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Sparse Signal Recovery with Exponential-Family Noise

Irina Rish and Genady Grabarnik

Abstract

The problem of sparse signal recovery from a relatively smainber of noisy measurements has been studied extensively
in the recent literature on compressed sensing. Howewverfottus of those studies appears to be limited to the cas@edxdrli
projections disturbed bgaussiannoise, and the sparse signal reconstruction problem igetiesslinear regression withl; -
norm regularization constraint. A natural question to askvhether one can accurately recover sparse signals urféEnedt
noise assumptions. Herein, we extend the results of [13h¢ontore general case ekponential-family nois¢hat includes
Gaussian noise as a particular case, and yigltsgularizedGeneralized Linear Model (GLM)egression problem. We show
that, under standard restricted isometry property (RIBymptions on the design matri,-minimization can provide a stable
recovery of a sparse signal under exponential-family nasimptions, and investigate (sufficient) recovery caditfor the
general case, and for some specific members of the exponfmtidy.

I. INTRODUCTION

Accurate and efficient recovery of sparse high-dimensisitalals from low-dimensional linear measurements redeive
much attention in the recent compressed sensing literpd{#Er], [10], [12]. While the problem of finding the sparsasggnal
satisfying linear constraints is NP-hard as it involves mbimatorial problem ofy,-norm minimization, it turns out that using
thel;-norm instead can still accurately recover the originahalgunder certain conditions, and yields efficient optatizn
algorithms. Particularly interesting for real-life apgtions is the case of signal recovery frarisy measurements [11],
[13], which relates to practically all modern applicatioo compressed sensing in image processing, sensor networks
biology, and medical imaging, just to name a few (see [15]daomprehensive list of references on compressed sensing
and its recent applications).

The majority of work in compressed sensing assumes lineas$i@n noise model; specifically, given an input sigwal
and the design matrixl, the vector of measuremenysis assumed to follow a Gaussian distribution with the mean
and unit variance(s) (effectively, it is assumed that meaments are independent), yielding the sum-squared losstraint
in standard formulations of noisy compressed sensing [[ILB]. However, in many practical applications, non-Gaassi
noise assumptions are more applicable: for example, Bérmwunultinomial distributions are better suited for debing
such measurements as (binary) failures or multilevel perémce degradations of end-to-end test transactionski{§sfp in
a distributed computer systems [16], [18]; exponentialritigtion is better suited for describing nonnegative nieasients
such as end-to-end response time in such systems [3], [9)-®&ussian observations, including binary, discrete,- non
negative, etc., variables, are common in various otherneatmins such as medical diagnosis, or computational giole.g.,
presence or absence of gene expression).

In this paper, we will consider a general class of exponkfamily distributions that includes, besides Gaussian, a
wide variety of other commonly used distributions, such gsoeential, Bernoulli, multinomial, gamma, chi-squaretdy
Weibull, Dirichlet, and Poisson, just to name a few. The esponding regression problem of recovering the signfitbm
the measuremengs that follow exponential-family noise, is to solveG@eneralized Linear Model (GLM)egression, which
essentially solves the log-likelihood optimization pretnl that for exponential-family likelihoods is equivaleatrhinimizing
the correspondingregman divergencé(y, u(Ax)), wherep is the mean parameter corresponding to the natural paramete
f# = Ax. In case of Gaussian likelihood, for example,= 6 and the corresponding Bregman divergence is simply the
Euclidean distancdy — A = bz||. Adding /;-norm constraint to GLM regression allows for an efficientthoel of sparse
signal recovery, and is often used in statistical literatil4]. Thus, a natural question to ask is to what extent staiginal
recovery results from the compressed sensing literatysly 4o the linear measurements corrupted by an exponefatiaily
noise? This work provides an initial investigation of thisegtion, deriving some conditions for stable sparse sig@lvery
from exponential-family observations.

We show that accurate recovery of sparse signals under thenertial-family noise assumption is possible in many
cases, and derive the conditions on such recovery, for argletegse and for several individual exponential-family nbens.
Essentially, given a sparse sign&f!, we show that, if the measurement noise is small (expresseal small Bregman
divergence between the measuremgand the meam? of the distribution determined by the natural paraméter Ax°)
and the matrixA obeys the restricted isometry property (RIP) with app@terRIP constant, then the solution to the GLM
regression problem (i.;-norm minimization subject to Bregman-divergence comstrthat replaces the sum-squared loss
(Euclidean distance) constraint) approximates the trgeasiwell. Moreover, we show that the results of [13] for a eor
general case of compressible, rather than sparse, sigaalbecalso extended to the exponential-family noise.
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Genady Grabarnik is with CUNgenady @mai | . com



Il. BACKGROUND
A. Sparse Signal Recovery from Noisy Observations

We assume that’ € R™ is an s-sparse signal, i.e. a signal with no more thamonzero entries, where << m.
Let A be ann by m matrix that produces a vector of linear projectiaffs= Az, wheren << m, and let andy be a
vector ofn noisy measurements that follow some noise distribufitip| Az). It is often assumed that satisfies the so-
called "restricted isometry property” (RIP) at the spartitvel S (or S-restricted isometry property), that essentiallyssiwat
every subset of columns of with cardinality less thaty' behaves like an almost orthonormal system. Formally, fahg [8]

Definition 1 (Restricted Isometry Property) Let Ar, whereT subset{1,...,m} denote ann x T submatrix ofA that
contains columns with indexes T The S-restricted isometry constanty of A is the smallest quantity such that

(1= as)llelli, < | Azcllz, < (1+ds)llcllZ, 1)

for any all subsetd” with |T'| < S and for any vectofc;) ;cr defined over coordinates Ifl. The matrixA4 is said to satisfy
the restricted isometry property if there exists such camsis that the eq. 1 is satisfied.
It was shown (e.g., in [8]) that if

ds + d2s + 35 < 1,

then solving the;-minimization problem in eq. 2 below can recover any signdhat is S-sparse (contains no more than
S non-zero entries).

Our question is: can one recove?f from y, given that noise is “sufficiently small” (to be defined pesgy below)?
This question has been answered in the compressed sertsitagulie for the particular case when the noise distribuigo
Gaussian. Indeed, [13] show that, if: (1§ — A2°||;, < e (small noise assumption), (2)° is sufficiently sparse and the
(3) matrix A obeys the restricted isometry property (RIP) with appraterRIP constants, then the solution to the following
l1-optimization problem

= argmjﬁin||a:||l1 subject to ||y — Azlli, <€ @)

approximates the true signal well. More formally, Theorenm J13] states:

Theorem 1[13] Let S be such thaks +3d45 < 2, wheredg is the S-restricted isometry constant of the matrix A, as defined
above. Then for any signal® with the supportl™® = {t : 2° # 0}, where|T°| < S and any noise vector (perturbation)
with ||e||;, < €, the solutionz* to the problem in eq. 2 obeys

|lz* — a°|;, < Cs - ¢, (3)

where the constanf’s may only depend onys. For reasonable values af,s, Cs is well-behaved; e.gCs ~ 8.82 for
ds4s = 1/5 and Cs =~ 10.47 for 45 = 1/4.

Moreover, [13] show that (1) no other recovery method “carfggen fundamentally better for arbitrary perturbations of
sizee, i.e. even if an oracle would make the actual supfdttof z° available to us, making the problem well-posed, the
least-squares solutiaf (i.e., the maximume-likelihood solution which is optimal ihe absence of any other information)
would approximate the true signaf with the error proportional te”.

Finally, [13] extend their result from sparse to approxiehasparse vectors in the following

Theorem 2[13] Let 2° € R™ be an arbitrary vector, and let, s be the truncated vector corresponding to the S largest
values ofz? (in absolute value). Under the assumptions of Theorem 1sthgionz* to the problem in eq. 2 obeys

[|2° — 2°, ]|,
VS

For reasonable values af,s the constants above are well-behaved; €/gs ~ 12.04 and Cy g ~ 8.77 for d4s = 1/5.

||I* — x0||12 < OI,S c€+ 0275

(4)

B. Exponential-family distributions and Bregman diverges

Herein, we will generalize the above results in the casegfonential-familynoise. Note that|y — Az||;,, < ¢ is
a constraint on the negative log-likelihood of a Gaussianabte y ~ N(u,X) with 4 = Az and ¥ = I (assuming
independent unit-variance noise), i.e.

~logPly|Ax®) = f(y) + 3 ly — Axlf, ©)



Gaussian distribution is a particular member of @xponential familyof distributions.

Definition 2 An exponential family is a parametric family of probability distributions whereet probability density has the
form

log py.e(y) = x0 — 1(0) +logpo(y), (6)

whered is called thenatural parametet)(6) is the (strictly convex and differentiableyymulant functionor thelog-partition
function, that uniquely determines the member distribution of theoaential family, and(y) is a non-negative function
called base measurthat does not depend on the parameder

As shown by [2], there is a bijection between the exponeffaialily densitiesy.,;, ¢(y) andBregman divergences;(y, 1),
so that each exponential-family density can be also exedeas

Py,0(y) = exp(—=dy(y, 1) fo(¥), (1)

whereu = pu(0) = E,, ,(Y) is the expectation parameterorresponding td, ¢ is the (strictly convex and differentiable)
Legendre conjugate af, f,(y) is a uniquely determined function, amld(y, i) is the corresponding Bregman divergence
defined as follows.

Definition 3 Given a strictly convex function : S — R defined on a convex sétC R, and differentiable on the interior
of S, int(S) [17], the Bregman divergenced, : S x int(S) — [0, 00) is defined as

de(x,y) = ¢(x) — ¢(y)— < (x —y), Vo(y) >, (8)
whereV¢(y) is the gradient ofp.

In other words, the Bregman divergence can be thought of adifference between the value ¢fat pointx and
the value of the first-order Taylor expansion @faround pointy evaluated at poink (see Figures 1 and 2 below, where

h(z) = ¢(y)+ < (x —y), Vo(y) >).

Fig. 1. Relative entropy (KL-divergence) Fig. 2. Itakura-Saito distance (Burg divergence)

Table | (derived from Tables 1 and 2 in [1]) shows particubsraples of commonly used exponential-family distribuson
and their corresponding Bregman divergences. For exartideunit-variance Gaussian distribution leads to squass, lo
multivariate spherical Gaussian (diagonal covariandefiendent variables) gives rise to Euclidean distance, dtivariate
Gaussian with the inverse-covariance (concentrationjimét leads to Mahalanobis distance, Bernoulli distributionreer
sponds to logistic loss, exponential distribution leadftd&ura-Saito distance, while a multinomial distributicorresponds
to the KL-divergence.



TABLE I. Examples of commonly-used exponential-family disributions and their corresponding Bregman divergences.

Domain Distribution Do (Y) w d(1) dy(y, 1) Divergence
_(&=a)®
R 1D Gaussian \/;Te 202 a 2%2#2 ﬁ (y — n)? square loss
{0,1} Bernoulli V(1 —q)177 q 1 log u+ ylog(¥£)+ logistic loss
(1—p)log(l —p) | (1 —y)log(3=%)
Ryt Exponential Ae™ MY 1/X —logp —1 2 —log(£) —1 Itakura-Saito distance
n-simplex | n.D Multinomial H;%I'y], -, q;J [qu];_zﬂl POy log(%]) PO log(%) KL-divergence
~lIx—all}
R™ nD Sph. Gaussian (2:(72)71’ e 202 a sz i3 sz lly = wll3 squared Euclidean distancg
) fdetc) _ y=a)TCly—a) T T O(y— o
R™ nD Gaussian \/(‘Zt_()cn) e 2 a u-Cn y=p)” Oly—p) Mahalanobis distanée

IIl. OUR CONTRIBUTION

We now extend the result in Theorem 1 to the case of expordalily noise. Let us consider the following constrained
ly-regularization problem that generalizes the standardyncompressed sensing problem of [13] to the following:

min||z||1 subject to Zd(yi,u(Aix)) <e,

K2

9)

whered(y;, u(A;x)) is Bregman divergence between the noisy observatiand the mean parameter of the corresponding
exponential-family distribution with the natural paraeref; = A;x. Note that this problem correspondsiieregularized
Generalized Linear Model (GLMegression, that includes as a particular case the standargressed-sensing formulation,
i.e. thel; regularized linear regression (in that case, Bregmanglérere is simply the Euclidian distance, and;z) = A;x).

We show that, if: (1) the noise is small, (2Y is sufficiently sparse and the (3) mattik obeys the restricted isometry
property (RIP) with appropriate RIP constants, then theitswi to the above problem approximates the true signal. well
More formally,

Theorem 3 Let S be such thalss + 3445 < 2, whereds is the S-restricted isometry constant of the matrix A, as defined
above. Then for any signal® with the suppor™® = {t : 2% # 0}, where|T°| < S, and for any vectoy = (v, ...., y) Of
noisy linear measurements where

1) the noise follows exponential-family distributiops (v;), with the natural parametef; = (A, .z"), and

2) the noise is sufficiently small, i.&4, d(y;, u(A;.z%)) <e,
the solutionz™* to the problem in eq. 9 obeys

||x* — x0||12 <Cg- 5(6), (20)

whereCs is the constant from Theorem 1 of [13], aA¢k) is a continuous monotone increasing functioreaft. 6(0) = 0
(and thusd(e) is small where is small). A particular form of this function depends on partar members of exponential
family.

Proof: Following the proof of Theorem 1 in [13], we will only have th@v that the “tube constraint” (condition 1)
still holds (the rest of the proof remains unchanged), hat t

||[Az* — Az, < 8(e) (11)

whered is some continuous monotone increasing functior,andé(0) = 0, so its small where is small. It was a trivial
consequence of the triangle inequality in case of Euclidistance; however, triangle inequality does not hold, inggel,
for Bregman divergences, and thus we must provide a diffepemof for the tube constraint, possibly for each type of
Bregman divergence (exponential-family distributionnce

142" — A2°|[f, = Y (Aia” = 4ia®)? = (67 - 6)°,
i=1 =1
we will need to show thaty; — 69| < G(¢), where3(e) is a continuous monotone increasing functioned.t. 3(0) = 0
(and thusB(e) is small where is small), then in eq. 11 we géte) = y/m - G(¢). The proof of this fact for the general case
of exponential-family noise is provided by Lemma 1. However particular members of the exponential family, one may
have to provide specific proofs since the assumptions redildy the general proof do not always hold for specific cases.
Thus, we provide separate proofs for several different nembf the exponential family in Lemmas 2.1 and 2.2, and abtai



particular expressions fa#(e) in each case. Note that for simplicity sake, we only considevariate exponential-family
distributions, corresponding to the case of independersienfor each measurement, which was effectively assumed in
standard problem formulation that used Euclidean distaoceesponding to a spherical Gaussian distribution, ixeeaor

of independent Gaussian variables. However, Lemma 1 bedovbe extended from scalar to vector case, i.e. to multiearia
exponential-family distributions that do not necessairityly independent noise. Lemma 2.3 will provide a specifisecaf
such distribution - a multivariate Gaussian with conceigramatrix C.

The “cone constraint” part of the proof in [13] remains irfdtis easy to see that it does not depend on the particular
constraint in thel,-minimization problem 9, and only makes use of the sparsitg®and I;-optimality of 2*. Thus, we
can simply substitut¢l An||,|| by é(e) in eq. 13 on page 8 in the proof of Theorem 1 of [13], or, eqeindy, replace2e
(that was shown to boundAh||;,|| ) by d(e) in the eq. 14.

]

Just like for the sparse signal case (Theorem 1 in [13]), tilg change we have to make in the proof of the Theorem
2 (general case of approximable, rather than sparse, sjgnvehen generalizing it from Euclidean distance to Bregman
divergence in eq. 9, is the tube constraint. Thus, once wevesthat for the Theorem 3 above, the generalization to
approximable signals follows automatically:

Theorem 4 Letz® € R™ be an arbitrary vector, and let, s be the truncated vector corresponding to the S largest wlue
of 0 (in absolute value). Under the assumptions of Theorem 3sdhgionz* to the problem in eqg. 9 obeys

[|2° — 29, S|l
VS '

where(, s and Cy s are the constants from Theorem 2 of [13], afi@) is a continuous monotone increasing function of
e s.t. §(0) = 0 (and thusd(e) is small where is small). A particular form of this function depends on jartar members
of exponential family.

|2 — 20|, < Ch.5-0(€) + Cas - (12)

The following lemma states the sufficient conditions for thébe constraint” in eq. 11 to hold in general case of arbjtra
exponential-family noise, provided that' (y) exists and is bounded on the appropriate intervals.

Lemma 1 Lety denote a random variable following an exponential-familstibution pg(y), with the natural parameter
¢, and the corresponding mean parameterd). Let dy(y, u(6)) denote the Bregman divergence associated with this
distribution. If

1) dg(y, 1°(0°)) < e (small noise),

2) dg(y,p*(0*)) <e  (constraint in GLM problem eg. 9), and

3) ¢"(y) exists and is bounded dB.in, Ymaz|, Wherey,,i, = min{y, u°, p*} and ya. = max{y, u°, u*},

then /o
22
|t —pl| < , < —— and
\/mlnﬁe[yminWmaz] ¢ (y)
22
07— 0°] < Vo max |¢()].

B \/minf‘)e[yhlin;ynlaz] (b”(:g) ﬂe[u*;u“]

Proof: We prove the lemma in two steps: first, we show that(0*) — u°(0%)| is small if € is small, and then infer
|6* — 6°| is small.
1) By definition in eq. 8, Bregman divergence is the non-lirted of the Taylor expansion of(y) at pointy, i.e., the
Lagrange remaindeof the linear approximation:

do(y, p) = ¢"(§)(y — p)?/2, 9§ € [y1;y2], wherey; = min{y, u}, yo = max{y, u}.

Let 49 = min{y, '}, 39 = max{y,u°} and y; = min{y, u*}, y5 = max{y,u*}. Using the condition®) <
dg(y,u°) < e and0 < dy(y, u*) < ¢, and observing that

min #"(9) < min ¢"(9) and min #"(9) < min ¢"(9),
VE[YminiYmaz] 7€y999] JEYmin;Ymaz) 9€lyTy3]



we get

2¢ V2 V2

"Dy —p)?2<e & Y-u)P<—m oly-p' < < _
o) \/minzﬁe[y?;y‘z’] ¢"(9) \/mmﬁe[ymm;ymaz} ¢"(9)
and, similarly, |y — p*| < V2 < v2e , (13)

\/minge[yf;y;] &) VNG ] D (0)
from which, using the triangle inequality, we conclude

. . 2v/2¢
= | <y —p [+ |y — 1’| £ —= —— = 4, (e). (14)
\/mlnﬁé[ymm;ymam] ¢ (y)
Note that¢” (§) under the square root is always nonnegative sihees convex.
2) The mean and the natural parameters of an exponentidifdistribution relate to each other as follow&:) = ¢’ (1)
(respectivelyf(u) = Vo(u) for vector ), whereg’ (1) is called thelink function Therefore, we can write

17— 6% = |68 (") — &' ()] = 10" () (1" — %), where fi € [u"; 1u°],
and thus, using the above result in eq. 14, we get

10* —0° < max |¢”(f1)|01(e), (15)

aep*;ul]

which concludes the proof.

[ |
Note that the conditions (3) in the above lemma requires #ig} exists and is bounded on the intervals betwgen
and bothu” and u*. However, even when this condition is not satisfied, as, f@m®le, in case of logistic loss (where
@ (y) = m is unbounded at 0 and 1) and several other Bregman divergehogn in Table 1 (e.g., , we can nevertheless
prove a similar results using specific properties of eag)), as shown by the following lemmas.

Lemma 2.1 (Bernoulli noise / Logistic loss)Let the conditions (1) and (2) of Lemma 1 be satisfied, andplg) =
ylogy + (1 — y) log(1 — y), which corresponds to the logistic-loss Bregman divergeswed Bernoulli distributiorp(y) =,
where the mean parametgr= P(y = 1). We assume that < y* < 1, and0 < x° < 1. Then

|’ — p*| < 2e-€%, and |60 — 6%| < 4e.

Proof: Using the definition of the logistic-loss Bregman divergerfiom Table 1, and the above conditions, we can
write:

. I—y y l—y
dy(y, 1) = ylog(-L) + (1 — y) log(——L) < €, dy(y, 1*) = ylog(L-) + (1 = y) o <e 16
oy, 1) =y g(ﬂo) (1-y) g(l_uo)_ sy, ") =y g(ﬂ*) (1-y) g(l_m)_ (16)
which implies
| (y, 1”) = ds(y, 167)| < 2€, (17)
and, after substituting the expressions 16 into eq. 17, angli§ying, we get
p° — 10
ylog(—)+ (1 —y)lo < 2e. 18
ly g(m) (1-y) g(l_m)l (18)

The above must be satisfied for eacke {0, 1} (the domain of Bernoulli distribution). Thus, we get:

1—pu° . 10 .
(1) Nog(7—2)I < 2¢ if y =0, and (2) [log("2)] < 2e if y =1, (19)
or, equivalently
—2€ 1- :LLO 2¢ . —2€ :LLO 2¢ i _
(e <—=<e* ify=0,and(2) e ™ < — <e* ify=1

1=,
Let us first consider the case gf= 0; subtracting 1 from the corresponding inequalities yields

* 0
—26_1<lu’ ILL

ST S mle (o) =) <t - pt < (L= ) (e - 1),
—

e



By the mean value theorem? — 1 = ¢ — ¢ = &)1, (z — 0) = ¢z, for somed € [0,4] if = > 0, or for some
& € [x,0] if 2 <0. Thus,e™2° — 1 = —e® - 2¢, for somez € [—2¢,0], and sincee® is a continuous monotone increasing
function, e® < 1 and thuse=2¢ — 1 > —2¢. Similarly, e? — 1 = 2 - 2¢, for somez € [0, 2¢], and sincee® < e2¢, we get
e?€ — 1 < 2¢-e2. Thus,

—2e(1 —p*) < p = p® < 2ee* (1 — p*) = |u* — p¥] < 2e- ™ (20)

Similarly, in case ofy = 1, we get

and can apply same derivation as above, and get same reduit f9:°| as in eq. 20. Finally, sinc#(;1) = ¢'(u) = log(ﬁ),
we get

0 * 0 1— 0
0" — 0*| = |log(——) —1 = log(E2) —1 .
0%~ 671 = [tog(3-2 ) — loa(2—)| = [log(72) ~ log(;— )|
From the eq. 19 we ge}ﬂog(‘lj—f) and | log(1= )
0 1— 0

u*)| < 4e.

0 * 1Y
|07 — 6" = Ilog(m) log(1—
[ |
Lemma 2.2 (Exponential noise/ Itakura-Saito distance)l et the conditions (1) and (2) of Lemma 1 be satisfied, and let
¢(y) = —log u—1, which corresponds to the Itakura-Saito distarkgy, 1) = y 1og( ) —1 and exponential distribution
p(y) = A\e?, where the mean parametgr= 1/)\. We will also assume that the mean parameter is always stghfeom
zero, i.e.3c, > 0 such thaty > ¢,. Then

|’ — pu*| < V6e-max {u° p*}, and
Vbe

Cu

|0* — 0% <

Proof: To establish the result of the lemma we start with inequality- logu — 1| < e, Whereu is z Replacingu
by z =u—1,2z > —1 gives us|z — log(1 + z)| < e. Without loss of generality, let us assume that 3. Then the Taylor
decomposmon of function — log(1 + z) at the pointz = 0

2’2 23 4
z—log(l+z) = 5 3 + T for 0 € [0, 2] or [z, 0]
implies that
22 28 . 64
e>z—log(l+2z2)> CREEY (smceZ >0).
z Z Z2
This, in turns, implies that < 1 and7 —EF>%5for0<z2< %
Hence
22 1
22 1
Combining together both estimates we ggt< v/6¢, or
ly —pl < V6e-p,
and
1 = | < V6 e max {u°, pu*}.
Then
s g0 L1 pt—p° V6 o V6
0" = 0°| = |5 — —[=l—7%"1< o7 <
It min {u po}

since by the assumption of the lemman {4.*, u°} > c,..



We now consider multivariate exponential-family disttioms; the next lemma handles the general case of a mubteari
Gaussian distribution (not necessarily spherical onehhdta diagonal covariance matrix and corresponded to thelatad
Euclidean distance (see Table 1).

Lemma 2.3 (Non-i.i.d. Multivariate Gaussian noise / Mahalaobis distance)Let ¢(y) = y’ Cy, which corresponds to
the general multivariate Gaussian with concentration rixa€?, and Mahalanobis distancé; (y, 1) = 3(y — )" C(y — p).
If dy(y, u’) <eanddy(y, u*) < e, then

% 2.\/€ _ * -
I — g1 < 250 V2, and (190 - 67 < VRO O

Proof: SinceC is (symmetric) positive definite, it can be written &= LT L where L defines a linear operator on
y space, and thus

/2> (y =) Cly = p) = (L(y = )" (L(y — w)) = [|IL(y — w)[*-
Also, it is easy to show thagtC—!||I < C < ||C||I (where||B|| will herein denote the operator norm &), and that

/22 11y = I > 1212y = il = Iy = ull < /5127
Then, using triangle inequality, we get
1 = 1Ol < My = 61 + [y — 1] < V26 |L7].
Finally, sinced(un) = Vo(u) = Cu, we get
16° = 67|| = [|CK® = Cu*[| < [IC]] - (|6 = w*[| = IC]] - (|1 = ]| < V2€[|L7H] - [|C]).
Note that||Z~!|| = ||C~!||*/2, which concludes the proof. [ ]

IV. SUMMARY

In this paper, we extend the results of [13] to the more géroase ofexponential-family nois¢éhat includes Gaussian
noise as a particular case, and yielggegularizedGeneralized Linear Model (GLMjegression problem. We show that,
under standard restricted isometry property (RIP) assiompton the design matrix; -minimization can provide a stable
recovery of a sparse signal under exponential-family nasmimptions, and investigate (sufficient) recovery camuitfor
the general case, and for some specific members of the exglrfamily. We also show that the results of [13] for a more
general case of compressible (rather than sparse) sigaalbec extended to the exponential-family noise in a similay.w

Clearly, this is work in progress, since it only demonstidtes results for two specific members of the exponentiallfgmi
and needs to be extended to others. We also show the gensulikydnowever, the conditions imposed by the Lemma 1
might be sometimes too restrictive, and thus we must furtheiore the sparse signal recovery conditions.
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