
RC24827 (W0907-054) July 27, 2009
Computer Science

IBM Research Report

Java Cold Method Refactoring

David Wood
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598
USA

Bill Tracey
IBM Software Group
11400 Burnet Road

Austin, TX 78758-3415
USA

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

Java Cold Method Refactoring

David Wood
IBM T.J. Watson Research Center

19 Skyline Dr.
Hawthorne, NY 10532
dawood@us.ibm.com

Bill Tracey
IBM Software Group

11400 Burnet Rd.
Austin, TX 78758-3415
wtracey@us.ibm.com

ABSTRACT

We discuss the techniques and benefits of migrating the bodies of
loaded, but unused (cold), Java methods to secondary classes
which need not be loaded, thus reducing the amount of resources
required for Java class loading, storage and verification. The
migration is done using binary refactoring of compiled Java
classes. We tested two popular applications and showed that
under certain conditions we can attain 8% benefit to start up time
and almost 7% reduced memory consumption. Benefits were also
demonstrated for page faults and working set. We further identify
the attributes of class libraries and applications which can affect
the benefits of our cold method refactoring.

1. INTRODUCTION
Object oriented programming languages, such as Java, afford the
software developer with the ability to group related code together
in objects, or classes in the Java language. This is an extremely
effective way to design, develop and maintain software; however,
it may not always be the most beneficial when considering
runtime execution and Java’s all-or-nothing class loading
semantics. The essence of our work recognizes that although
methods may be logically grouped within a given class, they may
not be grouped properly with respect to execution ordering or
memory layouts. For example, there may be methods that are
only called on error conditions or when the program exits. In
such cases, it may be desirable to defer or completely avoid the
loading of these methods, and more specifically the bytecodes
associated with these methods.

The Java Virtual Machine is designed to dynamically load classes,
their methods and data, as references are encountered during the
course of program execution. Classes make up the primary unit of
function within any Java program and are loaded in total, that is,
without loading of individual methods. Generally speaking,
methods account for the bulk of memory associated with a class
and therefore the largest amount of I/O in loading the class.
Furthermore, the bytecodes making up the body of each method
must be verified regardless of whether or not they are executed.
Our experience has shown that as much as 25% of program start

up time can be spent in class verification. Therefore to reduce
memory and time performance, we would like to identify any
opportunities to reduce the size of loaded classes and more
specifically, methods. Our effort focuses on achieving this goal
through the migration, or refactoring, of methods that are loaded
as part of a loaded class, but not used for a given program
execution scenario. We refer to such methods as cold methods.
Our refactoring implementation acted on bytecodes using the

JikesBT bytecode toolkit [4].

We used the Eclipse SDK and Tomcat as the benchmarks for
evaluation of our techniques. We found that for start up, as much
as 50% of the method bytes loaded were not executed. This
suggests we might achieve as much as a 12.5% startup time
improvement (via reduced verification) and a 50% memory
reduction for stored method bytecodes.

2. RELATED WORK
Our work makes use of binary class file refactoring. This
technique is now becoming a popular way of weaving new code
into existing programs, but also as a technique for implementing
program optimizations as covered by Tilevich and Smaragdakis

 [8].

Much work has been done in the past on software code
optimization, and notably a whole domain centered around

optimizing object-oriented systems has evolved and [9] provides a

valuable survey of techniques in Java. Most techniques focus

specifically on execution time [9] [10] and in the Java space there

are many that address issues of garbage collection performance

 [11] [12]. Our focus has been primarily on Java start up issues

and not throughput issues in a steady-state runtime. However, our
techniques can be applied to any phase of program execution in
which large numbers of new classes are loaded.

Our work is closely related that of Tip et al’s [13] [15] [16] on

class hierarchy optimizations for reduced class size. Their work
focuses primarily on class hierarchy compression and uses static
program analysis to identify unused and closely related classes
and unused class members. They are able to demonstrate a
considerable reduction in size of an application’s class files.

While [13] and [15] focused on C++ applications, [16] discusses

Java specifically and utilized a number of techniques including
method removal to, on average, achieve 51.7% reduction in class
file size.

Krintz etl al’s [13] work on class file splitting is perhaps the

closest to our work. It uses profiling to identify cold methods and
fields and then migrates them to secondary classes. Their
technique for migration uses inter-class references to link the

warm and cold classes and then changes references to the cold
members to reference the secondary class members.

Our work can be differentiated from this past work in a number of
ways. In particular, our work:

1. does not remove the unused methods. Instead it leaves
the method signatures but reduces their size, thus
keeping the original class functionality in tact and
allowing non-scenario executions to succeed.

2. adds accessor methods instead of changing the
protection levels of class members.

3. focuses specifically on the problem of unused methods,

4. details issues involved in migrating method bodies to
secondary (shadow) methods.

3. COLD METHOD REFACTORING
The basics of this technique involve first, identifying the methods
that we should consider for refactoring and second, migrating the
bodies of the identified methods to methods in secondary classes.
Identification of non-executed but loaded methods (i.e. cold
methods), can be done in various ways – we used program
execution traces. The migration of method bodies is done by
creating new methods in secondary classes and changing the
original method to call the new method in the secondary class. As
long as we are careful, the secondary class will not be loaded until
the original method is actually executed. Refactoring can be done
at either the source or bytecode level. Our work has focused on
bytecode refactoring. The specifics of method identification and
method migration are discussed in detail below.

3.1 Identifying Target Methods
The target methods that we need to identify are those that are
loaded but which are not executed for a given program execution
scenario. Execution scenarios could be simple start up scenarios
or more involved with longer running executions.

With the execution scenario defined, we used an execution tracing
facility to produce a listing of the amount of time spent executing
each loaded method. From this we produced a list of unexecuted
methods, including full method signatures, which are then used as
input to our refactoring tool. We should note at this point that
static analysis methods could also be used to determine a list of
cold methods. For now, we leave that as future work.

3.2 Migrating Target Methods
The basic concept in refactoring cold methods is to migrate the
body of the method to another method in a secondary class which,
if done properly, need not be loaded until the original method is
executed. For example, in source code:

public class A
public void foo() {

 <body of foo>
}

}

could become

public class A
 public void foo() {
 Secondary.foo(this);
 }

}

public class Secondary {
 public static void foo(A a) {
 <modified body of foo>
 }
}

In this simple example, there are a number of considerations to
note.

1. A shell class was created to hold the new method.

2. The new method was created – we call this the shadow
method.

3. The original body is modified in the new shadow
method.

4. The original method is modified to call the new method
in the shell class.

There are many details to consider in each of these steps. For
example, how often should we create a shell class? Should the
shadow method be virtual or static? Do constructors need to be
handled any differently? What changes, if any, need to be made
to the method body when it is migrated to the shadow method?
These and other issues are discussed below.

3.2.1 Serializable Classes
Classes marked as serializable through the java.io.Serializable
marker interface should be treated with care. Serializable classes
use the serialVersionUID field as a version stamp for the
class, however the definition by the developer is optional and if
need be, the JVM will generate a default value. This default value
is overly specific and generated based on information including
the set of methods in the class. As such, adding accessor methods
will change the default serialVersionUID and thus
unnecessarily disrupt the serializer/deserializer. For this reason,
we avoid any refactoring that would require the addition of
accessors to classes that do not implement their own
serialVersionUID.

3.2.2 Creating the Shell Class
The first thing that must be done is to create a secondary class to
serve as a container or shell for the shadow method. One aspect
to consider is how often to create a shell class. Should we create a
new class for each method? Should we put all of a class’s
migrated methods into a single class? Or is there perhaps
something in between? Creating a new class for each method
would provide the greatest granularity and assure that only the
method bodies for executed methods are loaded. However, there
is a non-zero cost to runtime performance (and on-disk sizes) for
each additional class. Each new class adds to the JVM’s overhead
and increases the amount of I/O required. Creating a single class
for all of a class’s cold methods avoids this overhead but may
force the loading of unneeded shadow methods. Without a clear
indication, we defined S as the number of shadow methods per
class and tested performance for different values. Results are
shown below. Lastly, should the class be created in the same or
different package, and should it be a peer or, sub-class of, or a
class unrelated to, the original class. The answer to this question
is addressed below where we consider member access rights and
their impact on method body migration.

3.2.3 Creating the Shadow Method
The shadow method can be created as either static or virtual and
the method signature, return value, exceptions and parameters
must be set according to the original method’s signature. The
shadow method is declared to return the same type as the original
and to throw the same exceptions. The input arguments are also
the same except that the parameter list must include a reference to
the instance on which the original method was called. If the
shadow method is virtual, then an instance of the shell class
would need to be created in order to call the method, which would
complicate the migration process and negatively impact execution
time and memory. Further, from a CPU performance standpoint,
static method invocation is more efficient than that for a virtual
method. Finally, the choice of static vs. virtual will effect how the
body is modified to attain access to the members of the original
method’s class and its super classes. Our implementation uses
static shadow methods, which is the easiest to implement and is
also provides the best run-time throughput.

When the target method is synchronized, we could choose to
make the corresponding shadow method synchronized as well,
however, this would add a fair amount of overhead for the
additional semaphore evaluation. One might consider moving
the synchronization from the target to the shadow method;
however this would only be valid if a) we could arrange to use the
same semaphore in the shell class as in the original target class, or
b) we can be assured that the original method’s semaphore is used
only by that method. Our solution is to simply leave the original
method synchronized and to not synchronize the shadow method.
This does leave open the door for synchronization violations
through calls to the shadow method from other than the target
method. This could only be achieved by reflection or other
examination of the class structures, and so seems unlikely.

3.2.4 Shadow Method Modifications
The largest portion of the refactoring effort is the attention that
must be paid to the modifications required when the original
method body is migrated (copied plus modifications) to the
shadow method. First, the references to the original instance and
method parameters must be maintained. Second, all member
accesses must be checked to be sure they are still allowed, and if
not, member accessor functions must be created and called in
place of the original member accesses1. Third, each location that
used the super operator must be modified to call a new accessor
method in the original class that makes the super reference.
Lastly, special care must be taken when class and instance
initializers, <clinit> and <init> respectively, are migrated. Each
of these issues is detailed below.

3.2.4.1 Instance and Parameter References
The Java Specification defines an ordering for method arguments
and an instance reference (for virtual methods) on a method’s
incoming stack. For example, the virtual method foo(int a,
int b, int c) in class A has an incoming stack that looks
like the following:

1 This step is closely related to what the Java compiler does in creating

accessors that allow inner classes to reference otherwise inaccessible
outer class members.

3 c

2 b

1 a

Stack location 0 Reference to instance of A

And if the method is static then the stack is as follows:

2 c

1 b

Stack location 0 a

If we can maintain an equivalent incoming stack in the shadow
method we will minimize necessary modifications to the method
body that might otherwise require complex flow analysis and
bytecode manipulation. For the migration of a static method to a
static method, the signatures do not need to change. For a virtual
method migrated to a static shadow method, we can achieve an
equivalent stack by prepending an instance reference to the
shadow method’s formal parameter list. For example,

 public void foo(Type1 a1,…, TypeN aN) {
 <foo body>
}

defined in class A, becomes the following in the shell class,

 public static void foo(A a, Type1 a1,…, TypeN aN) {
 <foo body + modifications>
 }

The modifications referred to above are discussed in the following
sections.

3.2.4.2 Member Access
Class and instance members referenced in the original method
may no longer be permitted when copied to the shadow method.
For example, where the original method had access to the original
class’s private members, the shadow method will not. In fact, the
bulk of the access problems come with access to members in the
class hierarchy of the original class. To address this problem, we
create member accessor functions, ideally in the class containing
the member, but if that is not possible, then in the class containing
the original method. For fields we add getter and setter methods
and for methods we add caller methods.

In order to reduce memory impacts and improve execution
performance, we would like to minimize the number of new
accessor methods required. As we consider this, we should
remember that the original method was assumed to compile and
so had rights to access members referenced from within it. This
means for example, that we won’t need to provide access to
private or protected members outside the class hierarchy.

The first step to minimizing the number of accessors is to make
the shell class a subclass of the original and put it in the same
package as the original. This will allow a virtual method access to
all non-privates in all super classes, and allow a static method
access to all of the original class’s non-privates. A static
method’s access rights to the original class’s super class members
will depend on whether or not the super class(es) are in the same
package or not. For example, an original method making an
access to a protected member of a super class outside the same
package will require an accessor when migrated to a new static
method.

An implementation consideration is that we may not always have
a complete or correct definition for a given class and/or its
methods. JikesBT will try and derive a class’s members as it
encounters them in other classes, but may not be able to determine
the access rights. In this case the member is marked as a ‘stub’.
If we encounter a stub member while analyzing the method body
to determine the need for required accessors, we treat the method
as private and inaccessible. This makes it fairly important to
provide the implementation with a full set of class definitions in
order to minimize the number of accessors created. Table 1
summarizes the accessor requirements when the shell class is
defined in the same package and as a subclass of the original
class.

Table 1 Accessor requirements for secondary class as a

subclass in the same package.

Accessors Required

for

New Method

Class

Accessed

By

Migrated Code Static

Implementation
Virtual

Implementation

Unrelated Class None. None.

Original Class (A) A’s private members A’s private members

Original Class.super() All super() accesses All super() accesses.

Have

Definition
None. None.

Super class

in same

package
Missing

Definition (i.e.

stub)

None. None.

Have

Definition

All protected
accesses.

None.
Super class

in different

package
Missing

Definition (i.e.

stub)

All accesses. None.

When the original class is declared as final, however, we can
not define the secondary class as a subclass. In this case, the
access rights are similar for static methods and only change for the
virtual methods, which now need accessors for protected members
in other packages. Table 2 summarizes the accessor requirements
when the shell class is defined in the same package, but NOT as a
subclass of the original class.

Table 2. Accessor requirements for secondary class as a non-

subclass in the same package.

Accessors Required

for

New Method

Class

Accessed

By

Migrated Code Static

Implementation
Virtual

Implementation

Unrelated Class None. None.

Original Class (A) A’s private members A’s private members

Original Class.super() All super() accesses All super() accesses.

Super class

in same

Have

Definition
None. None.

package Missing

Definition
None. None.

Have

Definition

All protected
accesses.

All protected
accesses.

Super class

in different

package Missing

Definition
All accesses. All accesses.

We can see that implementing the shadow method as a virtual
method affords a slight advantage with respect to the need for
accessors in the case of non-final classes which have super classes
outside of their own package.

Accessor definition is fairly straight forward and we won’t go into
detail except to define, in general, the basic methods. Any
implementation will need to properly handle the input arguments
and return values based on the type sizes.

Table 3. Generalized accessor methods

Inaccessible

Members

of A

Generated

Accessor in A

void
foo(T1 a1…TN aN)

public static void
call$foo(A a, T1 a1,… TN aN) {
 aload0
 aload1
 ….
 aload N
invokevirtual
 A.foo(T1 a1,…TN aN)

}

static void
foo(T1 a1…TN aN)

public static void
call$foo(T1 a1,… TN aN) {
 aload0
 aload1
 ….
 aload N-1
invokestatic
 A.foo(T1 a1,…TN aN)

}

Field f of type T

public static void
set$f(A a, T val) {
 aload0
 aload1
 putfield A.f
}

public static T get$f(A a) {
 aload0
 getfield A.f
 areturn
}

Static field f of type T

public static void set$f(T val)
{
 aload0
 putstatic A.f
}

public static T get$f() {
 getstatic A.f
 areturn
}

Note that these accessors could have been defined as virtual, but
again given performance advantages of the invokestatic bytecode,
we chose static accessor implementations.

It turns out that replacing the invoke and field accessor bytecodes
with their accessor methods is a good match, because each
accessor requires the same incoming stack as the bytecode it
replaces. Specifically,

putfield A.foo � invokestatic A.put$foo(A a, T v)

getfield A.foo � invokestatic A.get$foo(A a)

putstatic A.bar � invokestatic A.put$bar(T v)

getstatic A.bar � invokestatic A.get$bar()

invokevirtual A.foo(…) �
 invokestatic A.call$foo(A a, …)

invokestatic A.bar(…) �
 invokestatic A.call$bar(…)

3.2.4.3 Super() Method References
References made using the super() operator in the original
method, must also be modified in the shadow method. First,
super() references are identified when the invokespecial bytecode
is used to invoke a method that is neither private nor an instance
initializer. Once encountered, our approach was to create ‘super
accessor’ functions in the original class which simply uses the
invokespecial bytecode on the same method. The super accessor
looks as follows and must always be defined within the original
class:

public TypeR superAfoo(Type1 a1…TypeN aN) {
 aload0
 aload1
 …
 aload N
 invokespecial A.foo(Type1 a1…TypeN aN)
 areturn
}

It has the exact signature of the original method called and is
always virtual, but must be unique within the class hierarchy to
avoid infinite indirect recursion. Our approach to uniqueness was
to include the class name in the method name. Finally, if any
exceptions are thrown by the target method, then those must be
declared for the super accessor as well. Again as with the non-
super member accessors the input stack requirements are the same
for both the direct invocation to the super method and it’s
accessors as follows:

invokespecial A.foo(…) � invokevirtual A.super$foo(…)

3.2.5 Creating the New Method Body
To create the new method body, the primary task is in arranging to
call the shadow method correctly. We consider the three cases of
a static method, a virtual method and a class or instance initializer.

3.2.5.1 Static Methods
The static method is perhaps the most straightforward. It takes no
instance reference and only a set of arguments, as follows:

public class A {
 static TypeR foo(Type1 a1…TypeN aN) {
 <migratable body>
 }
 …
}

which becomes the following,

public class A {
 static TypeR foo(Type1 a1…TypeN aN) {
 aload0
 aload1
 …
 aload N-1
 invokestatic A$Cold.foo(Type1 a1…TypeN aN)
 areturn
 }
 …
}

where A$Cold.foo() was created as the shadow method for
A.foo().

3.2.5.2 Virtual Methods
The virtual method is only somewhat more complex. It adds the
instance reference as a parameter along with the set of declared
arguments. as follows:

public class A {
 TypeR foo(Type1 a1…TypeN aN) {
 <migratable body>
 }
…
}

which becomes the following,

public class A {
 TypeR foo(Type1 arg1…TypeN argN) {
 aload0
 aload1
 …
 aload N-1
 invokestatic A$Cold.foo(A a, Type1 a1…TypeN aN)
 areturn
 }
 …
}

where again, A$Cold.foo() was created as the shadow method for
A.foo().

3.2.5.3 Class and Instance Initializers
Our approach supports the refactoring of both class initializers
(<clinit>) and instance initializers (<init>), however there are two
additional considerations.

First, if a class initializer is loaded but not executed, it means 1)
that the class was loaded for verification purposes only, and 2)
that none of its other methods were executed either. Our results
show that about 10% of classes (by count) are affected with this
issue. Given that this is really a verification issue and that it is a
relatively small problem, we chose to defer this problem to a
separate solution not covered in this paper. When this situation is
encountered our algoirithm will avoid refactoring any methods in
the class.

Secondly, only initializers are allowed to set the values of fields
declared as final. This means that we can not migrate
initialization of final fields into the shadow method. Table 4
shows the percentages of initializers setting final fields.

Table 4. Initializer methods setting final fields

Initializers settting

final fields

Initializer bytes as a

percentage of all

methods

 Eclipse Tomcat Eclipse Tomcat

<clinit> 60% 44% 1.6% 2.3%

<init> 36% 13% 2.0% 1.0%

As might be expected, the percentages for class initializers are
larger than for instance initializers. Given the relatively small
realizable opportunity available through the migration of instance
initializers (less than 1% by size), we decided to forgo migration
of instance initializers containing final field initializations. Note
that an implementation could attempt migration of all
initializations done in instance initializers to the class initializer,
but care would have to be taken to be sure values weren’t being
set differently depending upon which instance initializer was
being called.

Lastly, we must consider that instance initializers always include
the use of the super() operator to invoke the super class’s
initializer (except for Object). A problem arises here in that the
super class initializer may not be visible to the shadow method.
Normally we would simply use the super accessor strategy

discussed in 3.2.4.3. However, we can not use this strategy

because initializers are not allowed to call methods (i.e. the
shadow method) until super classes have been fully initialized.
Given that super() is always used within instance initializers,
we realized we had to address this complexity. Our solution was
to treat only the bytecodes after the super initializer invocation as
refactorable, resulting in a partial migration of the initializer body.
So for example:

public class A extends Object
 public void <init>() {
 invokespecial Object.<init>
 <migratable body>
 }
}

becomes,

public class A extends Object
 public void <init>() {
 invokespecial Object.<init>
 aload0
 invokestatic A$Cold.init(A a)
 }
}

with the shadow method as follows:

public class A$Cold extends A
 public static void init(A a) {
 <migratable body + accessors>
 }
}

putfield A.foo �
invokestatic A$Cold.put$foo(Type value)

getfield A.foo �
invokestatic A$Cold.get$foo()

putstatic A.bar �
invokestatic A$Cold.put$bar(Type value)

getstatic A.bar �
invokestatic A$Cold.get$bar()

invokevirtual A.foo(…) �
invokestatic A$cold.foo(A a, …)

invokestatic A.bar(…) �
invokestatic A$Cold.bar(…)

3.2.6 JVM Dependencies
Finally, there are a number of classes about which the JVM may
have specific expectations. This is a particular issue when
refactoring the JDK (classes.zip, rt.jar, etc). Although we won’t
show results for refactored JDKs, our tool was enabled with the
ability to define classes and packages which are to be avoid when
considering either a) refactoring or b) the addition of accessor
methods.

4. CONTROL PARAMETERS
With the framework in placed to produce the cold method
refactorings based on a set of identified target cold methods, we
find the need for the ability to control which methods are actually
selected for refactoring. Recall that one of our primary goals is to
reduce the size of the classes that are actually loaded and to
increase the percentage of methods (actually bytecodes) that are

executed for a chosen execution scenario. At the same time we
need to be careful to not create too many shell classes, as these
may eventually be loaded and lead to larger overall memory
requirements and perhaps reduced CPU performance. To enable
some control over these attributes, we provided a number of
control parameters as follows:

MinMethodBytes – threshold method size required before a
method will be considered for refactoring

MinClassBytes - minimum number of targeted method bytes
within a class before the class's methods will be considered
for refactoring.

ShellMethods – maximum number of shadow methods per shell
class.

ShellMethodBytes – maximum size of the shell class in method
bytes

Altering MinMethodBytes allows us to make sure we’re not
refactoring methods which are already smaller than the resulting
method body replacement. Similarly, altering MinClassBytes
will enable us to limit the cost of adding a class to cases where the
class has considerable opportunity for savings. These two are
important for basic refactoring and will have the largest impact on
initial class loading. ShellMethods allows us to limit the number
of methods per shell class. A lower value may be useful since it
will limit the amount of unnecessarily loaded code when one of
the cold methods is executed. ShellMethodBytes may be useful in
trying to match class sizes with operating system or JVM page
sizes. These two parameters control behaviors once a cold
method is referenced and so will impact out-of-scenario usage.
The next section looks only at the results on varying the values of
MinMethodBytes and MinClassBytes.

5. RESULTS
We would like to understand the impact of cold method
refactoring on initial application start up. As such, we have
limited our examination to the impact of MinMethodSize and
MinClassSize on both start up time and memory. To understand
the impact we chose two popular java applications as benchmarks:

Eclipse Java SDK 3.1.2 – this is an unmodified version of the
Eclipse 3.1.2 SDK from eclipse.org. We opened an empty
workspace to the default perspective as our scenario. We used the
eclipse.starttime property in debug mode to capture startup times.

Apache Tomcat 5.0.28 – this is a combined HTTP and Servlet
engine from Apache.org. Our scenario was to start the server as is
configured in the initial download. We made a small modification
to capture start up time that is more representative of time since
invocation.

Memory statistics were collected using PsList from Microsoft [19].

In neither case was the JDK itself refactored.

5.1 Application Characterization
To understand the nature of the classes making up these
applications and the nature of any refactoring impact, we need to
understand the relative amounts of warm and cold method code.
Eclipse consists of 8.65MB of total class methods, while Tomcat
consists of 2.39M. Figure 1 shows the breakdown of the loading

of these methods for our start up scenario. Perhaps surprisingly,
cold methods are as common as warm methods.

Method Loading By Size

Warm

8.2%

Warm

10.6%
Cold

8.2%

Cold

9.7%

Unloaded

83.7%

Unloaded

79.6%

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

Eclipse Tomcat

Figure 1. Method usage

Eclipse shows the greatest percentage of cold methods, but both
are close to 50% of total method bytes loaded. Figures 2 and 3
show the relative size distributions of the loaded methods.

Eclipse Method Distribution

0

50

100

150

200

250

300

350

1 2 4 8 16 32 64 128 256 512 1024 2048

T
h

o
u

s
a
n

d
s

Method Bytecode Size (greater or equal)

T
o

ta
l

M
e
th

o
d

 B
y
te

s Warm Methods

Cold Method

Total Loaded

Figure 2. Eclipse loaded method distribution

Tomcat Method Distribution

0

20

40

60

80

100

120

1 2 4 8 16 32 64 128 256 512 1024 2048

T
h

o
u

s
a
n

d
s

Method Bytecode Size (greater or equal)

T
o

ta
l
M

e
th

o
d

 B
y

te
s

Warm Methods

Cold Method

Total Loaded

Figure 3. Tomcat loaded method distribution

The distributions are fairly similar; however we can see that
Eclipse has a lower average method size. Also, while Eclipse’s
cold and warm methods have an equivalent distribution, we can
see that Tomcat’s warm methods are generally larger than its cold
methods and may help to account for the lower ratio of cold
method bytes to warm method bytes for Tomcat.

5.2 Class Object Impact
We looked at the refactoring results with both MinMethodBytes
and MinClassBytes set to 0 to remove any concomitant limitations
on refactoring. With these settings, we were able to successfully
refactor 83.5% of the Eclipse cold methods and 82% of Tomcat
methods (by size). The primary factor accounting for not
attaining higher success rates is the occurrence of serializable
classes that do not define their own serialVersionUID. We
avoid refactoring these classes because adding accessor methods,
which is generally required, would change the default
serialVersionUID thus causing serialization issues with the
resulting code.

Next, we consider the impact on cold methods sizes as we vary
the value of MinMethodBytes while holding MinClassBytes at the
value of 0. The values at ∞ represent the non-refactored case.

Cold Method Bytecode Count After Refactoring
(Minimum Size of Cold Methods Per Class = 0)

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 2 4 8 16 32 64 128 256 512 1024 2048 ∞

Minimum Refactorable Cold Method Bytes Per Class

%
 o

f
O

ri
g

in
a
l

C
o

ld

M
e
th

o
d

 B
y
te

s Tomcat

Eclipse

Figure 4. Total cold method size vs. minimum refactorable

method size

Here we clearly see that a value of 8 for MinMethodBytes
achieves the greatest reduction in cold method bytes, just over
71%, for both Eclipse and Tomcat. Note that for values smaller
than 8 we are actually creating more cold method bytes by
replacing small methods bodies with larger ones to call the
shadow methods.

Next, we consider the impact on cold method sizes as we vary the
value of MinClassBytes while holding MinMethodBytes at the
optimal value of 82.

Cold Method Bytecode Count After Refactoring
(Minimum Cold Method Size = 8)

20%

30%

40%

50%

60%

70%

80%

90%

100%

8 16 32 64 128 256 512 1024 2048 ∞

Minimum Refactorable Cold Method Bytes Per Class

%
 o

f
O

ri
g

in
a
l
C

o
ld

M
e
th

o
d

 B
y
te

s

Tomcat

Eclipse

Figure 5. Percent change in cold methods bytecodes

Figure 5 shows the resulting cold method bytes as percentages of
the original. We can see that in both cases we are able to reduce
the size to about 29% of the initial size – representing a reduction
from 706Kb to 202Kb for Eclipse and from 232Kb to 67Kb for
Tomcat. The total size of all methods is increased by only about
1% (99Kb for Eclipse and 26Kb for Tomcat). This increase is due
primarily to the addition of the accessor methods, which are also
cold since they are created only to be called from the original set
of cold methods.

5.3 Performance Results
Our runtime performance results were acquired on the following
platform:

CPU: Pentium 4, 2.2 GHz

Memory: 1GB

Disk Drive: 60GB SCSI

OS : Windows XP SP2

JVM: Sun 1.5.07 and IBM J9 2.3

2 There should be no change in cold method bytes for values of MinClassBytes that

are less than MinMethodBytes, since selected methods are already restricted to be

larger than the total class method bytes.

Benchmarks were run consecutively resetting disk and memory
caches between runs and so should be considered cold started.
Our measurements were designed to identify the optimal value of
MinClassBytes, with MinMethodSize set to 8 per our earlier
analysis. Runs of each application and each JVM were done for
various values of MinClassBytes. Start up timing results for both
Eclipse and Tomcat running on both Sun and IBM JVMs are
shown below.

Start Up Time
(Minimum Cold Method Size = 8)

90%

92%

94%

96%

98%

100%

102%

8 16 32 64 128 256 512 1024 2048 ∞

Minimum Refactorable Cold Method Bytes Per Class

%
 o

f
U

n
re

fa
c
to

re
d

S
ta

rt
 U

p
 T

im
e

Sun - Tomcat
Sun - Eclipse
IBM - Tomcat
IBM - Eclipse

Figure 7. Start up time

We can see that the Eclipse start up time can be reduced by over
7%, with significant loss of impact for values greater than 256.
However, the benefit for Tomcat is quite a bit smaller at roughly
1%. Both JVMs are roughly equivalent in both cases.

Next we show the memory impact measured in “peak private

bytes” as reported by the pslist utility [19].

Peak Private Memory
(Minimum Cold Method Size = 8)

85%

90%

95%

100%

105%

110%

8 16 32 64 128 256 512 1024 2048 ∞

Minimum Refactorable Cold Method Bytes Per Class

%
 o

f
U

n
re

fa
c
to

re
d

B
y
te

s

Sun - Tomcat
Sun - Eclipse
IBM - Tomcat
IBM - Eclipse

Figure 8. Memory

We see a significant impact for Eclipse with a reduction in
memory requirements by about 6-7%, just fewer than 3MB.
Again, Tomcat does not see the same benefit.

We believe the difference in results between Tomcat and Eclipse
is due primarily to the difference in the rate of class bytes loaded
during the measured startup time.

The rate of class byte loading is a good indication of the relative
amount of time being spent loading classes, and thus the total
opportunity afforded by reducing cold method sizes. We find that
Eclipse loads roughly 195Kb/sec during its start up time and
Tomcat only 88.4Kb/sec. This factor of over 2 will have an
impact on the expected benefit of our refactoring. Note that
although Eclipse loads a larger number of classes, it starts up in
roughly 7.2 seconds compared to 5.5 seconds for Tomcat, so
although it does twice the rate of class loading it does not take
twice as long to start up. In general, these numbers suggest that
Tomcat does more non-class-loading work before being
completely started, and therefore realizes less relative benefit over
that time from cold method refactoring.

Instead of measuring the class loading rate number directly, a
good proxy for this measurement maybe the speed up achieved by
running the target application with and without the Java class
verifier enabled (using the –noverify option). Applications that
experience a better speed up without verification use a greater
percentage of their start up time loading and verifying classes and
as such are more greatly impacted by our refactoring technique.
In accordance with this idea is our measurement of a 26% speed
up on Eclipse and only a 4.7% speed up on Tomcat when running
without class verification.

6. SUMMARY AND CONCLUSIONS
We have shown that a sizable portion of the methods that are
loaded for start up execution scenarios of two well-known and
popular Java applications, Eclipse and Tomcat, are not actually
executed. Both applications demonstrated that the cold methods
account for about 50% of the total method bytes loaded during
start up. Based on this and the fact that applications can spend as
much as 25% of their start up time loading and verifying classes,
we postulated the ability to reduce start up time by as much as
12.5% if the application could be made to load only the warm
(executed) methods.

To try and achieve this we implemented a bytecode refactoring
algorithm that migrated a set of known cold method bodies to
secondary, or shell, classes. The original methods were left in
place but their bodies were modified to call the new (shadow)
methods contained within the shell classes, thereby greatly
reducing the size of the original cold methods. To fully enable the
migration, method and field accessor methods were added as
needed to the original class in order to provide the shadow
method with access to any inaccessible fields or methods. The
shadow method bodies were modified as necessary to call these
accessor methods.

We characterized the set of methods from each application.
Eclipse consisted of a total of 1.4MB of loaded method bytecodes
50% of which were not executed, while Tomcat loaded 486KB of
which 48% were not executed. We found that the algorithm
should never refactor cold methods that were smaller then 8 bytes;
otherwise we would actually increase the overall size of cold
method bytes. We demonstrated that our algorithm was able to
reduce the amount of cold method bytes, including added accessor
methods, to about 29% of the original for both Eclipse and
Tomcat. This means that we shifted the ratio of warm methods to
cold methods from 1:1 to 4:1 (about 80% of the bytecodes loaded
are executed instead of only half prior to refactoring).

We showed that the refactoring could be tuned based on the
minimum cold method bytes within a class and that benefits begin
to drop off at a minimum size of 128 bytes.

Our performance analysis using both the Sun 1.5.07 and IBM J9
2.3 JVMs showed that there were both time and memory benefits
when applying the refactoring. The greatest benefit was seen for
Eclipse with 7% reduction in start up time and almost a 7%
reduction in memory. Tomcat showed minimal improvements for
both time and memory and even a degradation of memory
performance under the Sun JVM.

We believe the difference in performance benefits is due to the
relative amount of class loading that occurs during the measured
start up time. An indicator for how much application performance

might benefit is the size of the start up time reduction when
running without class verification. For values near 26%, which
was the case of Eclipse, one can expect good results from
refactoring. Tomcat only saw a 4.7% reduction in start up time
with verification turned off and so was not able to reap the same
benefit from refactoring

In summary, our work has demonstrated that for the right
application a fair performance benefit can be attained by
refactoring for cold methods.

7. REFERENCES
[1] Lindholm, Tim and Yellin, Frank. The Java Virtual Machine

Specification, Second Edition 1999.

[2] Sun Microsystems Inc. (2004), Java Object Serialization
Specification

[3] J. Gosling, B. Joy, and G. Steele. The Java Language
Specification. Addison-Wesley, 1996

[4] Jikes Bytecode Toolkit -
http://w3.alphaworks.ibm.com/tech/alphabrief/jikesbt

[5] X. Leroy. Java bytecode verification: an overview. G. Berry,
H. Comon, and A. Finkel, editors, Proceedings of CAV'01,
number 2102 in LNCS, pages 265-285. Springer, 2001

[6] Tilevich, E, Smaragdakis, Y. Binary Refactoring: Improving
Code Behind the Scenes, ICSE’05

[7] BACON, D. F., FINK, S. J., AND GROVE, D. Space-
and time-efficient implementation of the Java object
model. European Conference on Object-Oriented
Programming (June 2002), B. Magnusson, Ed., vol.
2374 of Lecture Notes in Computer Science, pp. 111--
132.

[8] T. Mens and T. Tourwe, “A Survey of Software
Refactoring”,IEEE Trans. on Software Engineering 30(2):
126-139 (2004).

[9] Kazi, I. H., Chen, H. H., Stanley, B., and Lilja, D. J. 2000.
Techniques for obtaining high performance in Java
programs. ACM Comput. Surv. 32, 3 (Sep. 2000), 213-240.

[10] Nathaniel Nystrom. Bytecode-level analysis and
optimization of Java class files. Master's thesis, Purdue
University, West Lafayette, IN, May 1998

[11] BRECHT, T., ARJOMANDI, E., LI, C., AND PHAM, H.
Controlling garbage collection and heap growth to reduce
execution time of Java applications. In ACM Conference on

Object Oriented Programming, Systems, Languages, and
Applications (OOPSLA'01) (Nov. 2001)

[12] S. M. Blackburn, P. Cheng, and K. S. McKinley. Oil and
Water? High Performance Garbage Collection in Java with

MMTk. In ICSE 2004.

[13] C. Krintz, B. Calder, and U. Holzle. Reducing Transfer

Delay Using Java Class File Splitting and Prefetching. In
ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages, and Applications
(OOPSLA), November 1999.

[14] Frank Tip and Peter F. Sweeney. Class hierarchy
specialization. In ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications,
1997.

[15] Peter F. Sweeney and Frank Tip. A study of dead data
members in C++ applications. In SIGPLAN '98
Conference on Programming Language Design and
Implementation, pages 324-332, June 1998.

[16] Frank Tip, Chris Laffra, Peter F. Sweeney, and David
Streeter. Practical Experience with an Application
Extractor for Java. IBM Research Report RC 21451,
IBM Research, 1999

[17] W. Pugh. Compressing Java class files. In Proceedings of the
SIGPLAN’99 Conference on Programming Language Design
and Implementation, May 1999.

[18] E. Sirer, A. Gregory, and B. Bershad. A practical approach
for improving startup latency in Java applications. In

Workshop on Compiler Support for Systems
Software, May 1999.

[19] PsList Documentation -
http://www.microsoft.com/technet/sysinternals/utilities/PsLis
t.mspx

TRADEMARKS

Java and all Java-based trademarks are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or
service marks of other service marks

