
RC24823 (C0907-003) July 14, 2009
Electrical Engineering

IBM Research Report

Wireless Base Station Design on General Purpose Processor
with Multicore Technology

Yonghua Lin, Qing Wang, Jianwen Chen, Lin Chen, Zhenbo Zhu
IBM Research Division

China Research Laboratory
Beijing, 100094

P.R.China

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Wireless Base Station Design on General Purpose
Processor with Multicore Technology

Yonghua Lin1, IEEE Member, Qing Wang1, Jianwen Chen1, Lin Chen1, Zhenbo Zhu1

1IBM China Research Lab, Beijing, China, 100094

Abstract— Software radio (SWR) is one of the major goals for
future wireless communication engineering. Driven by multicore
technology, we can think about implementing wireless base
station on multicore general purpose processor (GPP). IBM Cell
processor and Intel Clovertown processor represent the state-
of-the-art multicore processor of two different main streams,
heterogeneous and homogenous multicore architectures. In this
paper, using Worldwide Interoperability for Microwave Access
(WiMAX) as example, we introduce the design of wireless base
station over these two different multicore GPP platforms, with
deep analysis of the software designs and workload mapping.
Based on it, those key aspects of multicore architecture design,
such as multicore, multiple issue, multithreading, and memory
structure are thoroughly discussed, together with the perfor-
mance impact from our experiment results and different program
models. From this paper, people can know how to implement the
SWR base station on multicore GPP with high performance, how
the processor architecture impacts the performance, and what
other factors related to system design need to be considered in
future.

I. INTRODUCTION

In recent years, to support lager system capacity, higher
service data rates, larger coverage areas and higher mobility,
many new wireless technologies have evolved and various
wireless standards have been formed, including Wideband
Code- Division Multiple Access (WCDMA), 802.16d/e (rep-
resented by WiMAX, i.e., Worldwide Interoperability for
Microwave Access), Long Term Evolution (LTE), and LTE
advanced. Most of the existing Global System for Mobile
communication (GSM) operators are considering to upgrade
the GSM networks into new generation mobile networks [1].
The differences among wireless standards mainly involve the
wireless access network, especially the wireless base stations
(BSs). As the main components of wireless access networks,
base stations usually represent the largest monetary investment
associated with a mobile network. Usually it exceeds 60% of
total infrastructure investment. So, the cost of base stations
when upgraded to different wireless standards will be very
important for operators. How to provide low cost base station
solution to support different wireless standards is also impor-
tant for network equipment providers (NEPs).

Software Defined Radio Forum (SDRF) has defined five
stages, hardware radio, software controlled radio, software
defined radio (SDR), ideal software radio (SWR), and ulti-
mate software radio [2]. SDRF defines an SDR as one that
implements a specified range of capabilities through elements
that are software-reconfigurable. If the functionalities of the
radio can be totally redefined in software, this would be the

ideal implementation of SWR [3]. Most of current base station
designs are still stay in the SDR stage, where the combination
of programmable hardwares such as field programmable gate
arrays (FPGAs) or digital signal processors (DSPs) is the
dominant approach. Though they can meet the processing and
timing requirements of modern high-speed wireless protocols,
there are two major issues. Firstly, the base station hardware
platform based on the mixture of DSP processors, ASICs and
FPGA will have less flexibility to be shared among different
wireless standards [3]. It will increase the upgrade cost of
mobile operators. Secondly, the programming of FPGAs and
DSPs are difficult tasks. Developers have to learn how to
program on each particular embedded architecture, and the
productivity will be low. When the hardware platform is
changed, the software implementation on FPGAs and DSPs
will need lots of porting efforts.

With the rapid progress in multicore technology, general-
purpose processor (GPP) can be considered to support the
entire base band processing in wireless base station (BS).
Nowadays, multicore, simultaneous multithreading (SMT) and
(single instruction multiple data) SIMD processing are the
three main technologies widely utilized in processor architec-
ture to provide high parallel performance with lower power [4].
They have been used in a combinational way. For example,
Intel Nehalem is the processor with 4 cores, two hardware
threads per core, and 128-bit stream SIMD extension (SSE)
instructions for vector execution. IBM’s Cell processor has 9
cores and 128-bit SIMD engine on each synergistic processing
element (SPE) cores [5]. With these parallel architecture de-
signs, Cell processor can provide 204.8GFLOPs (Giga Float-
ing Point) peak performance on single chip, where Nehalem
can support similar level of peak performance as well. It gives
the hope to industry that, modern multicore GPP may be able
to support the wireless base station. If so, we can enter into
the ideal SWR stage, where different wireless standards can
be implemented in pure software without the tightly couple
with hardware. When wireless technology being upgraded, no
base band hardware platform need be replaced. With the rich
software tools and more familiar development environment,
the productivity of development teams can be improved a lot.
It can significantly speed up the adoption of new wireless
research fruits in the commercial mobile system.

However, before we can enter into this ideal stage, two
questions need be answered. One is, how to implement the
wireless base station software stack on these modern multicore
GPP with high performance, especially for the heavy physical

(PHY) layer processing. The second question is, what will
be the system requirements and challenges when build up a
wireless base station system based on GPP platform. With
limited space for this article, we will mainly focus on the
first question in this paper, and some analysis for the second
question will be added in the end of this paper to drive more
discussion in future.

From 2007, we started the SWR design on IBM Cell, Intel
Cloverntown and Nehalem platforms, and created the first
WiMAX 802.16e base station prototype on these platforms
[14] [15]. So, in this tutorial, we will introduce our software
design on multicore GPP, and share our experience on multi-
core and multithreading architecture.

The rest of this artical is organized as follow. Section
2 introduces the WiMAX base station design on different
multicore GPP platforms. We then analyze those architec-
tural considerations in Section 3, especially to evaluate the
performance improvement got from different kinds of CPU
architecture. In Section 4, related system requirements are
discussed for building up a wireless base station with multicore
GPP platform. Finally, Section 5 describes related work and
Section 6 provides conclusion.

II. WIMAX BASE STATION DESIGN ON MULTICORE
PLATFORM

A. PHY layer and MAC layer of 802.16e

In wireless base station, the two major layers defined in
standards are PHY layer and MAC layer. PHY layer is the low-
est layer in the seven-layer open systems interconnection (OSI)
model. In wireless system, PHY layer usually will include
channel coding, modulation and multiplexing in the transmitter
side, and synchronization, channel estimation, equalization,
demodulation and channel decoder in the receiver side. So,
PHY layer can be regarded as the stream processing with a
series of signal processing components pipelined with each
other. MAC layer is the second layer in the OSI model. It pro-
vides some channel access control mechanism, such as system
access, bandwidth allocation, connection establishment, and
connection maintenance. Some of the wireless MAC layer also
support some security mechanism including authentication,
secure key exchange and encryption. Compared with PHY
layer, the processing of MAC layer is more for the packet
processing and it needs to handle massive connections.

WiMAX forum proposes some profiles for system specifica-
tions’ setting [16] to meet different system requirements, such
as the system bandwidth, the coverage radius and the user
supported. The system profiles also determines the required
computation resources and I/O throughput. To demonstrate
the multicore GPP capability in a more convincing way, we
select the typical system profile which can meet most of the
wireless deployment needs, as shown in table I. According
to IEEE 802.16e, we implemented the PHY layer and MAC
layer. Figure 1 shows the PHY layer operations of the WiMAX
BS transceiver [14], which is the focus in this article.

In a wireless BS, one PHY layer instance and one MAC
layer instance can work together to process the digitized radio

Fig. 1. WiMAX BS PHY layer system structure

TABLE I
SYSTEM PARAMETERS

Parameters Value
System Channel Bandwidth (BW in MHz) 10

Sampling Frequency (Fs in MHz) 11.2
Duplex Mode TDD
TDD DL:UL 1:1

FFT size 1024
Frame duration 5 ms

Zone Permutation DL PUSC UL PUSC
Preamble Support

FEC CC: 1/2, CTC: 1/2
Modulation 16QAM, QPSK

STC support Matrix A (2x1), Matrix B (2x2)
OFDMA ranging Initial ranging, Periodical ranging

stream for one radio unit, which is depicted in Figure 2.
Here, the radio unit contains the Digital-to-Analog (D/A) and
Analog-to-Digital (A/D) converters, filters, down/up conver-
tors, and power amplifier. The base band processing of PHY
layer and MAC layer is located in GPP platform. The data
throughput between GPP platform and the radio unit will be
very high, which is the digitized raw data from radio channel.
We can consider the High Speed Serial Link (HSSL) to support
this interface, e.g. 10GbE, PCI express or Infiniband, which
have been widely adopted in commercial servers and supported
by lots of IPs and chip sets. In 802.16e standard, the packets
out from the MAC layer will be transmitted to access service
network (ASN) gateway. Between the MAC and PHY layer
instances, we design an adaptor layer. This adaptor layer
provides the data queues and management queues for both UL
and DL between MAC and PHY layers, and it also provides
some functionalities to hide the design gaps if the MAC and
PHY layers are not provided by the same development teams,
e.g. bit and byte conversion, OFDMA symbol forming, etc.

We implement one set of this stack on Intel Clovertown
(quad cores @2.66GHz) platform, and compare the required
computation resources among PHY layer, MAC layer and

Fig. 2. BS stack for single radio unit

TABLE II
COMPARISON OF REQUIRED COMPUTATION RESOURCES

PHY layer MAC layer PHY-MAC adaptor
computation resources DL: 1 core, UL: 1 core DL+UL: 1 core DL+UL: 1 core

CPU utilization DL: 21%, UL: 74.5% DL+UL: 7.8% DL+UL: 7.7%

adaptor in table II. It is obvious that, PHY layer is much
heavier than other two components. So, in the rest of this
tutorial, we will focus on the multicore GPP implementation
for PHY layer.

Though both Cell and Clovertown are multicore processors,
the CPU architecture of them are quite different. Thus, the
software designs for wireless BS are also different on these two
multicore GPPs. In the following sections, we will introduce
the software architectures designed on these two multicore
processors.

B. Design over Intel Clovertown architecture

Intel Clovertown processor is a quad-core processor based
on Intel Core 2 microarchitecture. It uses homogenous mul-
ticore architecture, where all the four cores are the same.
Large size of L2 cache (≥ 4MBytes) is shared among these
four cores. The software design on Intel Clovertown will be
simple. As long as the processing latency of an UL or DL sub-
frame is within the frame duration, we don’t need to use the
pipeline model which will make the design complex. We have
tested that, on single core of Intel Clovertown @2.66GHz, the
sequential processing latency for an UL sub-frame is 2.9ms
and the one for a DL sub-frame is 1.7ms. Both of them satisfy
the 5ms frame duration, so we can use the simple software
structure to support the multiple PHY layer instances.

Lots of state-of-the-art commercial IT platform supports
symmetric multiprocessing (SMP) architecture, where two or
more identical processors can connect to a single shared main
memory. With the proper operating system (OS) support, any
processor can work on any task no matter where the data
for that task are located in memory. So SMP systems can
easily move tasks between processors to balance the workload
efficiently. For example, IBM System x3550 M2 is the server
with two Clovertown processors and IBM QS21 blade server
is the server with two Cell processors.

Thus, different from the traditional FPGA and DSP based
platform, we need to consider how to support multiple base
station stacks on a multicore GPP based IT platform. So, the
highest cost and power efficiency can be achieved. Taking the

Fig. 3. Software structure for 3 BS instances on x3550 M2 with 2 Intel
Clovertown processors

x3550 M2 as example, we have tested that one core can sup-
port 3 MAC layer instances and 3 PHY-MAC adaptor instances
with 99.99% quality assurance. Here the ”99.99% quality
assurance” means 99.99% frames can be handled within strict
duration limitation, which is 5 ms in our experiment. With the
other 6 cores supporting 3 PHY layer UL instances and 3 PHY
layer DL instances, we can use single x3550 M2 platform to
support 3 sets of WiMAX base station stack. Usually, each
mobile cell will be divided into 3 sectors with 120 degree for
each. Single x3550 M2 platform can support a base station
with 3-sector typical configuration.

Figure 3 describes the software structure of 3 base station
sectors (including PHY layer, MAC layer and PHY-MAC
adaptor) supported by IBM System x3550 M2 server with two
Clovertown processors. In this software structure, besides the
6 cores occupied by the 3 PHY layer instances, there is one
dedicated core for all the processing of MAC layer, PHY-MAC
adaptor and the I/O thread towards the ASN gateway side. And
we use another core to handle all the data I/O towards the radio
unit side, where the throughput is heavy (2.15Gbps).

C. Design over Cell architecture

Unlike Intel Clovertown, Cell processor is a kind of het-
erogeneous multicore processor. A single chip has one Pow-
erPC Processor Element (PPE) and eight SPEs. The PPE
unit on Cell is a general purpose 64-bit RISC core with 2-
way hardware multithreading, used for operating systems and
system control, and the 8 SPEs are 128-bit RISC processors
specialized for data-rich, compute-intensive SIMD and scalar
applications. These units are interconnected with a coherent
on-chip element interconnect bus (EIB) [5].

Based on the architecture of Cell processor, we consider
using PPE for central management of the PHY layer, and map
the computational components in PHY layer into the 8 SPEs.
There are two questions here. One is how to map those UL
and DL components into 8 SPEs with the highest resource
efficiency. The other one is how to design the framework on
PPE to communicate with these 8 SPEs.

Within single PHY layer instance, we use pipeline mode
for both UL and DL processing. Two pipelines are designed

Fig. 4. Software structure for one PHY layer instance on Cell

for UL and DL respectively. In pipeline design, we define
pipeline node which is the hardware core (SPE) to hold a group
of components. The components within one pipeline node
will be executed in serial way. The components on different
pipeline nodes will be executed simultaneously, but the packets
processed on different pipeline nodes are of different timeslots.
Synchronization is required between two adjacent pipeline
nodes, and it will adds communication overhead. To reduce the
latency and increase the throughput, we try to use less pipeline
nodes (SPEs) and group as much as possible components into
one SPE. SPE has 256KB local store and the data movement
between main memory and SPE local store needs Direct
Memory Access (DMA) tranfers. So, two important constrains
need be considered when determining one SPE can hold how
many components.
• The total memory size of those components in local store

should be less than 256KB.
• The total SPE processing latency of the serial components

should be within the system requirement. In our test case
of table I, it is 308.7 microsecond (us).

Based on the optimization results, those components in
downlink can be partitioned into two SPEs, and those of uplink
can be partitioned into 3 SPEs, as shown in Figure 4. As
analyzed in [15], to avoid PPE becoming bottleneck of the
system, we use the SPE synchronization method in this design.
SPE will manage all the synchronization tasks between SPEs
without the interference of PPE.

If IBM blade server QS21 with two Cell processors is used
to support the base band processing of base station, there will
be totally 16 SPEs on a server. Figure 5 shows the software
framework of WiMAX PHY layer supporting 3 sectors on
QS21 platform. Totally 15 SPEs are used and the remained
SPE can be used for other purpose.

In section III, we will further discuss the software design
considering the limitation of Cell memory structure. The alter-
ative software framework is introduced under the help of some
advanced features supported by Cell software development kit
(SDK).

III. ANALYSIS OF ARCHITECTURAL CONSIDERATION

As mentioned in section I, multicore, SMT, multiple-issue
are the main technologies widely utilized to provide high
parallel performance with lower power today. With them,

Fig. 5. Software framework for 3 PHY layer instances on QS21 with 2 Cell
processors

the processor architecture can support the multiple instruction
streams, multiple data stream (MIMD) computation, according
to the categorization from Flynn [18]. The PHY layer pro-
cessing in wireless base station exhibits natural parallelism.
The only question is, how much performance improvement of
the PHY layer processing can be got from these technologies.
Because the adoption of each of these technologies will
increase the power and cost of processor. On the other hand,
when design a high performance wireless base station stack on
multicore GPP, we also need to consider the memory structure
of the processor, which will highly impact the programming
model. The difference between Cell and Intel Clovertown is
the best example. So in this section, all these issues related to
architecture designs will be analyzed.

A. Parallelism with Multicore

To analyze the performance improvement got from different
parallel technologies, we need to check what resources need be
shared in each parallel technologies. For multicore technology,
cores in a multi-core device may be coupled together tightly
or loosely. For example, cores may share caches (e.g. Intel
Clovertown and Nehalem) or may not share caches (e.g. IBM
Cell processor), and they may implement message passing or
shared memory inter-core communication methods. No matter
if they will share the cache or not, these cores will share the
main memory and the bus. So, the performance improvement
brought by multicore will depend on the characteristics of
applications, such as load balance, synchronization, and sen-
sitivity to memory latency.

In wireless BS stack supporting multiple sectors, there is
no data dependency among these sectors. Within on sector,
no data dependency exists between the uplink and downlink
logics as well. Therefore, all the 6 instances running on core
0,1,...,5 in Figure 3 haven’t dependency on each other. In
order to measure the performance improvement by multicore,
we take one experiment on Intel Clovertown, where different
numbers of PHY layer instances are enabled. Each UL or
DL instance occupies a dedicated core, and all the I/O data
for PHY layer are put into the system memory. The result
in table III shows that, there are around 36% performance
loss for DL and 24% performance loss for UL when the
number of parallel sectors increased from 1 to 4. The main
reason for the performance loss is that, when there are 4
sectors (4 for UL and 4 for DL), the frequence of memory

TABLE III
AVERAGE THROUGHPUT OF SINGLE INSTANCE ON SINGLE CORE

Number of Sectors Downlink (Mbps) Uplink (Mbps)
1 35.64 12.86
2 28.19 11.50
3 26.45 10.02
4 22.73 9.69

access will significantly be increased. In DL processing, it
will write the I/Q data into system memory with throughput
of 716Mbps, and in UL it will also read the I/Q data from
system memory with throughput of 716Mbps. When there
are 4 sectors, the competition at the bus will be increased
significantly. Compared with UL processing, DL processing
requires less computation cycles. With the same amount of
throughput requirement, impact from memory access will be
heavier in DL than that on UL. Accordingly, the performance
improvement ratio will be 2.55x for DL and 3.01x for UL
when the number of cores is increased from 2 cores to 8 cores.

B. Parallelism with multiple issue

Multiple-issue processors come in two basic flavors: super-
scalar processors and Very Long Instruction Word (VLIW)
processors. VLIW is widely used in embedded processors
such as DSP processor, while superscalar is popular in server
processor area, e.g. Intel Clovertown, IBM Power 6 etc.
A superscalar processor executes more than one instruction
during a clock cycle by simultaneously dispatching multiple
instructions to redundant functional units on the processor.
Each functional unit is not a separate CPU core but an
execution resource within a single CPU such as an arithmetic
logic unit (ALU), a bit shifter, or a multiplier. Mutiple issue
technology provides the parallelism in instruction level, called
Instruction-Level Parallelism (ILP) [17]. Usually, the ILP can
be achieved by good compilers. It is obvious that, for the same
set of codes, the performance improvement ratio got from
multiple issue will highly depend on the number of functional
units in a CPU core.

One experiment is taken on both Intel Clovertown and IBM
Power 6. We implement the Viterbi decoder on both of them
with the same algorithm and optimization. The only difference
is the SSE instructions on Intel Clovertown is changed to
vector multimedia extension (VMX) instructions for Power6.
The results are listed in table IV. In Viterbi decoder, SIMD
instructions are the major part. Though both IBM Power6
and Intel Clovertown are superscalar processors supporting
multiple issue, core of Power6 has only one SIMD execution
unit, while Intel Core 2 has 3 SSE execution units and can
issue 3 SIMD instructions at one time. So, the CPI of the Intel
Clovertown can be much lower than that of Power6. Removing
the impact of CPU frequency, the performance improvement
ratio is between 2x 2.5x here.

C. Parallelism with SMT

With SMT technology, multiple threads share the execution
units of a single core in an overlapping fashion. If one thread

TABLE IV
VITERBI DECODER PERFORMANCE ON INTEL CLOVERTOWN AND IBM

POWER6

Number of Sectors Intel Clovertown IBM Power6
Frequency 2.66GHz 4.03GHz

SIMD instruction proportion 67% 66%
Cycle per instruction (CPI) 0.68 1.7

Decoder throughput 33.1Mbps 24.5Mbps

TABLE V
PERFORMANCE COMPARISON BETWEEN SINGLE THREAD AND 2-WAY

SMT

1024-FFT Viterbi Decoder
CPI with single thread 0.467 0.96

Iterations per second with single thread 272331 3187
Iterations per second with 2-way SMT 266898 4942

stalls, perhaps waiting for the memory I/O, the execution unit
continues to execute the other thread, resulting in a more fully
utilized CPU. It is also called Thread-Level Parallelism (TLP).
As explained in [17], actually SMT came from the modern
multiple-issue processors, which often have more functional
unit parallelism available than a single thread can effectively
use. So, SMT exploits the TLP and ILP simultaneously.
Compared with multiple-issue and single-thread processor,
SMT can further improve the parallelism performance for
those workloads with low ILP performance in single thread
environment.

We use the two most important components, 1024-FFT
and Viterbi decoder, to implement an experiment on Intel
Nehalem who is using the 2-way SMT design. The results
are listed in table V. In the single thread experiment, there
is only one thread enabled for the FFT or Viterbi decoder
in one core. In the 2-way SMT experiment, we enable two
threads, each of which will hold one FFT or Viterbi decoder
instance. So the result for 2-way SMT mode is the total
number from two threads. When FFT and Viterbi decoder
are both executed on single thread mode, the CPI of FFT is
much lower than Viterbi decoder. That means, FFT library has
much better ILP performance than Viterbi decoder in single
thread environment. Thus, when we enable two threads in the
same core, Viterbi decoder can get significant performance
improvement from TLP than FFT. For Viterbi decoder, the
performance gain got from 2-way SMT is 55%. Thus, when
we decide to use 2-way (or higher) SMT mode or single
thread mode on SMT platform, we should first check the ILP
performance of the stack under single thread mode.

D. Memory structure and program model

In Intel Clovertown, there is L1 cache on each core and
the L2 cache shared among the 4 cores. When the data and
instruction size is larger than the cache size or they are missing
in the cache, hardware will handle these issues automatically.
Thus, when we design the wireless BS software on Intel
Clovertown, we only need to pay attention to the latency
limitation as introduced in section II, and will not worry much

Fig. 6. Required processing cycles for a data block on different SPEs

about the data and code size of the workload.
But, the memory structure of Cell is quite different. SPEs

are the main computational cores. It accesses the main memory
with DMA commands that move data and instructions between
main memory and a private local memory, called a local
store (LS). An SPE’s instruction-fetches and load and store
instructions access its private LS rather than shared main
memory, and the LS has no associated cache. Such memory
organization is a radical break from conventional architecture
and programming models [5]. Cell programmer needs to
consider if the data and instruction size will exceed the 256KB
LS or not. If the size is larger, the sequential workload has
to be partitioned onto multiple SPEs. There are following
disadvantages.
• It will require extra efforts to partition the workload and

get the best scheme. The best scheme means that it can
use less SPEs, and the processing latency of each SPE
can be balanced.

• In pipeline processing, there will be synchronization
overhead.

• It’s hard to get a partition scheme where all the SPEs have
exactly the same latency. So the computation resources
of some SPEs can not be fully utilized when the pipeline
is stalled by the SPE with longest latency.

Based on our WiMAX PHY layer optimization result on
Cell processor, Figure 6 shows the required processing cycles
when a data block is handled through the pipelines of UL or
DL. It is obvious that, the SPE0 in DL and SPE3/SPE4 in UL
can not be fully utilized. In order to make the work easier and
get better performance, we try the code overlay released in Cell
SDK 3.1. Code overlay is a technique to overcome the physical
limitations on code and data size in the SPE. In an overlay
structure the local storage is divided into a root segment,
which is always in LS, and one or more overlay regions,
where overlay segments are loaded into the same region when
needed. More details can be found in [21]. Under the support
of Cell SDK 3.1, we change the original pipeline mode (in
Figure 4) into the overlay mode as shown Figure 7. In this
new overlay mode, we still use two SPEs for DL processing
and 3 SPEs for UL processing, where each SPE will finish
the entire UL or DL processing. In DL SPE, we partition all

Fig. 7. Software structure for overlay mode on Cell processor

the components into two overlay segments, which means there
is one code overlay in the DL processing of each data block.
In UL SPE, there are 3 overlay segments, and twice code
overlay will be executed accordingly. The throughput of both
UL and DL is tested on the same Cell platform (IBM QS21
blade server). The average throughput of DL on single SPE
is 13.98Mbps and that of UL is 9.885Mbps. Totally, 5 SPEs
can support 27.96Mbps DL data processing and 29.66Mbps
UL data processing. Compared with the throughput of original
pipeline mode (24.15Mbps for DL and 22.80Mbps for UL),
we can get 16% performance enhancement for DL and 30%
for UL. More important is, the overlay mode is much easier
to be implemented and optimized than the pipeline mode.

IV. RELATED SYSTEM REQUIREMENTS

In this section, we will analyze other system requirements
when multicore GPP is used to support wireless BS. No ideal
solutions have been explored to solve these requirement yet.
So we list them in this artical to get more attentions from both
IT industry and wireless industry.

A. Power efficiency requirement

To use multicore GPP for wireless BS, the first chal-
lenge is power efficiency. Compared with the DSP from
TI and Freescale, today’s multicore GPP usually has
60watts∼100watts power consumption, which is much higher
than DSP. But the growth of architecture and CMOS tech-
nologies are very amazing in GPP market. From the roadmap
of those leading processor providers, such as Intel, in 2010,
the 8-core 16-thread GPP will be available. In 2011, the GPP
(Sandy Bridge) with 8 cores, 16-threads and 256-bit width
vector engine will be available. Based on our current result on
Clovertown, we can roughly estimate that, single Sandy Bridge
processor can support 5 WiMAX base station sectors including
both the MAC layer and PHY layer. We don’t need extra
network processor, such as Intel IXP or RMI XLR to support
the MAC layer, and we don’t need another micro control unit
(MCU) such as PowerPC processor to support the control
and management. On the other hand, those advanced CMOS
techniques will be adopted on GPP products aggressively. For
example, in the coming 2 to 4 years, the GPP processors with
32nm and 22nm techniques will occur in the market. All of
these can heavily drive the evolution of multicore GPP towards
lower power and high computation density, and it can give us

the expectation that multicore GPP can deliver competitive
power efficiency to support wireless BS in near future.

Though multicore GPP can support all the base band pro-
cessing in wireless BS and provide the ideal SWR with high
flexibility, some component such as Turbo decoder can not
get an efficient implementation with pure software. After opti-
mization in software, Turbo decoder still have 10x complexity
of Viterbi decoder in our implementation. To increase the
power efficiency without losing flexibility, the programmable
FPGA can be considered as an accelerator to support the
channel decoder. For example, an FPGA board with PCI
express interface can be used to work with multicore GPP
platform.

B. Throughput Requirement

As shown in Figure 2, base band unit of WiMAX BS
interfaces the radio unit on the left side, and the ASN
gateway on the right side, which will be similar for other
standards. For convenience, we define the interface with radio
unit as R-B interface and the one with ASN gateway as B-
GW interface. Taking one base station sector for throughput
calculation, the I/O throughput on B-GW interface is around
11Mbps according to the profile defined in table I, and the
I/O throughput on R-B interface is around 720Mbps. If we
use the future processor with 8 cores 16 threads and 256-
bit vector engine as example, single processor can support 5
WiMAX BS sectors. The throughput on the R-B interface will
be around 3.6Gbps. The server with dual processors need to
support 7.2Gbps throughput on R-B interface.

The other big throughput requirement will come from chan-
nel decoder accelerator. If we need FPGA board to support
channel decoder, according to table I, with 8-bit soft input
data, the data throughput from CPU to FPGA for single sector
will be around 440Mbps. On the future server platform with
2 processors supporting 10 WiMAX BS sectors, the total
throughput requirement for channel decoder will be 4.4Gbps.

So the total throughput requirement including the R-B
interface and channel decoder interface is as high as 12Gbps.
It brings a big challenge on the system software design, such
as high efficient device drivers and the I/O threads for R-B
interface and channel decoder interface.

C. Real-time Requirement

Real-time requirement lies in two aspects. One is related
to R-B interface, the other one is related to the strict frame
duration or timing.

On the R-B interface, we can use 10GbE, Infiniband or PCI
express to transmit the DL signal to radio unit. Because the
BS software stack is built upon operating system (OS), jitter
will be generated under the impact from OS scheduler. On the
other hand, multiple BS sectors can be supported on single
server platform and share the same HSSL on R-B interface.
That means, one server platform will interface multiple radio
units. Switch can be used between the base band server and
radio units to keep the flexibility. Then another kind of jitter
will be involved by switch. The straight forward way to solve

the jitter problem is to add the buffer on R-B interface, where
the size of buffer will highly depend on the jitter. Then, the
latency problem will occur due to the large buffer. Especially
in future LTE, the allow round trip time is reduced to 6ms.
So, it is a critical requirement to control the jitter within an
acceptable level.

Another real-time problem comes from the strict frame
duration or timing. In wireless standard, once the frame
duration is defined, the strict timing will trigger the system
and require all the frames (>99.99%) being processed within
this duration. In our case, when OS scheduler is used, even if
the CPU hasn’t been fully utilized, we can see the processing
time of a small proportion of frames will exceed the required
duration. To avoid this, using dedicated hardware core for
single software thread can be one of the solution. But in most
case, we haven’t enough hardware cores to map each software
threads onto them, especially when we have the system to
support both PHY layer and MAC layer. Another solution is to
lower down the CPU utilization. In some of our experiments,
when CPU utilization is less than 60%, this problem will
disappear. But it’s not a good way that both cost efficiency
and power efficiency will be decreased.

Thus, we still need further efforts to deal with real-time
problem, e.g. to use some advanced scheduler mechanisms in
OS kernal, or to explore some new program models to handle
the scheduling in application, etc.

V. REVIEW OF RELATED WORK

A. Related GPP-based work for other standards

For more than 10 years, there have been some trails and ex-
perimental systems to demonstrate GPP platforms’ capability
in supporting wireless system.

T. Turletti et al. consider the software implementation of
a GSM base station on GPP and analyze the performance of
each of its radio interface modules in [6]. In his analysis, one
frequency channel of GSM base station requires one and a
half Pentium Pro 200 processor.

P. Mackenzie et al. use GPP and operating system to achieve
a flexible software radio design for an frequency modulation
(FM) wireless system [7].

Vanu Inc. delivered the first commercial base station product
utilizing IT platform with GPPs, which supported both GSM
and CDMA2000. The entire system, including the signal
processing for the air interface, is simply a collection of
software applications that can run on any general purpose
processor (e.g. Pentium, Xeon, PowerPC and ARM) [8].

Sora software radio platform from Microsoft Research Asia
[13] is the one built upon multicore GPP platform in 2008.
The experiment is for 802.11a/g, and this platform is mainly
targeting the terminal or access point other than base station.

[22] provides the summary of million instruction per second
(MIPS) requirement for some key wireless standards. The
one for GSM carrier is 100MIPS and the one for 802.11a/b
is 9000MIPS. According to our WiMAX test-bed, single
WiMAX carrier with profile in table I will require around
64000MIPS, which is much heavier than GSM and 802.11a/b

tried in [8] and [13]. On the other hand, as discussed in section
III, multiple BS sectors should be supported on a GPP platform
to get the better power and cost efficiency. The system design
will be more complex than a single wireless access point as
introduced in [13].

B. Other multicore architecture for wireless BS

Multicore architecture is not only occurred in GPP area,
those processors used in embedded system are also moving
towards multicore direction.

SODA [20] is a multicore processor architecture designed
to support SDR. It has 4 cores, each of which contains asym-
metric dual pipelines that support scalar and SIMD execution,
and another ARM Cortex-M3 for control purpose. But it is
still a prototype in research lab.

TMS320TCI6487 is a multicore DSP from TI, who has 3
C64+ cores in a single chip. MSC8156 is a multicore DSP
processor from Freescale. There are 6 StarCore DSP SC3850
cores, and two RISC core QUICC Engines.

The major difference between these embedded processors
and Intel’s multicore processors is, these embedded processors
have no shared cache across computational cores. It will use
the self-contained program mode in each core, which will
generate lots of limitation on software design.

VI. CONCLUSION

In this paper, we introduce the wireless base station design
on two different multicore platforms, IBM Cell with het-
erogeneous multicore architecture and Intel Clovertown with
homogenous multicore architecture. 802.16e is chosen as the
target standard. Due to different multicore architecture and
different memory structure, the software structure designs on
these two platforms are quite different. To get high perfor-
mance implementation on multicore GPP, we should take the
architectural impacts into account. Thus, a complete analysis
on multicore, multiple issue, multithreading, memory structure
and the various program models are provided in this paper,
together with our performance results. From these results,
people can learn how to implement the SWR base station on
multicore GPP platform with suitable program model, how to
support the multiple BS sectors on a multicore GPP platform,
and how the multicore processor architecture will impact the
performance. Besides, other key system requirements are also
discussed in this paper, which will be critical when we want to
build up a SWR BS solution upon multicore GPP platforms.
Some of these requirements contain technical challenges in
system software design, such as the system software for high
throughput interface and the real-time problems, which will
have high value for further study and exploration.

REFERENCES

[1] M. Hata,“Fourth Generation Mobile Communication Systems Beyond
IMT-2000,” Proceedings of the Fifth IEEE Asia-Pacific Conference on
Communications, Beijing China, October 18-22, 1999, pp.765-757.

[2] http://www.sdrforum.org
[3] J. Mitola III, “Technical Challenges in the Globalization of Software

Radio,” IEEE Communication Magazine, pp. 84-89 February 1999.

[4] John L. Hennessy, David A. Patterson Computer Architecture: A Quan-
titative Approach (Third Edition), Morgan Kaufmann, San Fransisco,
CA, 2002.

[5] IBM(2006). Cell Broadband Engine Programming Handbook Version
1.0, April 19, 2006.

[6] T. Turletti, D. Tennenhouse, “Complexity of a software GSM base
station,”IEEE Communication Magazine, vol. 37, no. 2, pp. 113-117,
Feb. 1999.

[7] P. Mackenzie, L. Doyle, K. Nolan, D. O’Mahony, “An Architecture for
the Development of Software Radios on General Purpose Processors,”
ISSC 2002, Jun. 2002.

[8] Vanu Anywave Software RAN Solutions; see
http://www.vanu.com/media/Anywave%20Data%20Sheet.pdf

[9] Philip Mackenzie, Linda Doyle, Keith Nolan, Donal O’Mahony, “An
Architecture for the Development of Software Radios on General
Purpose Processors,” TBD

[10] Y. Jay Guo, Advances in Mobile Radio Access Networks, Artech House,
2004.

[11] A. K. Salkintzis, H. Nie, P. T. Mathiopowlos, “ADC and DSP Challenges
in the Development of Software Radio Base Stations,” IEEE Personal
Communications, vol. 6, no. 4, pp. 47-55, Aug 1999.

[12] Z. Salcic, C.F. Mecklenbrauker, “Software Radio – Architectural Re-
quirements, Research and Development Challenges,” International Con-
ference on Communication system, ICCS 2002, vol. 2, pp. 711-716,
Nov.2002.

[13] K. Tan, J. Zhang, J. Fang, et al. “Sora: High Performance Software Radio
Using General Purpose Multi-core Processors,” NSDI 2009, TBD

[14] Q. Wang, D. Fan, Y.H. Lin, “Design of BS Transceiver for IEEE 802.16E
OFDMA Mode,” Proceedings of International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), March 30 - April 4, 2008, pp
1513-1516.

[15] J.W. Chen, Q. Wang, Z.B. Zhu, Y.H. Lin, ”An Efficient Software Radio
Framework for WiMAX Physical Layer on Cell Multicore Platform”,
ICC2009, Jun. 2009, Dresden, Germany. Accepted.

[16] WiMAX Forum. Mobile System Profile 3– Release 1.0 Approved
Specification (Revision 1.7.1: 2008-11-07), WiMAX Forum.

[17] John L. Hennessy, David A. Patterson Computer Architecture: A Quan-
titative Approach (Third Edition), Morgan Kaufmann, San Fransisco,
CA, 2002.

[18] Flynn. M. J. ”Very high-speed computing system,” Proc. IEEE 54:12,
Dec. 1966, pp 1901-1909.

[19] L. Eisen, J. W. Ward III, H.-W. Tast, N. Mading, J. Leenstra, S. M.
Mueller, C. Jacobi, J. Preiss, E. M. Schwarz, and S. R. Carlough, “IBM
POWER6 Accelerators: VMX and DFU,” IBM Journal of Research and
Development, 51, No. 6, 663–683, 2007.

[20] Y. Lin, Hyunseok Lee, M. Woh, Y. Harel, S. Mahlke, T. Mudge,
“SODA: A Low-power Architecture for Software Radio,” Interna-
tional Symposium on Computer Architecture (ISCA), Boston, Mas-
sachusetts, June 17-21, 2006, pp. 89-101.

[21] IBM, “Software Development Kit for Multicore Acceleration Version
3.1 Programmer’s Guide”

[22] M. Alsliety, and D. N. Aloi, “Signal Processing Choices and Challenges
for SDR in Telematics,” Proceedings of International Symposium on
Signal Processing and Its Applications (ISSPA), Sharjah, United Arab
Emirate, February 12-15, 2007, pp. 1-4

