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Sparse Signal Recovery with Exponential-Family Noise

Irina Rish and Genady Grabarnik

Abstract

The problem of sparse signal recovery from a relatively small number of noisy measurements has been studied extensively
in the recent literature on compressed sensing. However, the focus of those studies appears to be limited to the case of linear
projections disturbed byGaussiannoise, and the sparse signal reconstruction problem is treated aslinear regression withl1-
norm regularization constraint. A natural question to ask is whether one can accurately recover sparse signals under different
noise assumptions. Herein, we extend the results of [13] to the more general case ofexponential-family noisethat includes
Gaussian noise as a particular case, and yieldsl1-regularizedGeneralized Linear Model (GLM)regression problem. We show
that, under standard restricted isometry property (RIP) assumptions on the design matrix,l1-minimization can provide a stable
recovery of a sparse signal under exponential-family noiseassumptions, and investigate (sufficient) recovery conditions for the
general case, and for some specific members of the exponential family.

I. I NTRODUCTION

Accurate and efficient recovery of sparse high-dimensionalsignals from low-dimensional linear measurements received
much attention in the recent compressed sensing literature[4]–[7], [10], [12]. While the problem of finding the sparsest signal
satisfying linear constraints is NP-hard as it involves a combinatorial problem ofl0-norm minimization, it turns out that using
the l1-norm instead can still accurately recover the original signal, under certain conditions, and yields efficient optimization
algorithms. Particularly interesting for real-life applications is the case of signal recovery fromnoisy measurements [11],
[13], which relates to practically all modern applicationsof compressed sensing in image processing, sensor networks,
biology, and medical imaging, just to name a few (see [15] fora comprehensive list of references on compressed sensing
and its recent applications).

The majority of work in compressed sensing assumes linear Gaussian noise model; specifically, given an input signalx

and the design matrixA, the vector of measurementsy is assumed to follow a Gaussian distribution with the meanAx

and unit variance(s) (effectively, it is assumed that measurements are independent), yielding the sum-squared loss constraint
in standard formulations of noisy compressed sensing [11],[13]. However, in many practical applications, non-Gaussian
noise assumptions are more applicable: for example, Bernoulli or multinomial distributions are better suited for describing
such measurements as (binary) failures or multilevel performance degradations of end-to-end test transactions (“probes”) in
a distributed computer systems [16], [18]; exponential distribution is better suited for describing nonnegative measurements
such as end-to-end response time in such systems [3], [9]. Non-Gaussian observations, including binary, discrete, non-
negative, etc., variables, are common in various other applications such as medical diagnosis, or computational biology (e.g.,
presence or absence of gene expression).

In this paper, we will consider a general class of exponential-family distributions that includes, besides Gaussian, a
wide variety of other commonly used distributions, such as exponential, Bernoulli, multinomial, gamma, chi-square, beta,
Weibull, Dirichlet, and Poisson, just to name a few. The corresponding regression problem of recovering the signalx from
the measurementsy that follow exponential-family noise, is to solve aGeneralized Linear Model (GLM)regression, which
essentially solves the log-likelihood optimization problem that for exponential-family likelihoods is equivalent to minimizing
the correspondingBregman divergenced(y, µ(Ax)), whereµ is the mean parameter corresponding to the natural parameter
θ = Ax. In case of Gaussian likelihood, for example,µ = θ and the corresponding Bregman divergence is simply the
Euclidean distance||y − A = bx||. Adding l1-norm constraint to GLM regression allows for an efficient method of sparse
signal recovery, and is often used in statistical literature [14]. Thus, a natural question to ask is to what extent stable signal
recovery results from the compressed sensing literature apply to the linear measurements corrupted by an exponential-family
noise? This work provides an initial investigation of this question, deriving some conditions for stable sparse signalrecovery
from exponential-family observations.

We show that accurate recovery of sparse signals under the exponential-family noise assumption is possible in many
cases, and derive the conditions on such recovery, for a general case and for several individual exponential-family members.
Essentially, given a sparse signalx

0, we show that, if the measurement noise is small (expressed as a small Bregman
divergence between the measurementy and the meanµ0 of the distribution determined by the natural parameterθ0 = Ax

0)
and the matrixA obeys the restricted isometry property (RIP) with appropriate RIP constant, then the solution to the GLM
regression problem (i.e.l1-norm minimization subject to Bregman-divergence constraint that replaces the sum-squared loss
(Euclidean distance) constraint) approximates the true signal well. Moreover, we show that the results of [13] for a more
general case of compressible, rather than sparse, signals can be also extended to the exponential-family noise.
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II. BACKGROUND

A. Sparse Signal Recovery from Noisy Observations

We assume thatx0 ∈ Rm is an s-sparse signal, i.e. a signal with no more thans nonzero entries, wheres << m.
Let A be ann by m matrix that produces a vector of linear projectionsy0 = Ax0, wheren << m, and let andy be a
vector ofn noisy measurements that follow some noise distributionP (y|Ax0). It is often assumed thatA satisfies the so-
called ”restricted isometry property” (RIP) at the sparsity levelS (or S-restricted isometry property), that essentially says that
every subset of columns ofA with cardinality less thanS behaves like an almost orthonormal system. Formally, following [8]

Definition 1 (Restricted Isometry Property) Let AT , whereT subset{1, ...,m} denote ann × T submatrix ofA that
contains columns with indexes inT . TheS-restricted isometry constantδS of A is the smallest quantity such that

(1 − δS)||c||2l2 ≤ ||AT c||2l2 ≤ (1 + δS)||c||2l2 (1)

for any all subsetsT with |T | ≤ S and for any vector(cj)j∈T defined over coordinates inT . The matrixA is said to satisfy
the restricted isometry property if there exists such constant δS that the eq. 1 is satisfied.
It was shown (e.g., in [8]) that if

δS + δ2S + δ3S < 1,

then solving thel1-minimization problem in eq. 2 below can recover any signalx that isS-sparse (contains no more than
S non-zero entries).

Our question is: can one recoverx0 from y, given that noise is “sufficiently small” (to be defined precisely below)?
This question has been answered in the compressed sensing literature for the particular case when the noise distribution is
Gaussian. Indeed, [13] show that, if: (1)||y − Ax0||l2 ≤ ǫ (small noise assumption), (2)x0 is sufficiently sparse and the
(3) matrixA obeys the restricted isometry property (RIP) with appropriate RIP constants, then the solution to the following
l1-optimization problem

x∗ = argmin
x

||x||l1 subject to ||y −Ax||l2 ≤ ǫ (2)

approximates the true signal well. More formally, Theorem 1in [13] states:

Theorem 1 [13] Let S be such thatδ3S+3δ4S < 2, whereδS is theS-restricted isometry constant of the matrix A, as defined
above. Then for any signalx0 with the supportT 0 = {t : x0 6= 0}, where|T 0| ≤ S and any noise vector (perturbation)e
with ||e||l2 ≤ ǫ, the solutionx∗ to the problem in eq. 2 obeys

||x∗ − x0||l2 ≤ CS · ǫ, (3)

where the constantCS may only depend onδ4S . For reasonable values ofδ4S , CS is well-behaved; e.g.CS ≈ 8.82 for
δ4S = 1/5 andCS ≈ 10.47 for δ4S = 1/4.

Moreover, [13] show that (1) no other recovery method “can perform fundamentally better for arbitrary perturbations of
size ǫ, i.e. even if an oracle would make the actual supportT 0 of x0 available to us, making the problem well-posed, the
least-squares solution̂x (i.e., the maximum-likelihood solution which is optimal inthe absence of any other information)
would approximate the true signalx0 with the error proportional toǫ”.

Finally, [13] extend their result from sparse to approximately sparse vectors in the following

Theorem 2 [13] Let x0 ∈ Rm be an arbitrary vector, and letx0,S be the truncated vector corresponding to the S largest
values ofx0 (in absolute value). Under the assumptions of Theorem 1, thesolutionx∗ to the problem in eq. 2 obeys

||x∗ − x0||l2 ≤ C1,S · ǫ+ C2,S · ||x
0 − x0, S||l1√

S
. (4)

For reasonable values ofδ4S the constants above are well-behaved; e.g.C1,S ≈ 12.04 andC2,S ≈ 8.77 for δ4S = 1/5.

B. Exponential-family distributions and Bregman divergences

Herein, we will generalize the above results in the case ofexponential-familynoise. Note that||y − Ax||l2 ≤ ǫ is
a constraint on the negative log-likelihood of a Gaussian variable y ∼ N(µ,Σ) with µ = Ax and Σ = I (assuming
independent unit-variance noise), i.e.

−logP (y|Ax0) = f(y) +
1

2
||y −Ax||2l2 . (5)



Gaussian distribution is a particular member of theexponential familyof distributions.

Definition 2 An exponential family is a parametric family of probability distributions where the probability density has the
form

log pψ,θ(y) = xθ − ψ(θ) + log p0(y), (6)

whereθ is called thenatural parameter, ψ(θ) is the (strictly convex and differentiable)cumulant function, or the log-partition
function, that uniquely determines the member distribution of the exponential family, andp0(y) is a non-negative function
called base measurethat does not depend on the parameterθ.

As shown by [2], there is a bijection between the exponential-family densitiespψ,θ(y) andBregman divergencesdφ(y, µ),
so that each exponential-family density can be also expressed as

pψ,θ(y) = exp(−dφ(y, µ))fφ(y), (7)

whereµ = µ(θ) = Epψ,θ (Y ) is the expectation parametercorresponding toθ, φ is the (strictly convex and differentiable)
Legendre conjugate ofψ, fφ(y) is a uniquely determined function, anddφ(y, µ) is the corresponding Bregman divergence
defined as follows.

Definition 3 Given a strictly convex functionφ : S → R defined on a convex setS ⊆ R, and differentiable on the interior
of S, int(S) [17], the Bregman divergencedφ : S × int(S) → [0,∞) is defined as

dφ(x,y) = φ(x) − φ(y)− < (x − y),∇φ(y) >, (8)

where∇φ(y) is the gradient ofφ.

In other words, the Bregman divergence can be thought of as the difference between the value ofφ at point x and
the value of the first-order Taylor expansion ofφ around pointy evaluated at pointx (see Figures 1 and 2 below, where
h(x) = φ(y)+ < (x − y),∇φ(y) >).

φ(x) = x log x

dφ(x, y)

h(x)y

x

Fig. 1. Relative entropy (KL-divergence)

φ(x) = − log x

dφ(x, y)
h(x)

y x

Fig. 2. Itakura-Saito distance (Burg divergence)

Table I (derived from Tables 1 and 2 in [1]) shows particular examples of commonly used exponential-family distributions
and their corresponding Bregman divergences. For example,the unit-variance Gaussian distribution leads to square loss,
multivariate spherical Gaussian (diagonal covariance/independent variables) gives rise to Euclidean distance, an multivariate
Gaussian with the inverse-covariance (concentration) matrix C leads to Mahalanobis distance, Bernoulli distribution corre-
sponds to logistic loss, exponential distribution leads toItakura-Saito distance, while a multinomial distributioncorresponds
to the KL-divergence.



TABLE I. Examples of commonly-used exponential-family distributions and their corresponding Bregman divergences.

Domain Distribution pθ(y) µ φ(µ) dφ(y, µ) Divergence

R 1D Gaussian 1√
2πσ2

e
−

(x−a)2

2σ2 a 1
2σ2 µ

2 1
2σ2 (y − µ)2 square loss

{0, 1} Bernoulli qy(1 − q)1−y q µ logµ+ y log( y
µ

)+ logistic loss

(1 − µ) log(1 − µ) (1 − y) log( 1−y
1−µ )

R++ Exponential λe−λy 1/λ − logµ − 1 y
µ

− log( y
µ

) − 1 Itakura-Saito distance

n-simplex nD Multinomial N !
∏n
j=1

yj !

∏n
j=1 q

yj

j [Nqj ]
n−1
j=1

∑n
j=1 µj log(

µj
N

)
∑n
j=1 yj log(

yj
µj

) KL-divergence

R
n nD Sph. Gaussian 1√

(2πσ2)n
e
−

||x−a||22
2σ2 a

1
2σ2 ||µ||22 1

2σ2 ||y − µ||22 squared Euclidean distance

R
n nD Gaussian

√
det(C)√
(2π)n

e−
(y−a)T C(y−a)

2 a
µT Cµ

2
(y−µ)T C(y−µ)

2 Mahalanobis distance1

III. O UR CONTRIBUTION

We now extend the result in Theorem 1 to the case of exponential-family noise. Let us consider the following constrained
l1-regularization problem that generalizes the standard noisy compressed sensing problem of [13] to the following:

min||x||1 subject to
∑

i

d(yi, µ(Aix)) ≤ ǫ, (9)

whered(yi, µ(Aix)) is Bregman divergence between the noisy observationyi and the mean parameter of the corresponding
exponential-family distribution with the natural parameter θi = Aix. Note that this problem corresponds tol1-regularized
Generalized Linear Model (GLM)regression, that includes as a particular case the standardcompressed-sensing formulation,
i.e. thel1 regularized linear regression (in that case, Bregman divergence is simply the Euclidian distance, andµ(Aix) = Aix).

We show that, if: (1) the noise is small, (2)x0 is sufficiently sparse and the (3) matrixA obeys the restricted isometry
property (RIP) with appropriate RIP constants, then the solution to the above problem approximates the true signal well.
More formally,

Theorem 3 Let S be such thatδ3S + 3δ4S < 2, whereδS is theS-restricted isometry constant of the matrix A, as defined
above. Then for any signalx0 with the supportT 0 = {t : x0 6= 0}, where|T 0| ≤ S, and for any vectory = (y1, ...., yn) of
noisy linear measurements where

1) the noise follows exponential-family distributionspθi(yi), with the natural parameterθi = (Ai,:x
0), and

2) the noise is sufficiently small, i.e.∀i, d(yi, µ(Ai,:x
0)) ≤ ǫ,

the solutionx∗ to the problem in eq. 9 obeys

||x∗ − x0||l2 ≤ CS · δ(ǫ), (10)

whereCS is the constant from Theorem 1 of [13], andδ(ǫ) is a continuous monotone increasing function ofǫ s.t. δ(0) = 0
(and thusδ(ǫ) is small whenǫ is small). A particular form of this function depends on particular members of exponential
family.

Proof: Following the proof of Theorem 1 in [13], we will only have to show that the “tube constraint” (condition 1)
still holds (the rest of the proof remains unchanged), i.e. that

||Ax∗ −Ax0||l2 ≤ δ(ǫ) (11)

whereδ is some continuous monotone increasing function ofǫ, andδ(0) = 0, so its small whenǫ is small. It was a trivial
consequence of the triangle inequality in case of Euclideandistance; however, triangle inequality does not hold, in general,
for Bregman divergences, and thus we must provide a different proof for the tube constraint, possibly for each type of
Bregman divergence (exponential-family distribution). Since

||Ax∗ −Ax0||2l2 =

m
∑

i=1

(Ai,:x
∗ −Ai,:x

0)2 =

m
∑

i=1

(θ∗i − θ0i )
2,

we will need to show that|θ∗i − θ0i | < β(ǫ), whereβ(ǫ) is a continuous monotone increasing function ofǫ s.t. β(0) = 0
(and thusβ(ǫ) is small whenǫ is small), then in eq. 11 we getδ(ǫ) =

√

m · β(ǫ). The proof of this fact for the general case
of exponential-family noise is provided by Lemma 1. However, for particular members of the exponential family, one may
have to provide specific proofs since the assumptions required by the general proof do not always hold for specific cases.
Thus, we provide separate proofs for several different members of the exponential family in Lemmas 2.1 and 2.2, and obtain



particular expressions forβ(ǫ) in each case. Note that for simplicity sake, we only considerunivariate exponential-family
distributions, corresponding to the case of independent noise for each measurementyi, which was effectively assumed in
standard problem formulation that used Euclidean distancecorresponding to a spherical Gaussian distribution, i.e. avector
of independent Gaussian variables. However, Lemma 1 below can be extended from scalar to vector case, i.e. to multivariate
exponential-family distributions that do not necessarilyimply independent noise. Lemma 2.3 will provide a specific case of
such distribution - a multivariate Gaussian with concentration matrix C.

The “cone constraint” part of the proof in [13] remains intact; it is easy to see that it does not depend on the particular
constraint in thel1-minimization problem 9, and only makes use of the sparsity of x0 and l1-optimality of x∗. Thus, we
can simply substitute||Ah||l2 || by δ(ǫ) in eq. 13 on page 8 in the proof of Theorem 1 of [13], or, equivalently, replace2ǫ
(that was shown to bound||Ah||l2 || ) by δ(ǫ) in the eq. 14.

Just like for the sparse signal case (Theorem 1 in [13]), the only change we have to make in the proof of the Theorem
2 (general case of approximable, rather than sparse, signals), when generalizing it from Euclidean distance to Bregman
divergence in eq. 9, is the tube constraint. Thus, once we showed it for the Theorem 3 above, the generalization to
approximable signals follows automatically:

Theorem 4 Let x0 ∈ Rm be an arbitrary vector, and letx0,S be the truncated vector corresponding to the S largest values
of x0 (in absolute value). Under the assumptions of Theorem 3, thesolutionx∗ to the problem in eq. 9 obeys

||x∗ − x0||l2 ≤ C1,S · δ(ǫ) + C2,S · ||x
0 − x0, S||l1√

S
. (12)

whereC1,S andC2,S are the constants from Theorem 2 of [13], andδ(ǫ) is a continuous monotone increasing function of
ǫ s.t. δ(0) = 0 (and thusδ(ǫ) is small whenǫ is small). A particular form of this function depends on particular members
of exponential family.

The following lemma states the sufficient conditions for the“tube constraint” in eq. 11 to hold in general case of arbitrary
exponential-family noise, provided thatφ′′(y) exists and is bounded on the appropriate intervals.

Lemma 1 Let y denote a random variable following an exponential-family distribution pθ(y), with the natural parameter
θ, and the corresponding mean parametersµ(θ). Let dφ(y, µ(θ)) denote the Bregman divergence associated with this
distribution. If

1) dφ(y, µ0(θ0)) ≤ ǫ (small noise),
2) dφ(y, µ∗(θ∗)) ≤ ǫ (constraint in GLM problem eq. 9), and
3) φ′′(y) exists and is bounded on[ymin, ymax], whereymin = min{y, µ0, µ∗} and ymax = max{y, µ0, µ∗},

then

|µ∗ − µ0| ≤ 2
√

2ǫ
√

minŷ∈[ymin;ymax] φ
′′(ŷ)

, and

|θ∗ − θ0| ≤ 2
√

2ǫ
√

minŷ∈[ymin;ymax] φ
′′(ŷ)

max
µ̂∈[µ∗;µ0]

|φ′′(µ̂)|.

Proof: We prove the lemma in two steps: first, we show that|µ∗(θ∗) − µ0(θ0)| is small if ǫ is small, and then infer
|θ∗ − θ0| is small.

1) By definition in eq. 8, Bregman divergence is the non-linear tail of the Taylor expansion ofφ(y) at pointµ, i.e., the
Lagrange remainderof the linear approximation:

dφ(y, µ) = φ′′(ŷ)(y − µ)2/2, ŷ ∈ [y1; y2], wherey1 = min{y, µ}, y2 = max{y, µ}.
Let y0

1 = min{y, µ0}, y0
2 = max{y, µ0} and y∗1 = min{y, µ∗}, y∗2 = max{y, µ∗}. Using the conditions0 ≤

dφ(y, µ
0) ≤ ǫ and0 ≤ dφ(y, µ

∗) ≤ ǫ, and observing that

min
ŷ∈[ymin;ymax]

φ′′(ŷ) ≤ min
ŷ∈[y0

1;y0
2 ]
φ′′(ŷ) and min

ŷ∈[ymin;ymax]
φ′′(ŷ) ≤ min

ŷ∈[y∗1 ;y∗2 ]
φ′′(ŷ),



we get

φ′′(ŷ)(y − µ0)2/2 ≤ ǫ ⇔ (y − µ0)2 ≤ 2ǫ

φ′′(ŷ)
⇔ |y − µ0| ≤

√
2ǫ

√

minŷ∈[y0
1;y0

2 ] φ
′′(ŷ)

≤
√

2ǫ
√

minŷ∈[ymin;ymax] φ
′′(ŷ)

and, similarly, |y − µ∗| ≤
√

2ǫ
√

minŷ∈[y∗1 ;y∗2 ] φ′′(ŷ)
≤

√
2ǫ

√

minŷ∈[ymin;ymax] φ
′′(ŷ)

, (13)

from which, using the triangle inequality, we conclude

|µ∗ − µ0| ≤ |y − µ∗| + |y − µ0| ≤ 2
√

2ǫ
√

minŷ∈[ymin;ymax] φ
′′(ŷ)

= δ1(ǫ). (14)

Note thatφ′′(ŷ) under the square root is always nonnegative sinceφ us convex.
2) The mean and the natural parameters of an exponential-family distribution relate to each other as follows:θ(µ) = φ′(µ)

(respectively,θ(µ) = ∇φ(µ) for vectorµ), whereφ′(µ) is called thelink function. Therefore, we can write

|θ∗ − θ0| = |φ′(µ∗) − φ′(µ0)| = |φ′′(µ̂)(µ∗ − µ0)|, where µ̂ ∈ [µ∗;µ0],

and thus, using the above result in eq. 14, we get

|θ∗ − θ0| ≤ max
µ̂∈[µ∗;µ0]

|φ′′(µ̂)|δ1(ǫ), (15)

which concludes the proof.

Note that the conditions (3) in the above lemma requires thatφ(y) exists and is bounded on the intervals betweeny
and bothµ0 andµ∗. However, even when this condition is not satisfied, as, for example, in case of logistic loss (where
φ′′(y) = 1

y(1−y) is unbounded at 0 and 1) and several other Bregman divergences shown in Table 1 (e.g., , we can nevertheless
prove a similar results using specific properties of eachφ(y), as shown by the following lemmas.

Lemma 2.1 (Bernoulli noise / Logistic loss)Let the conditions (1) and (2) of Lemma 1 be satisfied, and letφ(y) =
y log y + (1 − y) log(1 − y), which corresponds to the logistic-loss Bregman divergence and Bernoulli distributionp(y) =,
where the mean parameterµ = P (y = 1). We assume that0 < µ∗ < 1, and0 < µ0 < 1. Then

|µ0 − µ∗| ≤ 2ǫ · e2ǫ, and |θ0 − θ∗| ≤ 4ǫ.

Proof: Using the definition of the logistic-loss Bregman divergence from Table 1, and the above conditions, we can
write:

dφ(y, µ
0) = y log(

y

µ0
) + (1 − y) log(

1 − y

1 − µ0
) ≤ ǫ, dφ(y, µ

∗) = y log(
y

µ∗
) + (1 − y) log(

1 − y

1 − µ∗ ) ≤ ǫ, (16)

which implies

|dφ(y, µ0) − dφ(y, µ
∗)| ≤ 2ǫ, (17)

and, after substituting the expressions 16 into eq. 17, and simplifying, we get

|y log(
µ0

µ∗ ) + (1 − y) log(
1 − µ0

1 − µ∗ )| ≤ 2ǫ. (18)

The above must be satisfied for eachy ∈ {0, 1} (the domain of Bernoulli distribution). Thus, we get:

(1) | log(
1 − µ0

1 − µ∗ )| ≤ 2ǫ if y = 0, and (2) | log(
µ0

µ∗ )| ≤ 2ǫ if y = 1, (19)

or, equivalently

(1) e−2ǫ ≤ 1 − µ0

1 − µ∗ ≤ e2ǫ if y = 0, and (2) e−2ǫ ≤ µ0

µ∗ ≤ e2ǫ if y = 1.

Let us first consider the case ofy = 0; subtracting 1 from the corresponding inequalities yields

e−2ǫ − 1 ≤ µ∗ − µ0

1 − µ∗ ≤ e2ǫ − 1 ⇔ (1 − µ∗)(e−2ǫ − 1) ≤ µ∗ − µ0 ≤ (1 − µ∗)(e2ǫ − 1).



By the mean value theorem,ex − 1 = ex − e0 = d(ex)
dx |x̂ · (x − 0) = ex̂x, for somex̂ ∈ [0, x] if x > 0, or for some

x̂ ∈ [x, 0] if x < 0. Thus,e−2ǫ − 1 = −ex̂ · 2ǫ, for somex̂ ∈ [−2ǫ, 0], and sinceex is a continuous monotone increasing
function, ex̂ ≤ 1 and thuse−2ǫ − 1 ≥ −2ǫ. Similarly, e2ǫ − 1 = ex̂ · 2ǫ, for somex̂ ∈ [0, 2ǫ], and sinceex̂ ≤ e2ǫ, we get
e2ǫ − 1 ≤ 2ǫ · e2ǫ. Thus,

−2ǫ(1 − µ∗) ≤ µ∗ − µ0 ≤ 2ǫe2ǫ(1 − µ∗) ⇒ |µ∗ − µ0| ≤ 2ǫ · e2ǫ. (20)

Similarly, in case ofy = 1, we get

e−2ǫ − 1 ≤ µ0 − µ∗

µ∗ ≤ e2ǫ − 1.

and can apply same derivation as above, and get same result for |µ∗−µ0| as in eq. 20. Finally, sinceθ(µ) = φ′(µ) = log( µ
1−µ),

we get

|θ0 − θ∗| = | log(
µ0

1 − µ0
) − log(

µ∗

1 − µ∗ )| = | log(
µ0

µ∗ ) − log(
1 − µ0

1 − µ∗ )|.

From the eq. 19 we get| log(µ
0

µ∗ )| ≤ 2ǫ and | log( 1−µ0

1−µ∗ )| ≤ 2ǫ, thus

|θ0 − θ∗| = | log(
µ0

µ∗ ) − log(
1 − µ0

1 − µ∗ )| ≤ 4ǫ.

Lemma 2.2 (Exponential noise/ Itakura-Saito distance)Let the conditions (1) and (2) of Lemma 1 be satisfied, and let
φ(y) = − logµ−1, which corresponds to the Itakura-Saito distancedφ(y, µ) = y

µ − log( yµ)−1 and exponential distribution
p(y) = λeλy, where the mean parameterµ = 1/λ. We will also assume that the mean parameter is always separated from
zero, i.e.∃cµ > 0 such thatµ ≥ cµ. Then

|µ0 − µ∗| ≤
√

6 ǫ · max {µ0, µ∗}, and

|θ∗ − θ0| ≤
√

6 ǫ

cµ
.

Proof: To establish the result of the lemma we start with inequality|u − log u − 1| ≤ ǫ, whereu is y
µ . Replacingu

by z = u− 1, z > −1 gives us|z − log(1 + z)| ≤ ǫ. Without loss of generality, let us assume thatǫ ≤ 1
18 . Then the Taylor

decomposition of functionz − log(1 + z) at the pointz = 0

z − log(1 + z) =
z2

2
− z3

3
+
θ4

4
, for θ ∈ [0, z] or [z, 0]

implies that

ǫ ≥ z − log(1 + z) ≥ z2

2
− z3

3
( since

θ4

4
≥ 0 ).

This, in turns, implies thatz ≤ 1
3 and z2

2 − z3

3 ≥ z2

6 for 0 ≤ z ≤ 1
3 .

Hence

z − log(1 + z) ≥ z2

2
for −1

3
≤ z ≤ 0, (21)

z − log(1 + z) ≥ z2

6
for 0 ≤ z ≤ 1

3
. (22)

Combining together both estimates we get|z| ≤
√

6 ǫ, or

|y − µ| ≤
√

6 ǫ · µ,
and

|µ0 − µ∗| ≤
√

6 ǫ · max {µ0, µ∗}.
Then

|θ∗ − θ0| = | 1

µ0
− 1

µ∗ | = |µ
∗ − µ0

µ∗ µ0
| ≤

√
6 ǫ

min {µ∗, µ0} ≤
√

6 ǫ

cµ
,

since by the assumption of the lemmamin {µ∗, µ0} ≥ cµ.



We now consider multivariate exponential-family distributions; the next lemma handles the general case of a multivariate
Gaussian distribution (not necessarily spherical one thathad a diagonal covariance matrix and corresponded to the standard
Euclidean distance (see Table 1).

Lemma 2.3 (Non-i.i.d. Multivariate Gaussian noise / Mahalanobis distance)Let φ(y) = y
TCy, which corresponds to

the general multivariate Gaussian with concentration matrix C, and Mahalanobis distancedφ(y, µ) = 1
2 (y−µ)TC(y−µ).

If dφ(y, µ0) ≤ ǫ and dφ(y, µ∗) ≤ ǫ, then

||µ0 − µ∗|| ≤ 2
√
ǫ

2
||C−1||1/2, and ||θ0 − θ∗|| ≤

√
2ǫ||C−1||1/2 · ||C||.

Proof: SinceC is (symmetric) positive definite, it can be written asC = LTL whereL defines a linear operator on
y space, and thus

ǫ/2 ≥ (y − µ)TC(y − µ) = (L(y − µ))T (L(y − µ)) = ||L(y − µ)||2.

Also, it is easy to show that||C−1||I ≤ C ≤ ||C||I (where||B|| will herein denote the operator norm ofB), and that

ǫ/2 ≥ ||L(y − µ)||2 ≥ ||L−1||−2||y − µ||2 ⇒ ||y − µ|| ≤
√

ǫ

2
||L−1||.

Then, using triangle inequality, we get

||µ∗ − µ0|| ≤ ||y − µ0|| + ||y − µ∗|| ≤
√

2ǫ||L−1||.

Finally, sinceθ(µ) = ∇φ(µ) = Cµ, we get

||θ0 − θ∗|| = ||Cµ0 − Cµ∗|| ≤ ||C|| · ||µ0 − µ∗|| = ||C|| · ||µ0 − µ∗|| ≤
√

2ǫ||L−1|| · ||C||.

Note that||L−1|| = ||C−1||1/2, which concludes the proof.

IV. SUMMARY

In this paper, we extend the results of [13] to the more general case ofexponential-family noisethat includes Gaussian
noise as a particular case, and yieldsl1-regularizedGeneralized Linear Model (GLM)regression problem. We show that,
under standard restricted isometry property (RIP) assumptions on the design matrix,l1-minimization can provide a stable
recovery of a sparse signal under exponential-family noiseassumptions, and investigate (sufficient) recovery conditions for
the general case, and for some specific members of the exponential family. We also show that the results of [13] for a more
general case of compressible (rather than sparse) signals can be extended to the exponential-family noise in a similar way.

Clearly, this is work in progress, since it only demonstrated the results for two specific members of the exponential family,
and needs to be extended to others. We also show the general results; however, the conditions imposed by the Lemma 1
might be sometimes too restrictive, and thus we must furtherexplore the sparse signal recovery conditions.
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