodes in the set
κ have already been elicited. The joint distribution if
node i were to be elicited next (i /∈ κ) is denoted Qi∪κ

Z .
According to the proximity-to-joint criteria, the next
node to elicit is i∗ = argmini/∈κE

[
D

(
PZ, Qi∪κ

Z

)]
, for

some appropriate distance metric D. After eliciting
node i∗, the set κ is updated to include i∗.

Note that in the distribution Qi∪κ
Z , the actual param-

eters for all nodes in the set κ ∪ i would be known.
If the joint distribution were to be used at this stage
for inference or some other analysis, all the other pa-
rameters would be set to the expected values of the
priors, according to our assumptions in Section 2. See
Howard (1988) for a discussion on the justification of
using the expected values when there is second-order
uncertainty.

There are several reasonable distance metrics between
probability distributions that can be used for D, such
as the Euclidean distance (L2 norm), the total vari-
ation (L1 norm), or the Kullback-Leibler divergence
(which is technically not a distance metric). We fo-
cus on the Euclidean distance, for which we can ob-
tain analytical results for the square of this distance
(which clearly gives identical results to the Euclidean
distance for choosing the next node to elicit). Re-
sults for the general problem for any prior and for any
distance measure can be obtained through simulation,
which we demonstrate later in this section.

The results of Lemma 1, below, provide a dynamic
way to choose the next node to be elicited, based on
the expert’s responses when nodes from the set κ have
already been elicited.

Lemma 1. If nodes from set κ have been elicited, then



for Euclidean distance squared D, E
[
D

(
PZ, Qi∪κ

Z

)]
=∑

z

[ (
µxi|ui

2 + σxi|ui

2
) (∏

j∈κ θxj |uj

2
)

(∏
j 6=i;j /∈κ µxj |uj

2
) (∑

j 6=i;j /∈κ

σxj |uj
2

µxj |uj
2

) ]
for node i

such that i /∈ κ, where xi, xj, ui and uj are consistent
with an instantiation of all the variables in the network
z, i.e. xi, xj, ui and uj are subsets of z.

Experiments in section 4 explore this result further.
We now present a special case of Lemma 1.

Lemma 2. For Euclidean distance squared D, when
all parameters θxi|ui

have the same expected value and
variance, and when nodes from set κ have been elicited,
E

[
D

(
PZ, Qi∪κ

Z

)]
is the same for all i.

When all parameters have the same expected value
and variance under the prior distributions, the order-
ing of nodes for elicitation does not matter, regardless
of the expert’s responses during elicitation, since elic-
iting any node yields the same expected distance to
the joint at any time during the elicitation. When all
nodes have the same number of states, and the pri-
ors are uniform Dirichlet, then the condition of equal
expected values and variances required in Lemma 2 is
satisfied. We now present the result when all priors are
uniform Dirichlet, but the nodes may have a different
number of states.

Lemma 3. For Euclidean distance squared
D, uniform Dirichlet priors, and when
node i has si states, E

[
D

(
PZ, Qi∪κ

Z

)]
=

C(κ)
(

si

si+1

) ((∑
j /∈κ

sj−1
sj+1

)
−

(
si−1
si+1

))
where C(κ) is

some function of κ and not node i.

Lemma 3 prescribes a method to choose the next
node to elicit, determined only by the number of
states for the nodes in the network that have not
been elicited yet and not on the number of condi-
tioning parents. Further scrutiny of the expression
above shows that the rule for choosing the next node
turns out to be a simple, yet non-obvious one. Denote
f(κ) =

(∑
j /∈κ

sj−1
sj+1

)
. This is a function of the num-

ber of states of nodes in the network that have not
been elicited yet; this number decreases as every ad-
ditional node is elicited. If f(κ) > 3, then the expres-
sion in Lemma 3 is monotonically increasing in si, so
we should select the node with the minimum number
of states. However, if f(κ) < 5/3, then the expres-
sion in Lemma 3 is monotonically decreasing in si, so
we should select the node with the maximum num-
ber of states. In the intermediate region, the function
first increases then decreases, so we should pick the
node with either the minimum or maximum number
of states, as determined by Lemma 3.

For example, consider a belief network with 5 nodes,
similar to the Burglar network in Figure 1, where
nodes 1 to 5 have 3, 4, 5, 6 and 7 states respectively.
In this case, by Lemma 3, the ordering of the nodes is:
1, 2, 5, 4, 3. When no nodes have been elicited, f(κ)
equals 3.23, hence node 1 is chosen because it has the
minimum number of states. After node 1 is chosen,
f(κ) decreases to 2.73 which lies in the intermediate
region between 3 and 5/3. Nodes 2 and 5 are chosen
in this intermediate region, in that order. Then f(κ)
equals 1.38, and thus the remaining two nodes elicited
are in decreasing order of number of states, nodes 4
and 3.

The intuition behind this seemingly arbitrary rule is as
follows. The proximity-to-joint criteria makes a trade-
off between the “spread” in a certain node and the
“spread” from a combination of the other nodes not yet
elicited. Therefore, whether we should select the node
with the minimum or maximum number of states is de-
termined by the degree to which eliciting a node will
reduce this spread, which depends, in turn, on the in-
formation associated with the nodes that have already
been elicited and those yet to be elicited, through the
derived expression.

While the assumption of uniform priors provides cases
that can be solved easily, solving the general problem
in Lemma 1 requires a summation over all instantia-
tions of all variables and is computationally intensive
for large networks. However, in practice, a network
for a single application may have no relevant prior in-
formation, making the assumption of a uniform prior
a reasonable one. If not, the node ordering based on
Lemma 1 may still be feasible in practice, since net-
works elicited from experts typically tend to be some-
what small. In the next section, we briefly discuss
the case where the variables-of-interest are a (typically
small) subset of Z and show how this framework pro-
vides techniques for node ordering that are computa-
tionally feasible even for large belief networks.

3.2 Proximity to the joint distribution of Y,
a subset of Z

In many belief network applications, the analyst is par-
ticularly interested in the joint distribution of a sub-
set of the nodes in the network and not the entire
joint distribution. For instance, in networks for medi-
cal diagnosis, the analyst is typically interested in the
probability that a patient suffers from some disease(s)
given the symptom(s). Even though the symptoms
will not be known until the patient is observed, the
model and the variables (set of symptom variables and
disease variables) are known, and the analyst may not
be directly concerned about the other variables in the
network. A criteria that focuses only on the distribu-



tion of the variables-of-interest seems appropriate.

While it may be argued that a lower number of assess-
ments [Abbas, 2006] can be used in such a situation
by eliciting, e.g., marginal distributions directly, often
it is most convenient for the expert to assess the dis-
tribution for a variable conditioned on other variables
[Howard, 1989]. Note that if the analyst is only in-
terested in a subset of variables and there will be no
evidence from any other variable in the network, then
nodes that are not ancestors of the variables-of-interest
can be deleted from the graph based on independencies
resulting from d-separation [Pearl, 1988].

To derive our results, we use notation similar to the
previous subsection. Suppose that PY is the actual
joint distribution capturing the expert’s beliefs about
the variables-of-interest Y, and Qi∪κ

Y is the joint dis-
tribution of Y if node i were to be elicited, given
that the nodes in the set κ have already been elicited
(i /∈ κ). The next node for elicitation should be
i∗ = argmini/∈κ E

[
D

(
PY, Qi∪κ

Y

)]
, for some appropri-

ate distance metric D. After eliciting node i∗, the set
κ is updated to include i∗.

The following lemma presents a general formulation
when D is the Euclidean distance squared.

Lemma 4. If nodes from set κ have been elicited, then
for Euclidean distance squared D, E

[
D

(
PY, Qi∪κ

Y

)]
=∑

y

[
V ar

[∑
z∼y{

(∏
j∈κ θxj |uj

) (
θxi|ui

)
(∏

j 6=i;j /∈κ θxj |uj
−

∏
j 6=i;j /∈κ µxj |uj

)
}
]]

for node i such

that i /∈ κ, where xi, xj, ui and uj in the expression
are consistent with z, and z ∼ y implies that z is
consistent with y.

While for specific special cases it may be possible to
simplify the analytical expression above, the result is
not easily interpretable in general. Instead, we now
present a general simulation-based algorithm that can
be used for any distance metric D and for any prior
distribution on the parameters.

3.3 A simulation-based algorithm

The following algorithm uses Monte Carlo simulation
to determine the next node to elicit, based on the as-
sumptions in Section 2 and proximity to the joint dis-
tribution of the variables-of-interest Y as the criteria,
for any distance metric D. The variables-of-interest
can either be all the nodes in the network (Y = Z), or
a strict subset.

Simulation-based Ordering Algorithm: Given a
belief network with known variables, states and struc-
ture, the variables-of-interest Y, prior distributions on

all parameters, and all parameters for CPTs of nodes
in set κ (already elicited); determine the next node i∗

to elicit (i∗ /∈ κ) from the expert as follows:

1. Using the exact values of the parameters for nodes
i ∈ κ and a sample point generated from the prior
distribution of all parameters for all nodes i /∈
κ, generate a sample point for the actual joint
distribution of Z, PZ.

2. Denote by Qi∪κ
Z the partial assessment joint dis-

tribution of Z when node i is elicited, where pa-
rameters for node i are the values generated from
PZ, parameters for nodes i /∈ κ are the expected
values of the priors, and the parameters for nodes
i ∈ κ are the actual numbers already elicited.

3. Find the joint distributions of the variables-of-
interest, PY and Qi∪κ

Y ∀i, using inference if re-
quired.

4. Find D
(
PY, Qi∪κ

Y

)
∀i.

5. Repeat Steps 1-3 n times. Use the average value
of the n distances to estimate E

[
D

(
PY, Qi∪κ

Y

)]
6. Based on the obtained average val-

ues, choose the next node to elicit
i∗ = argmini/∈κ Ê

[
D

(
PY, Qi∪κ

Y

)]
and add

i∗ to κ.

7. Repeat the entire algorithm to find the next node
to elicit.

For some belief networks, there may be a small number
of variables-of-interest, maybe even only one variable-
of-interest. In such a situation, it is not computation-
ally intensive to find the distributions of Qi∪κ

Y ∀i, since
all these distributions differ from the distribution Qκ

Y

by parameters associated with only one node. Addi-
tionally, recall that Qκ

Y is the distribution over the
variables Y when nodes from set κ have been elicited.
Previous research has shown that finding the modi-
fied probability of evidence when multiple parameters
are varied within the same CPT is computationally
simple, as it is a special case of n-way sensitivity anal-
ysis [Chan and Darwiche, 2004]. Thus the inference
queries required in Step 3 of the algorithm can be done
efficiently if Y is a small set. The arithmetic circuit
approach to inference [Darwiche, 2003] may be partic-
ularly appropriate since it computes partial derivatives
with respect to all parameters in a downward sweep.
These derivatives can be used for computing the distri-
butions Qi∪κ

Y ∀i, using the sensitivity analysis method
in Chan and Darwiche (2004).

For large belief networks and if Y is a large set, it may
be more efficient to use a function of the marginal



distributions for variables in Y instead of the joint
distribution of Y, since this may be easier to com-
pute. For instance, an additive or multiplicative func-
tion of the proximity to marginal distributions in Y
could be used as a criteria for ordering nodes for elici-
tation. Decomposing a function from a high dimension
to its lower dimensional components is a standard ap-
proach to simplifying multi-attribute situations. How-
ever, this necessarily implies some independence as-
sumptions, which may result in a different ordering
from that obtained using the full joint likelihood ap-
proach. We leave further exploration of this approach
to future research.

4 EXPERIMENTAL RESULTS

4.1 Sensitivity to prior distributions

In this subsection, we investigate the effect of changes
in the parameters of the prior distributions on the op-
timal order. In particular, we consider elicitation of
the Burglar network of Figure 1 under different pa-
rameterizations of the priors. Initially, we assume that
the expected values of the parameters equal their true
values (as shown in Figure 1), i.e. we have a “cen-
tered” prior, with variances equal to 1/12, correspond-
ing to the variance of a uniform Dirichlet distribution.
Our choice of expected values is purely for the purpose
of demonstration; in practice, we would of course not
know the true values before elicitation. For performing
the experiments, we vary the prior distributions sys-
temically over each node, changing the variances node
by node from 0.001 to 1.0 by increments of 0.001, and
changing the expected values parameter by parameter
from 0.001 to 0.999 by increments of 0.001.

We report here the results obtained for Node 5 in
the Burglar network (Wallace), as it is representa-
tive of results obtained for other nodes in the net-
work. In our example, Node 5 has two indepen-
dent parameters: Pr(Wallace|Alarm) = 0.9 and
Pr(Wallace|NoAlarm) = 0.05. Under our base as-
sumptions, the default optimal ordering is: 5, 4, 3, 1,
2. Table 1 shows the ordering of nodes for different
ranges of the variance, while Tables 2 and 3 display
the node orderings as the expected value of the two
independent parameters associated with Node 5 vary
from 0 to 1.

We observe that as the variance increases, the impor-
tance of the node in the ordering increases as well.
Indeed, Node 5 starts in the last position when its
variance is below 0.051 and becomes the first node
specified for elicitation as its variance increases above
0.077. Additionally, we see that the relative order of
the other nodes is not affected. Moreover, the results

Table 1: Sensitivity of optimal ordering to the variance
of all parameters associated with Node 5

Variance 1st 2nd 3rd 4th 5th
0.001-0.051 4 3 1 2 5
0.051-0.068 4 3 1 5 2
0.068-0.070 4 3 5 1 2
0.070-0.077 4 5 3 1 2

Above 0.077 5 4 3 1 2

Table 2: Sensitivity of optimal ordering to the ex-
pected value of parameter for (Wallace|Alarm)
Expected value 1st 2nd 3rd 4th 5th
0.001-0.364 5 4 3 1 2
0.364-0.637 4 5 3 1 2
0.637-1.000 5 4 3 1 2

indicate that the threshold value at which Node 5 gains
rank depends on the expected values of the parame-
ters for all nodes (since parameters for all nodes have
prior distributions with the same variance). The main
observation with respect to Tables 2 and 3 is that the
optimal ordering with respect to the expected values of
Node 5’s parameters is robust, i.e. the optimal order
is unchanged if Pr(Wallace|Alarm) ∈ [0.637; 1] and
if Pr(Wallace|NoAlarm) ∈ [0.015; 0.986]. As men-
tioned above, similar analysis was conducted for each
node, with analogous results.

4.2 Effect of the variables of interest

In this section, we explore the effect of the choice of
variables-of-interest on the ordering. For this example,
we use a belief network adapted from the risk analy-
sis literature [Paté-Cornell and Fischbeck, 1993], the
Shuttle network shown in Figure 3. This network was
built to evaluate the probability of loss of the space
shuttle if debris damaged the thermal protection sys-
tem of the orbiter. This is the unfortunate event that
occurred during the Columbia space shuttle voyage in
February, 2003.

In our version of the Shuttle network, there are eight
nodes which together decompose accident scenarios
beginning with either “Debris Hit” or “Debonding” of
the shuttle tiles, that may ultimately lead to “Subsys-

Table 3: Sensitivity of optimal ordering to the ex-
pected value of parameter for (Wallace|NoAlarm)
Expected value 1st 2nd 3rd 4th 5th
0.001-0.015 4 5 3 1 2
0.015-0.986 5 4 3 1 2
0.986-1.000 4 5 3 1 2
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Figure 3: The Shuttle network.

tem Malfunction”, which in turn may result in “Loss
of Shuttle” and/or “Loss of Experimental Results”.
Note that “Loss of Shuttle” is a more catastrophic
consequence where the shuttle is lost in the accident,
whereas “Loss of Experimental Results” implies that
the shuttle’s records have been erased due to techni-
cal malfunctions. We assume that “Loss of Shuttle”
and “Loss of Experimental Results” are independent
given “Subsystem Malfunction”; it may be possible to
retrieve the records even if the shuttle can not return.

Our experiments with this example were performed
as follows. For two different sets of priors, we evalu-
ated the optimal ordering for four sets of variables-of-
interest:

• the entire joint distribution

• the marginal distribution of “Loss of Shuttle”
(Node 7)

• the marginal distribution of “Loss of Experimen-
tal Results” (Node 8)

• the joint distribution of “Loss of Shuttle” and
“Loss of Experimental Results” (Nodes 7 and 8)

The optimal ordering for the joint is obtained using
Lemma 1 and the optimal ordering for the three oth-
ers are obtained through the implementation of the
simulation-based ordering algorithm (100 iterations).
The results of our experiments are reported below. Ta-
ble 4 corresponds to the case where all nodes have uni-
form Dirichlet priors, and Table 5 to the case where
all nodes have Dirichlet priors with the expected values
equal to the true values of the parameters (“centered
priors”) and the variance for all parameters arbitrarily
set to 5E − 4.

Table 4: Optimal ordering for four sets of variables-of-
interest - uniform Dirichlet priors
All variables Doesn’t matter (Lemma 2)
Loss of Shuttle 7 6 4 3 2 1 5 8
Loss of Exp. Re-
sults

8 6 4 3 2 1 5 7

Loss of Shuttle and
Exp. Results

7 8 6 4 3 2 1 5

Table 5: Optimal ordering for four sets of variables-of-
interest - centered Dirichlet priors
All variables 8 7 5 6 1 2 4 3
Loss of Shuttle 7 4 1 6 3 2 5 8
Loss of Exp. Re-
sults

8 6 4 2 1 5 3 7

Loss of Shuttle and
Exp. Results

3 8 4 6 7 2 1 5

The first insight from our experiments is that the
choice of variables-of-interest plays a major role in de-
termining the optimal ordering. Therefore, whenever
possible, how the belief network is going to be used
should be clarified before starting the elicitation pro-
cess. Second, we observe that for both our assump-
tions on priors, when focusing on a single node as
variable-of-interest, that node comes first in the opti-
mal ordering. This observation is no longer valid when
the subset has more than one element: for the case of
our “centered priors” with variables of interest being
both “Loss of Shuttle” and “Loss of Experimental Re-
sults”, the first node to be assessed should be Node 3
- “Loss of Tile”. For the case of uninformative priors,
we notice that the relative order of the other nodes
remains similar whether we focus on Node 7, Node 8
or both. This may be the consequence of the fact that
all other nodes have the same prior distributions. We
do not observe the same behavior when we consider
the case of centered priors.

5 CONCLUSION

In this paper, we develop methods for ordering the way
in which information is elicited to populate a Bayesian
belief network from experts, under different assump-
tions concerning the prior beliefs as well as different
assumptions concerning the variables of primary inter-
est. For specific cases about the prior information, we
derive analytical expressions to determine the optimal
ordering, and we provide a simulation-based algorithm
to determine the ordering in the general case.

These orderings are driven solely by analytical con-
cerns and do not consider the effect on the user-



friendliness of the elicitation process. In practice, be-
lief networks are often elicited in top-down fashion,
starting with nodes with no parents and going down
the network. One avenue for future research is to in-
vestigate the consequence of forcing a possibly unnat-
ural ordering upon experts and to assess whether the
“information gain” from an analytical perspective is
worth the cost in practice, e.g., confusion, fatigue and
increased imprecision.
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