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ABSTRACT 

We discuss the techniques and benefits of migrating the bodies of 
loaded, but unused (cold), Java methods to secondary classes 
which need not be loaded, thus reducing the amount of resources 
required for Java class loading, storage and verification.   The 
migration is done using binary refactoring of compiled Java 
classes. We tested two popular applications and showed that 
under certain conditions we can attain 8% benefit to start up time 
and almost 7% reduced memory consumption.  Benefits were also 
demonstrated for page faults and working set.  We further identify 
the attributes of class libraries and applications which can affect 
the benefits of our cold method refactoring.  

1. INTRODUCTION 
Object oriented programming languages, such as Java, afford the 
software developer with the ability to group related code together 
in objects, or classes in the Java language.  This is an extremely 
effective way to design, develop and maintain software; however, 
it may not always be the most beneficial when considering 
runtime execution and Java’s all-or-nothing class loading 
semantics.  The essence of our work recognizes that although 
methods may be logically grouped within a given class, they may 
not be grouped properly with respect to execution ordering or 
memory layouts.  For example, there may be methods that are 
only called on error conditions or when the program exits.  In 
such cases, it may be desirable to defer or completely avoid the 
loading of these methods, and more specifically the bytecodes 
associated with these methods.   

The Java Virtual Machine is designed to dynamically load classes, 
their methods and data, as references are encountered during the 
course of program execution.  Classes make up the primary unit of 
function within any Java program and are loaded in total, that is, 
without loading of individual methods.  Generally speaking, 
methods account for the bulk of memory associated with a class 
and therefore the largest amount of I/O in loading the class.  
Furthermore, the bytecodes making up the body of each method 
must be verified regardless of whether or not they are executed.  
Our experience has shown that as much as 25% of program start 

up time can be spent in class verification. Therefore to reduce 
memory and time performance, we would like to identify any 
opportunities to reduce the size of loaded classes and more 
specifically, methods.  Our effort focuses on achieving this goal 
through the migration, or refactoring, of methods that are loaded 
as part of a loaded class, but not used for  a given program 
execution scenario.  We refer to such methods as cold methods. 
Our refactoring implementation acted on bytecodes using the 

JikesBT bytecode toolkit  [4]. 

We used the Eclipse SDK and Tomcat as the benchmarks for 
evaluation of our techniques.  We found that for start up, as much 
as 50% of the method bytes loaded were not executed.  This 
suggests we might achieve as much as a 12.5% startup time 
improvement (via reduced verification) and a 50% memory 
reduction for stored method bytecodes.   

2. RELATED WORK 
Our work makes use of binary class file refactoring. This 
technique is now becoming a popular way of weaving new code 
into existing programs, but also as a technique for implementing 
program optimizations as covered by Tilevich and Smaragdakis 

 [8].    

Much work has been done in the past on software code 
optimization, and notably a whole domain centered around 

optimizing object-oriented systems has evolved and  [9] provides a 

valuable survey of techniques in Java.  Most techniques focus 

specifically on execution time  [9] [10] and in the Java space there 

are many that address issues of garbage collection performance 

 [11] [12].  Our focus has been primarily on Java start up issues 

and not throughput issues in a steady-state runtime.  However, our 
techniques can be applied to any phase of program execution in 
which large numbers of new classes are loaded. 

Our work is closely related that of Tip et al’s  [13] [15] [16] on 

class hierarchy optimizations for reduced class size.  Their work 
focuses primarily on class hierarchy compression and uses static 
program analysis to identify unused and closely related classes 
and unused class members.  They are able to demonstrate a 
considerable reduction in size of an application’s class files.   

While  [13] and  [15]  focused on C++ applications,  [16] discusses 

Java specifically and utilized a number of techniques including 
method removal to, on average, achieve 51.7% reduction in class 
file size. 

Krintz etl al’s  [13] work on class file splitting is perhaps the 

closest to our work.  It uses profiling to identify cold methods and 
fields and then migrates them to secondary classes.  Their 
technique for migration uses inter-class references to link the 

 
 

 



warm and cold classes and then changes references to the cold 
members to reference the secondary class members. 

Our work can be differentiated from this past work in a number of 
ways.  In particular, our work: 

 

1. does not remove the unused methods.  Instead it leaves 
the method signatures but reduces their size, thus 
keeping the original class functionality in tact and 
allowing non-scenario executions to succeed. 

2. adds accessor methods instead of changing the 
protection levels of class members. 

3. focuses specifically on the problem of unused methods,  

4. details issues involved in migrating method bodies to 
secondary (shadow) methods. 

3. COLD METHOD REFACTORING 
The basics of this technique involve first, identifying the methods 
that we should consider for refactoring and second, migrating the 
bodies of the identified methods to methods in secondary classes.  
Identification of non-executed but loaded methods (i.e. cold 
methods), can be done in various ways – we used program 
execution traces.  The migration of method bodies is done by 
creating new methods in secondary classes and changing the 
original method to call the new method in the secondary class.  As 
long as we are careful, the secondary class will not be loaded until 
the original method is actually executed.  Refactoring can be done 
at either the source or bytecode level.  Our work has focused on 
bytecode refactoring.  The specifics of method identification and 
method migration are discussed in detail below. 

3.1 Identifying Target Methods 
The target methods that we need to identify are those that are 
loaded but which are not executed for a given program execution 
scenario.  Execution scenarios could be simple start up scenarios 
or more involved with longer running executions.   

With the execution scenario defined, we used an execution tracing 
facility to produce a listing of the amount of time spent executing 
each loaded method.  From this we produced a list of unexecuted 
methods, including full method signatures, which are then used as 
input to our refactoring tool. We should note at this point that 
static analysis methods could also be used to determine a list of 
cold methods.  For now, we leave that as future work. 

3.2 Migrating Target Methods 
The basic concept in refactoring cold methods is to migrate the 
body of the method to another method in a secondary class which, 
if done properly, need not be loaded until the original method is 
executed.   For example, in source code: 

public class A 
public void foo() { 

    <body of foo> 
} 

} 

 

could become 

public class A 
   public void foo() { 
     Secondary.foo(this); 
   } 

} 
 
public class Secondary { 
   public static void foo(A a) { 
       <modified body of foo> 
   } 
} 
 

In this simple example, there are a number of considerations to 
note. 

1. A shell class was created to hold the new method. 

2. The new method was created – we call this the shadow 
method. 

3. The original body is modified in the new shadow  
method. 

4. The original method is modified to call the new method 
in the shell class. 

There are many details to consider in each of these steps. For 
example, how often should we create a shell class?  Should the 
shadow method be virtual or static?  Do constructors need to be 
handled any differently?  What changes, if any, need to be made 
to the method body when it is migrated to the shadow method?  
These and other issues are discussed below. 

3.2.1 Serializable Classes 
Classes marked as serializable through the java.io.Serializable 
marker interface should be treated with care.  Serializable classes 
use the serialVersionUID field as a version stamp for the 
class, however the definition by the developer is optional and if 
need be, the JVM will generate a default value.  This default value 
is overly specific and generated based on information including 
the set of methods in the class.  As such, adding accessor methods 
will change the default serialVersionUID and thus 
unnecessarily disrupt the serializer/deserializer.  For this reason, 
we avoid any refactoring that would require the addition of 
accessors to classes that do not implement their own 
serialVersionUID. 

3.2.2 Creating the Shell Class 
The first thing that must be done is to create a secondary class to 
serve as a container or shell for the shadow method.   One aspect 
to consider is how often to create a shell class.  Should we create a 
new class for each method? Should we put all of a class’s 
migrated methods into a single class? Or is there perhaps 
something in between?  Creating a new class for each method 
would provide the greatest granularity and assure that only the 
method bodies for executed methods are loaded.  However, there 
is a non-zero cost to runtime performance (and on-disk sizes) for 
each additional class.  Each new class adds to the JVM’s overhead 
and increases the amount of I/O required. Creating a single class 
for all of a class’s cold methods avoids this overhead but may 
force the loading of unneeded shadow methods.  Without a clear 
indication, we defined S as the number of shadow methods per 
class and tested performance for different values.  Results are 
shown below.  Lastly, should the class be created in the same or 
different package, and should it be a peer or, sub-class of, or a 
class unrelated to, the original class.  The answer to this question 
is addressed below where we consider member access rights and 
their impact on method body migration. 



3.2.3 Creating the Shadow Method  
The shadow method can be created as either static or virtual and 
the method signature, return value, exceptions and parameters 
must be set according to the original method’s signature.  The 
shadow method is declared to return the same type as the original 
and to throw the same exceptions.  The input arguments are also 
the same except that the parameter list must include a reference to 
the instance on which the original method was called.  If the 
shadow method is virtual, then an instance of the shell class 
would need to be created in order to call the method, which would 
complicate the migration process and negatively impact execution 
time and memory.  Further, from a CPU performance standpoint, 
static method invocation is more efficient than that for a virtual 
method.  Finally, the choice of static vs. virtual will effect how the 
body is modified to attain access to the members of the original 
method’s class and its super classes.   Our implementation uses 
static shadow methods, which is the easiest to implement and is 
also provides the best run-time throughput. 

When the target method is synchronized, we could choose to 
make the corresponding shadow method synchronized as well, 
however, this would add a fair amount of overhead for the 
additional semaphore evaluation.   One might consider moving 
the synchronization from the target to the shadow method; 
however this would only be valid if a) we could arrange to use the 
same semaphore in the shell class as in the original target class, or 
b) we can be assured that the original method’s semaphore is used 
only by that method.  Our solution is to simply leave the original 
method synchronized and to not synchronize the shadow method.  
This does leave open the door for synchronization violations 
through calls to the shadow method from other than the target 
method.  This could only be achieved by reflection or other 
examination of the class structures, and so seems unlikely. 

3.2.4 Shadow Method Modifications 
The largest portion of the refactoring effort is the attention that 
must be paid to the modifications required when the original 
method body is migrated (copied plus modifications) to the 
shadow method.  First, the references to the original instance and 
method parameters must be maintained.  Second, all member 
accesses must be checked to be sure they are still allowed, and if 
not, member accessor functions must be created and called in 
place of the original member accesses1.  Third, each location that 
used the super operator must be modified to call a new accessor 
method in the original class that makes the super reference.  
Lastly, special care must be taken when class and instance 
initializers, <clinit> and <init> respectively, are migrated.   Each 
of these issues is detailed below.   

3.2.4.1 Instance and Parameter References 
The Java Specification defines an ordering for method arguments 
and an instance reference (for virtual methods) on a method’s 
incoming stack.  For example, the virtual method foo(int a, 
int b, int c) in class A has an incoming stack that looks 
like the following: 

                                                                 
1 This step is closely related to what the Java compiler does in creating 

accessors that allow inner classes to reference otherwise inaccessible 
outer class members.   

 

3 c 

2 b 

1 a 

Stack location 0 Reference to instance of A 

 
And if the method is static then the stack is as follows: 

2 c 

1 b 

Stack location 0 a 

 
If we can maintain an equivalent incoming stack in the shadow 
method we will minimize necessary modifications to the method 
body that might otherwise require complex flow analysis and 
bytecode manipulation.  For the migration of a static method to a 
static method, the signatures do not need to change.  For a virtual 
method migrated to a static shadow method, we can achieve an 
equivalent stack by prepending an instance reference to the 
shadow method’s formal parameter list.  For example, 

  public void foo(Type1 a1,…, TypeN aN) { 
   <foo body> 
} 
 

defined in class A, becomes the following in the shell class,  

  public static void foo(A a, Type1 a1,…, TypeN aN) { 
   <foo body + modifications> 
  } 

 
The modifications referred to above are discussed in the following 
sections. 

3.2.4.2 Member Access 
Class and instance members referenced in the original method 
may no longer be permitted when copied to the shadow method.  
For example, where the original method had access to the original 
class’s private members, the shadow method will not.  In fact, the 
bulk of the access problems come with access to members in the 
class hierarchy of the original class.  To address this problem, we 
create member accessor functions, ideally in the class containing 
the member, but if that is not possible, then in the class containing 
the original method.  For fields we add getter and setter methods 
and for methods we add caller methods. 

In order to reduce memory impacts and improve execution 
performance, we would like to minimize the number of new 
accessor methods required.  As we consider this, we should 
remember that the original method was assumed to compile and 
so had rights to access members referenced from within it.  This 
means for example, that we won’t need to provide access to 
private or protected members outside the class hierarchy. 

The first step to minimizing the number of accessors is to make 
the shell class a subclass of the original and put it in the same 
package as the original.  This will allow a virtual method access to 
all non-privates in all super classes, and allow a static method 
access to all of the original class’s non-privates.  A static 
method’s access rights to the original class’s super class members 
will depend on whether or not the super class(es) are in the same 
package or not.  For example, an original method making an 
access to a protected member of a super class outside the same 
package will require an accessor when migrated to a new static 
method. 



An implementation consideration is that we may not always have 
a complete or correct definition for a given class and/or its 
methods.  JikesBT will try and derive a class’s members as it 
encounters them in other classes, but may not be able to determine 
the access rights.  In this case the member is marked as a ‘stub’.  
If we encounter a stub member while analyzing the method body 
to determine the need for required accessors, we treat the method 
as private and inaccessible.  This makes it fairly important to 
provide the implementation with a full set of class definitions in 
order to minimize the number of accessors created.  Table 1 
summarizes the accessor requirements when the shell class is 
defined in the same package and as a subclass of the original 
class. 

 

Table 1 Accessor requirements for secondary class as a 

subclass in the same package. 

Accessors Required 

for  

New Method 

Class 

Accessed 

By 

Migrated Code Static 

Implementation 
Virtual 

Implementation 

Unrelated Class None. None. 

Original Class (A) A’s private members A’s private members 

Original Class.super() All super() accesses All super() accesses. 

Have 

Definition 
None. None. 

Super class  

in same 

package 
Missing 

Definition (i.e. 

stub) 

None. None. 

Have 

Definition 

All protected 
accesses. 

None. 
Super class  

in different 

package 
Missing 

Definition (i.e. 

stub) 

All accesses. None. 

 
When the original class is declared as final, however, we can 
not define the secondary class as a subclass.  In this case, the 
access rights are similar for static methods and only change for the 
virtual methods, which now need accessors for protected members 
in other packages.   Table 2 summarizes the accessor requirements 
when the shell class is defined in the same package, but NOT as a 
subclass of the original class. 

 

Table 2. Accessor requirements for secondary class as a non-

subclass in the same package. 

Accessors Required 

for  

New Method 

Class 

Accessed 

By 

Migrated Code Static 

Implementation 
Virtual 

Implementation 

Unrelated Class None. None. 

Original Class (A) A’s private members A’s private members 

Original Class.super() All super() accesses All super() accesses. 

Super class  

in same 

Have  

Definition 
None. None. 

package Missing 

Definition 
None. None. 

Have  

Definition 

All protected 
accesses. 

All protected 
accesses. 

Super class  

in different 

package Missing 

Definition 
All accesses. All accesses. 

 
We can see that implementing the shadow method as a virtual 
method affords a slight advantage with respect to the need for 
accessors in the case of non-final classes which have super classes 
outside of their own package.   

Accessor definition is fairly straight forward and we won’t go into 
detail except to define, in general, the basic methods.   Any 
implementation will need to properly handle the input arguments 
and return values based on the type sizes. 

 

Table 3. Generalized accessor methods 

Inaccessible  

Members  

of A 

Generated  

Accessor in A 

void 
foo(T1 a1…TN aN) 

 
public static void  
call$foo(A a, T1 a1,… TN aN) { 
  aload0 
  aload1 
  …. 
  aload N 
invokevirtual  
     A.foo(T1 a1,…TN aN) 

} 

static void 
foo(T1 a1…TN aN) 

 
public static void  
call$foo(T1 a1,… TN aN) { 
  aload0 
  aload1 
  …. 
  aload N-1 
invokestatic  
     A.foo(T1 a1,…TN aN) 

} 

Field f of type T 

 
public static void  
set$f(A a, T val) { 
    aload0 
    aload1 
    putfield A.f 
} 
 
public static T get$f(A a) { 
    aload0 
    getfield A.f 
    areturn 
} 

Static field f of  type T 

 
public static void set$f(T val) 
{ 
    aload0 
    putstatic A.f 
} 
 
public static T get$f() { 
    getstatic A.f 
    areturn 
} 

 
Note that these accessors could have been defined as virtual, but 
again given performance advantages of the invokestatic bytecode, 
we chose static accessor implementations.   

It turns out that replacing the invoke and field accessor bytecodes 
with their accessor methods is a good match, because each 
accessor requires the same incoming stack as the bytecode it 
replaces.  Specifically, 

putfield A.foo   � invokestatic A.put$foo(A a, T v) 



getfield A.foo   � invokestatic A.get$foo(A a) 

putstatic A.bar  � invokestatic A.put$bar(T v) 

getstatic A.bar  � invokestatic A.get$bar() 

invokevirtual A.foo(…)  �  
    invokestatic A.call$foo(A a, …) 

invokestatic A.bar(…)  �  
       invokestatic A.call$bar(…) 

3.2.4.3 Super() Method References 
References made using the super() operator in the original 
method, must also be modified in the shadow method.   First, 
super()  references are identified when the invokespecial bytecode 
is used to invoke a method that is neither private nor an instance 
initializer.  Once encountered, our approach was to create ‘super 
accessor’ functions in the original class which simply uses the 
invokespecial bytecode on the same method.  The super accessor 
looks as follows and must always be defined within the original 
class: 

public TypeR super$A$foo(Type1 a1…TypeN aN) { 
 aload0 
 aload1 
 … 
 aload N 
 invokespecial A.foo(Type1 a1…TypeN aN) 
 areturn 
} 

 
It has the exact signature of the original method called and is 
always virtual, but must be unique within the class hierarchy to 
avoid infinite indirect recursion.  Our approach to uniqueness was 
to include the class name in the method name.  Finally, if any 
exceptions are thrown by the target method, then those must be 
declared for the super accessor as well.  Again as with the non-
super member accessors the input stack requirements are the same 
for both the direct invocation to the super method and it’s 
accessors as follows: 

invokespecial A.foo(…)  � invokevirtual A.super$foo(…) 

3.2.5 Creating the New Method Body 
To create the new method body, the primary task is in arranging to 
call the shadow method correctly.  We consider the three cases of 
a static method, a virtual method and a class or instance initializer. 

3.2.5.1 Static Methods 
The static method is perhaps the most straightforward.  It takes no 
instance reference and only a set of arguments, as follows: 

public class A {  
  static TypeR foo(Type1 a1…TypeN aN) { 
  <migratable body> 
  } 
  … 
} 

 
which becomes the following, 

public class A {  
  static TypeR foo(Type1 a1…TypeN aN) { 
  aload0 
  aload1 
  … 
  aload N-1 
  invokestatic A$Cold.foo(Type1 a1…TypeN aN) 
  areturn 
  } 
  … 
} 

 
where A$Cold.foo() was created as the shadow method for 
A.foo(). 

3.2.5.2 Virtual Methods 
The virtual method is only somewhat more complex.  It adds the 
instance reference as a parameter along with the set of declared 
arguments. as follows: 

public class A {  
  TypeR foo(Type1 a1…TypeN aN) { 
 <migratable body> 
  } 
… 
} 
 

which becomes the following, 

public class A {  
  TypeR foo(Type1 arg1…TypeN argN) { 
  aload0 
  aload1 
  … 
  aload N-1 
  invokestatic A$Cold.foo(A a, Type1 a1…TypeN aN) 
  areturn 
  } 
  … 
} 

 
where  again, A$Cold.foo() was created as the shadow method for 
A.foo(). 

3.2.5.3 Class and Instance Initializers 
Our approach supports the refactoring of both class initializers 
(<clinit>) and instance initializers (<init>), however there are two 
additional considerations.   

First, if a class initializer is loaded but not executed, it means 1) 
that the class was loaded for verification purposes only, and 2) 
that none of its other methods were executed either.  Our results 
show that about 10% of classes (by count) are affected with this 
issue.  Given that this is really a verification issue and that it is a 
relatively small problem, we chose to defer this problem to a 
separate solution not covered in this paper.  When this situation is 
encountered our algoirithm will avoid refactoring any methods in 
the class. 

Secondly, only initializers are allowed to set the values of fields 
declared as final.  This means that we can not migrate 
initialization of final fields into the shadow method.   Table 4 
shows the percentages of initializers setting final fields.  

Table 4. Initializer methods setting final fields 

 
Initializers settting 

final fields 

Initializer bytes as a 

percentage of  all  

methods 

 Eclipse Tomcat Eclipse Tomcat 

<clinit> 60% 44% 1.6% 2.3% 

<init> 36% 13% 2.0% 1.0% 

 
As might be expected, the percentages for class initializers are 
larger than for instance initializers. Given the relatively small 
realizable opportunity available through the migration of instance 
initializers (less than 1% by size), we decided to forgo migration 
of instance initializers containing final field initializations.  Note 
that an implementation could attempt migration of all 
initializations done in instance initializers to the class initializer, 
but care would have to be taken to be sure values weren’t being 
set differently depending upon which instance initializer was 
being called. 



Lastly, we must consider that instance initializers always include 
the use of the super() operator to invoke the super class’s 
initializer (except for Object).  A problem arises here in that the 
super class initializer may not be visible to the shadow method.  
Normally we would simply use the super accessor strategy 

discussed in  3.2.4.3.  However, we can not use this strategy 

because initializers are not allowed to call methods (i.e. the 
shadow method) until super classes have been fully initialized.  
Given that super() is always used within instance initializers, 
we realized we had to address this complexity.  Our solution was 
to treat only the bytecodes after the super initializer invocation as 
refactorable, resulting in a partial migration of the initializer body.  
So for example: 

public class A extends Object 
  public void <init>() { 
  invokespecial  Object.<init> 
  <migratable body> 
  } 
} 
 

becomes, 

public class A extends Object 
  public void <init>() { 
    invokespecial  Object.<init> 
    aload0 
    invokestatic A$Cold.init(A a) 
  } 
} 
 

with the shadow method as follows: 

public class A$Cold extends A 
  public static void init(A a) { 
  <migratable body + accessors> 
  } 
} 

 
 

putfield A.foo  �  
invokestatic A$Cold.put$foo(Type value) 

 

getfield A.foo  � 
invokestatic A$Cold.get$foo() 

 

putstatic A.bar �  
invokestatic A$Cold.put$bar(Type value) 

 

getstatic A.bar �  
invokestatic A$Cold.get$bar() 

 

invokevirtual A.foo(…) �  
invokestatic A$cold.foo(A a, …) 

 

invokestatic A.bar(…) �  
invokestatic A$Cold.bar(…) 

3.2.6 JVM Dependencies 
Finally, there are a number of classes about which the JVM may 
have specific expectations.  This is a particular issue when 
refactoring the JDK (classes.zip, rt.jar, etc).  Although we won’t 
show results for refactored JDKs, our tool was enabled with the 
ability to define classes and packages which are to be avoid when 
considering either a) refactoring or b) the addition of accessor 
methods.   

4. CONTROL PARAMETERS 
With the framework in placed to produce the cold method 
refactorings based on a set of identified target cold methods, we 
find the need for the ability to control which methods are actually 
selected for refactoring.  Recall that one of our primary goals is to 
reduce the size of the classes that are actually loaded and to 
increase the percentage of methods (actually bytecodes) that are 

executed for a chosen execution scenario.  At the same time we 
need to be careful to not create too many shell classes, as these 
may eventually be loaded and lead to larger overall memory 
requirements and perhaps reduced CPU performance.  To enable 
some control over these attributes, we provided a number of 
control parameters as follows: 

MinMethodBytes – threshold method size required before a 
method will be considered for refactoring  

MinClassBytes - minimum number of targeted method bytes 
within a class before the class's methods will be considered 
for refactoring.  

ShellMethods – maximum number of shadow methods per shell 
class. 

ShellMethodBytes – maximum size of the shell class in method 
bytes  

Altering MinMethodBytes allows us to make sure we’re not 
refactoring methods which are already smaller than the resulting 
method body replacement.   Similarly, altering MinClassBytes 
will enable us to limit the cost of adding a class to cases where the 
class has considerable opportunity for savings.  These two are 
important for basic refactoring and will have the largest impact on 
initial class loading.  ShellMethods allows us to limit the number 
of methods per shell class.  A lower value may be useful since it 
will limit the amount of unnecessarily loaded code when one of 
the cold methods is executed.  ShellMethodBytes may be useful in 
trying to match class sizes with operating system or JVM page 
sizes.   These two parameters control behaviors once a cold 
method is referenced and so will impact out-of-scenario usage.  
The next section looks only at the results on varying the values of 
MinMethodBytes and MinClassBytes. 

5. RESULTS 
We would like to understand the impact of cold method 
refactoring on initial application start up.  As such, we have 
limited our examination to the impact of MinMethodSize and 
MinClassSize on both start up time and memory.  To understand 
the impact we chose two popular java applications as benchmarks: 

Eclipse Java SDK 3.1.2 – this is an unmodified version of the 
Eclipse 3.1.2 SDK from eclipse.org.  We opened an empty 
workspace to the default perspective as our scenario.  We used the 
eclipse.starttime property in debug mode to capture startup times. 

Apache Tomcat 5.0.28 – this is a combined HTTP and Servlet 
engine from Apache.org.  Our scenario was to start the server as is 
configured in the initial download.  We made a small modification 
to capture start up time that is more representative of time since 
invocation. 

Memory statistics were collected using PsList from Microsoft [19].  

In neither case was the JDK itself refactored. 

5.1 Application Characterization 
To understand the nature of the classes making up these 
applications and the nature of any refactoring impact, we need to 
understand the relative amounts of warm and cold method code.  
Eclipse consists of 8.65MB of total class methods, while Tomcat 
consists of 2.39M.  Figure 1 shows the breakdown of the loading 



of these methods for our start up scenario.  Perhaps surprisingly, 
cold methods are as common as warm methods. 
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Figure 1. Method usage 

Eclipse shows the greatest percentage of cold methods, but both 
are close to 50% of total method bytes loaded.  Figures 2 and 3 
show the relative size distributions of the loaded methods. 
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Figure 2. Eclipse loaded method distribution 
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Figure 3. Tomcat loaded method distribution 

The distributions are fairly similar; however we can see that 
Eclipse has a lower average method size.  Also, while Eclipse’s 
cold and warm methods have an equivalent distribution, we can 
see that Tomcat’s warm methods are generally larger than its cold 
methods and may help to account for the lower ratio of cold 
method bytes to warm method bytes for Tomcat.   

5.2 Class Object Impact 
We looked at the refactoring results with both MinMethodBytes 
and MinClassBytes set to 0 to remove any concomitant limitations 
on refactoring.  With these settings, we were able to successfully 
refactor 83.5% of the Eclipse cold methods and 82% of Tomcat 
methods (by size).  The primary factor accounting for not 
attaining higher success rates is the occurrence of serializable 
classes that do not define their own serialVersionUID.   We 
avoid refactoring these classes because adding accessor methods, 
which is generally required, would change the default 
serialVersionUID thus causing serialization issues with the 
resulting code. 

Next, we consider the impact on cold methods sizes as we vary 
the value of MinMethodBytes while holding MinClassBytes at the 
value of 0.  The values at ∞ represent the non-refactored case. 

Cold Method Bytecode Count After Refactoring
(Minimum Size of Cold Methods Per Class  = 0)

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 2 4 8 16 32 64 128 256 512 1024 2048 ∞

Minimum Refactorable Cold Method Bytes Per Class 

%
 o

f 
O

ri
g

in
a
l 

C
o

ld
 

M
e
th

o
d

 B
y
te

s Tomcat

Eclipse

 

Figure 4. Total cold method size vs. minimum refactorable 

method size 

Here we clearly see that a value of 8 for MinMethodBytes 
achieves the greatest reduction in cold method bytes, just over 
71%, for both Eclipse and Tomcat.  Note that for values smaller 
than 8 we are actually creating more cold method bytes by 
replacing small methods bodies with larger ones to call the 
shadow methods. 

Next, we consider the impact on cold method sizes as we vary the 
value of MinClassBytes while holding MinMethodBytes at the 
optimal value of 82.   
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Figure 5. Percent change in cold methods bytecodes 

Figure 5 shows the resulting cold method bytes as percentages of 
the original.  We can see that in both cases we are able to reduce 
the size to about 29% of the initial size – representing a reduction 
from 706Kb to 202Kb for Eclipse and from 232Kb to 67Kb for 
Tomcat.  The total size of all methods is increased by only about 
1% (99Kb for Eclipse and 26Kb for Tomcat).  This increase is due 
primarily to the addition of the accessor methods, which are also 
cold since they are created only to be called from the original set 
of cold methods.   

5.3 Performance Results 
Our runtime performance results were acquired on the following 
platform: 

CPU: Pentium 4, 2.2 GHz 

Memory: 1GB 

Disk Drive: 60GB SCSI 

OS : Windows XP SP2 

JVM: Sun 1.5.07 and IBM J9 2.3 

                                                                 
2 There should be no change in cold method bytes for values of MinClassBytes that 

are less than MinMethodBytes, since selected methods are already restricted to be 

larger than the total class method bytes. 



Benchmarks were run consecutively resetting disk and memory 
caches between runs and so should be considered cold started.  
Our measurements were designed to identify the optimal value of 
MinClassBytes, with MinMethodSize set to 8 per our earlier 
analysis.  Runs of each application and each JVM were done for 
various values of MinClassBytes.  Start up timing results for both 
Eclipse and Tomcat running on both Sun and IBM JVMs are 
shown below. 
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Figure 7. Start up time 

We can see that the Eclipse start up time can be reduced by over 
7%, with significant loss of impact for values greater than 256.  
However, the benefit for Tomcat is quite a bit smaller at roughly 
1%.  Both JVMs are roughly equivalent in both cases. 

Next we show the memory impact measured in “peak private 

bytes” as reported by the pslist utility  [19]. 
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Figure 8. Memory 

We see a significant impact for Eclipse with a reduction in 
memory requirements by about 6-7%, just fewer than 3MB.  
Again, Tomcat does not see the same benefit. 

We believe the difference in results between Tomcat and Eclipse 
is due primarily to the difference in the rate of class bytes loaded 
during the measured startup time. 

The rate of class byte loading is a good indication of the relative 
amount of time being spent loading classes, and thus the total 
opportunity afforded by reducing cold method sizes.  We find that 
Eclipse loads roughly 195Kb/sec during its start up time and 
Tomcat only 88.4Kb/sec.  This factor of over 2 will have an 
impact on the expected benefit of our refactoring.  Note that 
although Eclipse loads a larger number of classes, it starts up in 
roughly 7.2 seconds compared to 5.5 seconds for Tomcat, so 
although it does twice the rate of class loading it does not take 
twice as long to start up.  In general, these numbers suggest that 
Tomcat does more non-class-loading work before being 
completely started, and therefore realizes less relative benefit over 
that time from cold method refactoring. 

Instead of measuring the class loading rate number directly, a 
good proxy for this measurement maybe the speed up achieved by 
running the target application with and without the Java class 
verifier enabled (using the –noverify option).  Applications that 
experience a better speed up without verification use a greater 
percentage of their start up time loading and verifying classes and 
as such are more greatly impacted by our refactoring technique.  
In accordance with this idea is our measurement of a 26% speed 
up on Eclipse and only a 4.7% speed up on Tomcat when running 
without class verification.   

6. SUMMARY AND CONCLUSIONS 
We have shown that a sizable portion of the methods that are 
loaded for start up execution scenarios of two well-known and 
popular Java applications, Eclipse and Tomcat, are not actually 
executed.  Both applications demonstrated that the cold methods 
account for about 50% of the total method bytes loaded during 
start up.  Based on this and the fact that applications can spend as 
much as 25% of their start up time loading and verifying classes, 
we postulated the ability to reduce start up time by as much as 
12.5% if the application could be made to load only the warm 
(executed) methods. 

To try and achieve this we implemented a bytecode refactoring 
algorithm that migrated a set of known cold method bodies to 
secondary, or shell, classes.  The original methods were left in 
place but their bodies were modified to call the new (shadow) 
methods contained within the shell classes, thereby greatly 
reducing the size of the original cold methods.  To fully enable the 
migration, method and field accessor methods were added as 
needed to the original class in order to provide the shadow 
method with access to any inaccessible fields or methods.  The 
shadow method bodies were modified as necessary to call these 
accessor methods. 

We characterized the set of methods from each application.  
Eclipse consisted of a total of 1.4MB of loaded method bytecodes 
50% of which were not executed, while Tomcat loaded 486KB of 
which 48% were not executed.  We found that the algorithm 
should never refactor cold methods that were smaller then 8 bytes; 
otherwise we would actually increase the overall size of cold 
method bytes.  We demonstrated that our algorithm was able to 
reduce the amount of cold method bytes, including added accessor 
methods, to about 29% of the original for both Eclipse and 
Tomcat.   This means that we shifted the ratio of warm methods to 
cold methods from 1:1 to 4:1 (about 80% of the bytecodes loaded 
are executed instead of only half prior to refactoring). 

We showed that the refactoring could be tuned based on the 
minimum cold method bytes within a class and that benefits begin 
to drop off at a minimum size of 128 bytes. 

Our performance analysis using both the Sun 1.5.07 and IBM J9 
2.3 JVMs showed that there were both time and memory benefits 
when applying the refactoring.  The greatest benefit was seen for 
Eclipse with 7% reduction in start up time and almost a 7% 
reduction in memory.  Tomcat showed minimal improvements for 
both time and memory and even a degradation of memory 
performance under the Sun JVM. 

We believe the difference in performance benefits is due to the 
relative amount of class loading that occurs during the measured 
start up time. An indicator for how much application performance 



might benefit is the size of the start up time reduction when 
running without class verification.  For values near 26%, which 
was the case of Eclipse, one can expect good results from 
refactoring.  Tomcat only saw a 4.7% reduction in start up time 
with verification turned off and so was not able to reap the same 
benefit from refactoring 

In summary, our work has demonstrated that for the right 
application a fair performance benefit can be attained by 
refactoring for cold methods. 
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