
RC24819 (W0906-123) June 26, 2009
Mathematics

IBM Research Report

Limit Cycles of Polynomial Vector Fields with Quadratic and
Cubic Homogenous Nonlinearities

J. Llibre
Departament de Matemàtiques

Universitat Autònoma de Barcelona
08193 Bellaterra

Barcelona
Spain

G. Swirszcz
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598
USA

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It  has been issued as a Research
Report for early dissemination of its contents.  In view of the transfer of copyright to the outside publisher, its distribution  outside of IBM prior to publication should be limited to peer communications and specific
requests.  After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties).  Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598  USA  (email:  reports@us.ibm.com).  Some reports are available on the internet at  http://domino.watson.ibm.com/library/CyberDig.nsf/home .



LIMIT CYCLES OF POLYNOMIAL VECTOR FIELDS WITH
QUADRATIC AND CUBIC HOMOGENOUS NONLINEARITIES

J. LLIBRE1 AND G. ŚWIRSZCZ2

Abstract. In this paper we study the limit cycles which can bifurcate from
the periodic orbits of the center located at the origin of the quadratic poly-
nomial differential system ẋ = −y(1 + x), ẏ = x(1 + x), and of the cubic
polynomial differential system ẋ = −y(1− x2 − y2), ẏ = x(1− x2 − y2), when
we perturb them in the class of all polynomial vector fields with quadratic and
cubic homogenous nonlinearities, respectively. For doing this study we use the
averaging theory.

1. Introduction and statement of the results

After the definition of limit cycle due to Poincaré [14], the statement of the 16–th
Hilbert’s problem [9], the discover that the limit cycles are important in the nature
by Liénard [11], ... the study of the limit cycles of the planar differential systems
has been one of the main problems of the qualitative theory of the differential
equations.

One of the best ways of producing limit cycles is by perturbing the periodic orbits
of a center. This has been studied intensively perturbing the periodic orbits of the
centers of the quadratic polynomial differential systems see the book of Christopher
and Li [6], and the references quoted there.

It is well known that if a quadratic polynomial differential system has a limit
cycles this must surround a focus. Up to know the maximum number of known limit
cycles surrounding a focus of a quadratic polynomial differential system is 3, which
coincides with the maximum number of small limit cycles which can bifurcate by
Hopf from a singular point of a quadratic polynomial differential system, see Bautin
[1]. But as far as we know up to now there are few quadratic centers for which it is
proved that the perturbation of their periodic orbits inside the class of all quadratic
polynomial differential systems can produce 3 limit cycles. These are the center
whose exterior boundary is formed by three invariant straight lines (see ŻoÃla̧dek
[21]), three different families of reversible quadratic centers (see Świrszcz [18]), and
the center ẋ = −y(1 + x), ẏ = x(1 + x) (see Buică, Gasull and Yang [3]). The
study of the perturbation of this last center has been made through the Melnikov
function of third order computed using the algorithm developed by Françoise [8]
and Iliev [10]. Here we can provide a new and shorter proof of this second result
by using the averaging theory, see Theorem 1.

In the paper two differential systems are studied. The quadratic systems

(1)
ẋ = −y(1 + x) + ε(λx + Āx2 + B̄xy + C̄y2),
ẏ = x(1 + x) + ε(λy + D̄x2 + Ēxy + F̄ y2),
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2 J. LLIBRE AND G. ŚWIRSZCZ

such that for ε = 0 have a straight line consisting of singular points, and the cubic
systems

(2)
ẋ = −y(1− x2 − y2) + ε3λx +

3∑
s=1

εs
3∑

i=0

ai,sx
iy3−i,

ẏ = x(1− x2 − y2) + ε3λy +
3∑

s=1
εs

3∑
i=0

bi,sx
iy3−i,

such that for ε = 0 have a unit circle consisting of singular points.
We study for ε 6= 0 sufficiently small the number of limit cycles of systems (1)

and (2) bifurcating from the periodic orbits of the centres of (1) and (2) for ε = 0,
respectively. Our main results are the following.

Theorem 1. For convenient λ, Ā, B̄, C̄, D̄, Ē, F̄ system (1) has 3 limit cycles
bifurcating from the periodic orbits of the center for ε = 0.

Theorem 2. The following statements hold for system (2).
(a) Using the averaging theory of third order (see subsection 3.2) for ε 6= 0 suf-

ficiently small we can obtain at most 5 limit cycles of system (2) bifurcating
from the periodic orbits of the center located at the origin of system (2) with
ε = 0.

(b) For convenient λ, ai,s, bi,s, i = 0, 1, 2, 3, s = 1, 2, 3 system (2) has 0, 1, 2,
3, 4 or 5 limit cycles bifurcating from the periodic orbits of the center for
ε = 0.

It is known that systems of the form ẋ = −y + P3(x, y), ẏ = x + Q3(x, y),
with P3 and Q3 homogeneous polynomials of degree 3 can have 5 small limit cycles
bifurcating by Hopf from the origin, see [17, 12].

2. Polar coordinates and Cherkas transformation

We are going to use the following classical result

Lemma 3 (Cherkas [5]). A differential equation

dr

dϕ
=

λr + a(ϕ)rk

1 + b(ϕ)rk−1

can be by means of a substitution

ρ(ϕ) =
r(ϕ)k−1

1 + b(ϕ)r(ϕ)k−1

converted into the Abel equation
dρ

dϕ
= (k − 1)b(ϕ)(λb(ϕ)− a(ϕ))ρ3 +

[(k − 1)(a(ϕ)− 2λb(ϕ))− b′(ϕ)] ρ2 + (k − 1)λρ,

Combining Lemma 3 with polar coordinates transformation we immediately get
the next result.

Corollary 4. Let P (x, y) and Q(x, y) be homogenous polynomials of degree n.
Then the differential system

(3)
ẋ = −y + λx + Pn(x, y)
ẏ = x + λy + Qn(x, y)
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can be transformed into the Abel equation
dρ

dϕ
= (k − 1)B(ϕ)(λB(ϕ)−A(ϕ))ρ3 +

[(k − 1)(A(ϕ)− 2λB(ϕ))−B′(ϕ)] ρ2 + (k − 1)λρ.

where
A(ϕ) = cos ϕPn(cos ϕ, sin ϕ) + sin ϕQn(sinϕ, cos ϕ)

and
B(ϕ) = cos ϕQn(cos ϕ, sin ϕ)− sin ϕPn(sinϕ, cos ϕ).

Proof. System (3) expressed in polar coordinates becomes

ṙ = λr + A(ϕ)rn,
ẏ = 1 + B(ϕ)rn.

Dividing ṙ by ϕ̇ and using Lemma 3 proves the corollary. ¤

3. Averaging

In this section first we present basic results from the averaging theory that we
shall need for proving the main results of this paper.

3.1. Averaging of zeroth order. We consider the problem of the bifurcation of
T–periodic solutions from the differential system

(4) x′(t) = F0(t,x) + εF1(t,x) + ε2F2(t,x, ε),

with ε = 0 to ε 6= 0 sufficiently small. Here the functions F0, F1 : R×Ω → Rn and
F2 : R×Ω× (−ε0, ε0) → Rn are C2 functions, T–periodic in the first variable, and
Ω is an open subset of Rn. One of the main assumptions is that the unperturbed
system

(5) x′(t) = F0(t,x),

has a submanifold of periodic solutions. A solution of this problem is given using
the averaging theory. For a general introduction to the averaging theory see the
books of Sanders and Verhulst [16], and of Verhulst [19].

Let x(t, z) be the solution of the unperturbed system (5) such that x(0, z) = z.
We write the linearization of the unperturbed system along the periodic solution
x(t, z) as

(6) y′ = DxF0(t,x(t, z))y.

In what follows we denote by Mz(t) some fundamental matrix of the linear differ-
ential system (6), and by ξ : Rk × Rn−k → Rk the projection of Rn onto its first k
coordinates; i.e. ξ(x1, . . . , xn) = (x1, . . . , xk).

Theorem 5. Let V ⊂ Rk be open and bounded, and let β0 : Cl(V ) → Rn−k be a
C̄2 function. We assume that

(i) Z = {zα = (α, β0(α)) , α ∈ Cl(V )} ⊂ Ω and that for each zα ∈ Z the
solution x(t, zα) of (5) is T–periodic;

(ii) for each zα ∈ Z there is a fundamental matrix Mzα(t) of (6) such that the
matrix M−1

zα
(0)−M−1

zα
(T ) has in the upper right corner the k× (n−k) zero

matrix, and in the lower right corner a (n − k) × (n − k) matrix ∆α with
det(∆α) 6= 0.
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We consider the function F : Cl(V ) → Rk

(7) F(α) = ξ

(∫ T

0

M−1
zα

(t)F1(t,x(t, zα))dt

)
.

If there exists a ∈ V with F(a) = 0 and det ((dF/dα) (a)) 6= 0, then there is a
T–periodic solution ϕ(t, ε) of system (4) such that ϕ(0, ε) → za as ε → 0.

Theorem 5 goes back to Malkin [13] and Roseau [15], for a shorter proof see [2].

3.2. Averaging of first, second and third order. The averaging theory of third
order for studying specifically periodic orbits was developed in [4]. It is summarized
as follows.

Consider the differential system

(8) ẋ(t) = εF1(t, x) + ε2F2(t, x) + ε3F3(t, x) + ε4R(t, x, ε),

where F1, F2, F3 : R×D → R, R : R×D× (−εf , εf ) → R are continuous functions,
T–periodic in the first variable, and D is an open subset of Rn. Assume that the
following hypotheses (i) and (ii) hold.

(i) F1(t, ·) ∈ C2(D), F2(t, ·) ∈ C1(D) for all t ∈ R, F1, F2, F3, R, D2
xF1,DxF2

are locally Lipschitz with respect to x, and R is twice differentiable with
respect to ε.

We define Fk0 : D → R for k = 1, 2, 3 as

F10(z) =
1
T

∫ T

0

F1(s, z)ds,

F20(z) =
1
T

∫ T

0

[DzF1(s, z) · y1(s, z) + F2(s, z)] ds,

F30(z) =
1
T

∫ T

0

[1
2
y1(s, z)T ∂2F1

∂z2
(s, z)y1(s, z) +

1
2

∂F1

∂z
(s, z)y2(s, z)

+
∂F2

∂z
(s, z)(y1(s, z)) + F3(s, z)

]
ds,

where

y1(s, z) =
∫ s

0

F1(t, z)dt,

y2(s, z) =
∫ s

0

[
∂F1

∂z
(t, z)

∫ t

0

F1(r, z)dr + F2(t, z)
]

dt.

(ii) For V ⊂ D an open and bounded set and for each ε ∈ (−εf , εf ) \ {0},
there exists aε ∈ V such that F10(aε) + εF20(aε) + ε2F30(aε) = 0 and
dB(F10 + εF20 + ε2F30, V, aε) 6= 0.

Then for |ε| > 0 sufficiently small there exists a T–periodic solution ϕ(·, ε) of the
system such that ϕ(0, ε) = aε.

The expression dB(F10 +εF20 +ε2F30, V, aε) 6= 0 means that the Brouwer degree
of the function F10 + εF20 + ε2F30 : V → Rn at the fixed point aε is not zero. A
sufficient condition for the inequality to be true is that the Jacobian of the function
F10 + εF20 + ε2F30 at aε is not zero.
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If F10 is not identically zero, then the zeros of F10 + εF20 + ε2F30 are mainly the
zeros of F10 for ε sufficiently small. In this case the previous result provides the
averaging theory of first order.

If F10 is identically zero and F20 is not identically zero, then the zeros of F10 +
εF20 + ε2F30 are mainly the zeros of F20 for ε sufficiently small. In this case the
previous result provides the averaging theory of second order.

If F10 and F20 are identically zero and F30 is not identically zero, then the zeros
of F10 + εF20 + ε2F30 are mainly the zeros of F30 for ε sufficiently small. In this
case the previous result provides the averaging theory of third order.

4. Quadratic case

Proof of Theorem 1. From Corollary 4 applied to system (1) it follows that finding
limit cycles of (1) is equivalent to finding periodic solutions of

(9)

dρ

dϕ
= (sin ϕ)ρ2 + ε

[− 1
4 cos ϕ((3Ā + C̄ + Ē − 4λ) cos ϕ+

(Ā− C̄ − Ē) cos 3ϕ+
2(B̄ + D̄ + F̄ + (B̄ + D̄ − F̄ ) cos 2ϕ) sin ϕ)ρ3+
((Ā + C̄ − 2λ) cos ϕ + (Ā− C̄ − Ē) cos 3ϕ+
(D̄ + F̄ ) sin ϕ + (B̄ + D̄ − F̄ ) sin 3ϕ)ρ2 + λρ

]
.

We are going to apply Theorem 5 to system (9). We first solve differential
equation

dρ

dϕ
= (sin ϕ)ρ2,

with initial condition ρ(0) = R/(1+R) and we get ρ(ϕ,R) = R/(1+R cos ϕ). Thus
MR(ϕ) in (7) will be a solution of a differential equation M ′

R(ϕ) = (2R sin ϕ)/(1 +
R cosϕ), namely, MR(ϕ) = 1 + 2 ln(1 + R) − 2 ln(1 + r cos ϕ). Thus formula (7)
yields

(10)

F(R) =
∫ 2π

0

(
λ

R

Ξ(ϕ,R)
+

Ā
cosϕ(R cos ϕ + 8 cos(2ϕ) + 3R cos(3ϕ))R2

4Ξ(ϕ, R)
+

B̄
(2R sin 2ϕ + 8 sin 3ϕ + 3R sin 4ϕ)R2

8Ξ(ϕ,R)
−

C̄
cosϕ(3R cos ϕ + 4) sin2 ϕR2

Ξ(ϕ,R)
+

D̄
cos2 ϕ(3R cos ϕ + 4) sin ϕR2

Ξ(ϕ,R)
−

Ē
cos ϕ(R cosϕ + 8 cos 2ϕ + 3R cos 3ϕ− 4)R2

4Ξ(ϕ,R)
+

F̄
(5R cos ϕ + 8 cos 2ϕ + 3R cos 3ϕ) sin ϕR2

4Ξ(ϕ,R)

)
dϕ,

where Ξ(ϕ, R) = (R cos ϕ + 1)3(2 log(R + 1)− 2 log(R cos ϕ + 1) + 1). Now observe
that the terms in front of B̄, D̄ and F̄ are odd π-periodic functions of ϕ, thus their
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integrals from 0 to 2π are equal to zero. Therefore

(11)

F(R) =
∫ 2π

0

(
λ

R

Ξ(ϕ,R)
+

Ā
cos ϕ(R cosϕ + 8 cos(2ϕ) + 3R cos(3ϕ))R2

4Ξ(ϕ,R)
+

C̄
cos ϕ(3R cosϕ + 4) sin2 ϕR2

Ξ(ϕ,R)
+

Ē
cos ϕ(R cosϕ + 8 cos 2ϕ + 3R cos 3ϕ− 4)R2

4Ξ(ϕ,R)

)
dϕ

= λf1(R) + Āf2(R) + C̄f3(R)− Ēf4(R).

We claim that the four functions f1, f2, f3 and f4 are linearly independent. Now
we prove the claim. By straightforward calculation we obtain the following Taylor
expansions:

f1(R) =
1
24

πR
(
2615R4 − 800R3 + 312R2 − 96R + 48

)
+O(R6),

f2(R) =
1
24

πR3
(
313R2 − 60, R− 18

)
+O(R6),

f3(R) =
1
24

πR3
(
401R2 − 84R− 6

)
+O(R6),

f4(R) = − 1
24

πR3
(
43R2 − 12R + 6

)
+O(R6).

The determinant of the coefficient matrix of terms R2, . . . , R5 is π4/3 and the claim
follows.

A well-known classical result states that if a family n functions is linearly inde-
pendent, then there exists their linear combination with at least n− 1 zeroes. We
provide a short proof of this fact in Appendix A. Thus Theorem 1 follows. ¤

We have provided the proof that a family of n functions linearly independent
can have n − 1 zeroes, because we do not find a reference where this result was
proved. We have a very close result due to Coll, Gasull and Prohens [7] proving the
same conclusion but with the additional assumption that a function cannot change
of sign.

Remark 6. System (1) is a perturbation of a reversible quadratic center with an
invariant straight line (compare [20]). The unperturbed system is invariant under
the change of coordinates (y, t) −→ (−y,−t). This is a reason why the terms in
averaging formula coming from xy in ẋ and x2 and y2 in ẏ vanish.

5. Cubic case

Proof of Theorem 2. First we prove statement (b). We shall use third order aver-
aging to show that the system

(12)

ẋ = −y(1− x2 − y2) + ε3λx−
1

1200 (75Bε + 108E + 19840)εx3 + (j + 24)εx2y+(
4ε3(A− 4λ) + ε2

(
27B
128 − C

)
+ (81E+16480)ε

300

)
xy2+

1
2ε(2j +Dε)y3,



ON THE LIMIT CYCLES OF POLYNOMIAL VECTOR FIELDS 7

ẏ = x(1− x2 − y2) + ε3λy+
1
2 (Dε− 2j)εx3 +

(
ε2

(C − 3B
128

)
+ (81E+18080)ε

300

)
x2y−

(j + 40)εxy2 − 1
300 (27E + 6560)εy3,

can have 0, 1, 2, 3, 4 or 5 limit cycles for an appropriate choice of the parameters
λ, A, B,C,D and E . System (12) is clearly a special case of system (2), thus once
we show it, statement (b) will be proved.

Using Cherkas Transformation (Lemma 3) we transform system (12) into the
Abel equation

(13)
dρ

dϕ
= εF1 + ε2F2 + ε3F3,

where

F1 = ρ3

(
3
50

(3E + 640) cos(4ϕ) + 8(sin(2ϕ)− 2 sin(4ϕ))− 16
3

cos(2ϕ)
)

+

ρ2

(
− 9

50
(3E + 640) cos(4ϕ)− 8 sin(2ϕ) + 48 sin(4ϕ) +

16
3

cos(2ϕ)
)

,

F2 =
ρ3

30000
[25(6400j + 75B + 432E + 117760) cos(2ϕ)−

75 cos(4ϕ)(72(j + 8)E + 15360(j + 8)− 25B)−
600 sin(2ϕ)(400j + 25D + 12E + 7360)+
480000(j + 8) sin(4ϕ)− 7200(E + 80) sin(6ϕ)+
3(9E + 1120)(9E + 2720) sin(8ϕ)−
400(27E + 7360) cos(6ϕ) + 14400(3E + 640) cos(8ϕ)] +

ρ2

((
3B
128

− C
)

cos(2ϕ)− 3
16
B cos(4ϕ) + 3D sin(ϕ) cos(ϕ)

)
,

F3 = −2λρ +
ρ2 ((A− 4λ)(2 cos(2ϕ)− 3 cos(4ϕ)) +A) +

ρ3

{
A cos 4ϕ−A− 11B

64
+ 2C − 4D

3
+ 2λ+

1
76800

[sin(2ϕ)(384(100(j + 4)D − 3C(3E + 640)) + B(513E + 103040))−
96 cos(2ϕ)(25(2j − 7)B + 3200C − 6D(3E + 640))−
400 cos(4ϕ)(3(4j + 21)B + 128(3C + 2D + 6λ))+
sin(6ϕ)(1152(3CE + 640C − 400D)− B(81E + 23680))−
96 cos(6ϕ)(175B − 640(5C + 18D)− 54DE)+
800 sin(4ϕ)(11B + 64(3D − 2C)) + 144B(3E + 640) sin(8ϕ)+
38400B cos(8ϕ)]} .

By straightforward calculation we verify that F10 = 0,

y1(ρ, ϕ) =
ρ3

300
sin ϕ((27E + 4160) cos ϕ + 3(3(3E + 640) cos 3ϕ− 800 sin 3ϕ))−

ρ2

600
(
2 sin(2ϕ)(27(3E + 640) cos 2ϕ− 800(9 sin 2ϕ + 1)) + 4800 sin2 ϕ

)
,
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and F20 = 0 (see subsection 3.2). Next

y2(ρ, ϕ) =
1

128
ρ2(9B cosϕ + 12B cos(3ϕ) + 128C cos ϕ− 192D sinϕ) sin ϕ +

ρ3

[(
8j

3
+
B
32
− 9E

25
+

128
15

)
sin(2ϕ)−

1
50

(400j + 25D − 24E + 1280) sin2 ϕ−
9

200
jE sin(4ϕ) +

8
9
(9j + 494) sin2(2ϕ)− 48

5
j sin(4ϕ)+

1
64
B sin(4ϕ) +

81E2 sin2(4ϕ)
4000

− 4
5
E sin2(3ϕ) +

216
25
E sin2(4ϕ)−

63
25
E sin(4ϕ)− 3

5
E sin(6ϕ) +

9
5
E sin(8ϕ)− 64 sin2(3ϕ)+

3808
5

sin2(4ϕ)− 7904
15

sin(4ϕ)− 1472
9

sin(6ϕ) + 384 sin(8ϕ)
]

+

ρ4

[
−243E2 sin2(4ϕ)

16000
− 1

25
(21E + 2480) sin2 ϕ +

29
25
E sin2(3ϕ)−

162
25
E sin2(4ϕ) +

1
300

(189E + 9920) sin(2ϕ) +
27
25
E sin(4ϕ)+

87
100

E sin(6ϕ)− 27
20
E sin(8ϕ)− 1528

9
sin2(2ϕ) +

464
5

sin2(3ϕ)−
2856

5
sin2(4ϕ) +

3056
15

sin(4ϕ) +
10672

45
sin(6ϕ)− 288 sin(8ϕ)

]
+

ρ5 ((27E + 4160) cos ϕ + 3(3(3E + 640) cos(3ϕ)− 800 sin(3ϕ)))2 sin2 ϕ

60000

and

F30(ρ) = −2λρ +Aρ2 −
(
A− B − 2D

3
− 2λ

)
ρ3 −

(
91B
128

− C +
7D
3
− 4E

5

)
ρ4 +

(
D − 9E

5

)
ρ5 + Eρ6.

The coefficients of F30 are linearly independent (linear) functions of λ, A, B,C,D
and E . Therefore for any ρ1, ρ2, ρ3, ρ4, ρ5 ∈ R there exist λ, A, B,C,D,E such that
F30(ρi) = 0 for i = 1, 2, 3, 4, 5. Thus, by using subsection 3.2 ends the proof of
statement (b).

Now we sketch the proof of statement (a). If instead of doing the computations of
the proof of statement (b) for system (12) we did them for the general system (2) we
would obtain a function F30(ρ) which again is a polynomial of degree 6 in ρ without
independent term. Thus the averaging theory of third order can only produce for
ε 6= 0 sufficiently small at most 5 limit cycles of system (2) bifurcating from the
periodic orbits at the origin of system (2) with ε = 0. ¤

Remark 7. There is much freedom in the choice of system (12), it was chosen for
simplicity of calculations.
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Appendix A

Let A be a set and let f1, f2, . . . , fn : A → R. We say that f1, . . . fn are linearly
independent functions if and only if there holds

∀a∈A

n∑

i=1

αifi(a) = 0 ⇒ α1 = α2 = . . . = αn = 0.

Proposition 1. If f1, . . . fn : A → R are linearly independent then there exist
a1, . . . , an−1 ∈ A and α1, . . . , αn ∈ R such that for every i ∈ {1, . . . , n− 1}

n∑

k=1

αkfk(ai) = 0.

Lemma 8. There exist a1, . . . , an such that n vectors



f1(a1)
f1(a2)

...
f1(an)







f2(a1)
f2(a2)

...
f2(an)


 . . .




fn(a1)
fn(a2)

...
fn(an)




are linearly independent.

Proof. By induction. For n = 1 it is trivially true. Let us assume that Lemma 8
is true for n − 1 and suppose that it is not true for n. That would mean that for
every a ∈ A there exist α1(a), . . . , αn(a) not all equal to zero such that

α1(a)




f1(a1)
f1(a2)

...
f1(an−1)

f1(a)




+ α2(a)




f2(a1)
f2(a2)

...
f2(an−1)

f2(a)




+ . . . +αn(a)




fn(a1)
fn(a2)

...
fn(an−1)

fn(a)




= 0.

By induction hypothesis αn(a) 6= 0 and we have two possibilities:
i) There exists i ∈ {1, . . . , n−1} such that fn(ai) 6= 0. In this case αk(a)/αn(a)

do not depend on a for k = 1, 2, . . . , n−1 (induction hypothesis). But then
for every a fn(a) =

∑n−1
k=1 αk(a)/αn(a)fk(a), contradicting independence

of f1, . . . , fn.
ii) For every i ∈ {1, . . . , n−1} fn(ai) = 0. In this case by induction hypothesis

In this case αk(a) ≡ 0 for k = 1, 2, . . . , n − 1 and therefore fn(a) ≡ 0 -
contradiction.

¤

Proof of Proposition 1. Take a1, . . . , an from Lemma 8 then the matrix

A =




f1(a1) f2(a1) . . . fn(a1)
f1(a2) f2(a2) . . . fn(a2)

...
... . . .

...
f1(an) f2(an) . . . fn(an)




is invertible, therefore the equation A ·−→α = [0, 0, . . . , 0, 1]T has a solution −→α . This
means in particular there exist α1, . . . , αn such that [f1(ai), f2(ai), . . . , fn(ai)] ·
[α1, . . . , αn]T = 0 for i = 1, 2, . . . , n− 1. ¤
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[18] G. Świrszcz, Cyclicity of infinite contour around certain reversible quadratic center, J.
Differential Equations 154 (1999), 239–266.

[19] F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, Universitext,
Springer, 1991.
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