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Abstract

In this paper, we consider the sparse inverse covariance selection problem
which is equivalent to structure recovery of a Markov Network over Gaussian
variables. We introduce a simple but efficient greedy algorithm, called SINCO,
for solving the SParse INverse COvariance problem. Our approach is based on
coordinate ascent method which naturally preserves the sparsity of the inverse
covariance matrix. We compare our algorithm to the state-of-art method called
glasso [5], evaluating both computational efficiency and structure-reconstruction
accuracy of both methods. We show that the two methods are often compa-
rable in speed and accuracy, however, in some regimes, our method can signif-
icantly outperform glasso in terms of both computational time and structure
reconstruction error (particularly, false positive error). Our method has an ad-
ditional advantage of being easily parallelizable. We also show that the greedy
nature of the method is such that one can reproduce the regularization path
behavior by applying the method to one instance of the regularization param-
eter only. Numerical experiments demonstrate advantages of our approach on
simulated networks, both random and “structured” (scale-free) ones, where the
ground-truth structure is available. We also report promising empirical results
on real-life problems with unknown ground-truth structure, such as classification
of mental states from fMRI data.

1 Introduction

In many practical applications of statistical learning the objective is not simply to
construct an accurate predictive model but rather to discover meaningful interactions
among the variables. For example, in applications such as reverse-engineering of gene
networks, discovery of functional brain connectivity patterns from brain-imaging data,
or analysis of social interactions, the main focus is on reconstructing the network struc-
ture representing dependencies among multiple variables, such as genes, brain areas,
or individuals. Probabilistic graphical models, such as Markov networks (or Markov
Random Fields), provide a statistical tool for multivariate data analysis that allows
to capture variable interactions explicitly, as conditional (in)dependence relationships.
Herein, we focus on learning the structure of Markov Network over Gaussian random
variables, which is equivalent to learning zero-pattern of the inverse covariance ma-
trix. A standard approach to model selection is to choose the simplest model, i.e.
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the sparsest network, that adequately explains the data. Formally, this leads to regu-
larized maximum-likelihood problem with the penalty on the number of parameters,
or l0 norm, a generally intractable problem that is often solved approximately by
greedy search [7]. Recently, however, novel tractable approximations were suggested
that exploit sparsity-enforcing property of l1-norm regularization and yield convex
optimization problems [9, 15, 16, 12, 5].

Herein, we propose a very simple greedy algorithm (SINCO) for solving the l1-
regularized inverse-covariance problem, and compare it with the state-of-art. SINCO
solves the primal problem (unlike its predecessors such as COVSEL [12] and glasso [5]),
using coordinate descent, in a greedy manner, thus naturally preserving the sparsity of
the solution. As demonstrated by our empirical results, SINCO has better capability
in reducing the false positives error than glasso [5], since it is less prone to introducing
unnecessary nonzero elements.

The structure reconstruction accuracy is known to be quite sensitive to the choice
of regularization parameter, which we denote as λ, and the problem of selecting the
“best” (i.e. giving the most accurate structure) value of this parameter in practical
settings remains open, despite theoretical advances that analyze asymptotic behavior
1. We investigate SINCO vs glasso behavior in several regimes of λ. What we observe
is that SINCO’s greedy approach introduces nonzero elements in the same manner as is
achieved by reducing the value of λ. Hence, SINCO can reproduce regularization path
behavior without actually varying the value of the regularization parameter. Note also
that the path produced by SINCO is computed in its entirety, while the regularization
path can only be computed for a selected set of values of λ.

Moreover, while glasso [5] is comparable to, or faster than SINCO for relatively
small number of variables p, SINCO appears to have a much better scaling when p
increases (e.g., gets closer to 1000 variables), and can significantly outperform glasso.
Finally, experiments on real-life brain imaging (fMRI) data demonstrate that SINCO
reconstructs Markov Networks that achieve same or better classification accuracy than
its competitors while using much smaller fraction of edges (non-zero entries of the
inverse-covariance matrix). Further advantages of our approach include simplicity,
efficiency, a relatively straightforward massive parallelization.

The paper is organized as follows. In Section 2 we state the problem formulation.
In Section 3 we describe the SINCO algorithm and the details of the coordinate descent
step computation. The regularization path computation and the path generated by
SINCO are discussed in Section 4. In Section 5 we discuss the empirical complexity
of SINCO with respect to the stopping tolerance and the size of the problem. We
also show that SINCO has a particular strength in reducing the false positive error.
Finally, we present some results on real-life neuroimaging (fMRI) data in Section 6,
and discuss other applications in Section 7.

2 Problem Formulation

Let X = {X1, ..., Xp} be a set of p random variables, and let G = (V,E) be a Markov
network (a Markov Random Field, or MRF) representing the conditional independence

1As mentioned in [10], ”the general issue of selecting a proper amount of regularization for getting
a right-sized structure or model has largely remained a problem with unsatisfactory solutions”.
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structure of the joint distribution P (X). The set of vertices V = {1, ..., p} is in a one-
to-one correspondence with the set of variables in X. The edge set E contains an edge
(i, j) if and only if Xi is conditionally dependent on Xj given all remaining variables,
i.e., the lack of edge between Xi and Xj denotes their conditional independence [8].

We will assume a multivariate Gaussian probability density function over X =
{X1, ..., Xp}:

p(x) = (2π)−p/2 det(Σ)−
1
2 e−

1
2 (x−µ)T Σ−1(x−µ) (1)

where µ is the mean and Σ is the covariance matrix of the distribution, respectively.
Without loss of generality we assume that the data is scaled so that µ = 0, hence
the purpose is to estimate Σ. Since det(Σ)−1 = det(Σ−1), we can now rewrite (1),
assuming C = Σ−1 and µ = 0:

p(x) = (2π)−p/2 det(C)
1
2 e−

1
2xT Cx. (2)

Missing edges in the above graphical model correspond to zero entries in the inverse
covariance matrix C = Σ−1, and vice versa [8], and thus the problem of structure
learning for the above probabilistic graphical model is equivalent to the problem of
learning the zero-pattern of the inverse-covariance matrix. Note that the inverse of the
maximum-likelihood estimate of the covariance matrix Σ (i.e. the empirical covariance
matrix A = 1

n

∑n
i=1 xT

i xi where xi is the i-th sample, i = 1, ..., n), even if it exists,
does not typically contain any elements that are exactly zero. Therefore an explicit
sparsity-enforcing constraint needs to be added to the estimation process.

A common approach is to include as penalty the (vector) l1-norm of C, which
is equivalent to imposing a Laplace prior on C in maximum-likelihood framework
[5, 12, 16]. Formally, the entries Cij of the inverse covariance matrix C are assumed
to be independent random variables, each following a Laplace distribution

p(Cij) =
λij

2
e−λij |Cij−αij | (3)

with zero location parameter (mean) αij and common scale parameter λij = λ, yielding

p(C) =
p∏

i=1

p∏

j=1

p(Cij) = (λ/2)p2
e−λ||C||1 , (4)

where ||C||1 =
∑

ij |Cij | is the (vector) l1-norm of C. Then the objective is to find the
maximum log-likelihood solution arg maxCÂ0 log p(C|X), where C Â 0 denotes that
the matrix C is positive definite, X is the n × p data matrix, or equivalently, since
p(C|X) = P (X|C)P (C)/p(X) and p(X) does not include C, to find

arg max
CÂ0

log P (X|C)P (C) = arg max
CÂ0

log
n∏

i=1

[
det(C)

1
2

(2π)p/2
e−

1
2xT

i Cxi ] + log[(λ/2)p2
e−λ||C||1 ]. (5)

We write
∑n

i=1 xT
i Cxi = ntr(AC) where tr denotes the trace of a matrix, and A =

1
n

∑n
i=1 xT

i xi is the empirical covariance matrix. This yields the following optimization
problem considered in [5, 12, 16] (see [16] for the derivation details):

max
CÂ0

ln det(C)− tr(AC)− λ||C||1. (6)
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Herein, we make a more general assumption about p(C), allowing different rows of
C (or even different elements) to have different parameters λi (or λij), i.e., p(Cij) =
λi

2 e−λi|Cij |. This reflects our desire to model structured networks with potentially very
different node degrees (i.e., row densities in C), and yields

p(C) =
p∏

i=1

p∏

j=1

λi

2
e−λi|Cij | =

p∏

i=1

λp
i

2p
e−λi

∑p
j=1 |Cij |. (7)

Substituting the above into the maximum-loglikelihood problem in the equation 5
yields a general formulation

max
CÂ0

n

2
[ln det(C)− tr(AC)]− ‖C‖S (8)

Here by ‖C‖S we denote the sum of absolute values of the elements of the matrix
S · C, where · denotes the element-wise product. For example, if S is a product of
ρ = n

2 λ and the matrix of all ones, then the problem reduces to the problem in the
equation 6. Note that by allowing the matrix S to have arbitrary nonnegative entries,
we automatically include in the formulation the case when the diagonal elements of C
are not penalized or when the absolute values of the entries of C are scaled by their
estimated value, as it was considered in [16].

The dual of this problem can be written similarly to the dual in [12]

max
WÂ0

{n

2
ln det(W )− np/2 : s.t. − S ≤ n

2
(W −A) ≤ S}, (9)

where the inequalities involving matrices W , A and S are element-wise. The optimality
conditions for this pair of primal and dual problems imply that W = C−1 and that
(n/2)Wij −Aij = Sij if Cij > 0 and (n/2)Wij −Aij = −Sij if Cij < 0.

3 The SINCO method

Problem (8) is a special case of a semidefinite programming problem (SDP) [6], which
can be solved in polynomial time by interior point methods (IPM). However, as it
is well-known, each iteration of an interior point method applied to a semidefinite
programming problem of size p requires O(p6) operations and O(p4) memory space,
which is very costly. Another reason that using an IPM is undesirable for our problem
is that an IPM does not produce the sparsity pattern of the solution. The sparsity
is recovered in the limit, hence numerical inaccuracy can interfere with the structure
recovery.

As an alternative to IPMs, more efficient approaches were developed for problem
(8) in [12] and [5]. Both methods are similar in that they are based on applying a block
coordinate descent method to the dual of (8). At each iteration only one row (and the
corresponding symmetric column) of the dual matrix is optimized, while the rest of
that matrix remains fixed. The resulting subproblem is a convex quadratic problem.
The difference between the COVSEL method, described in [12], and the glasso method
in [5] is that COVSEL solves the subproblems via an interior point approach (as second
order cone quadratic problems (SOCP)), while glasso poses the subproblem as a dual
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of the Lasso problem [14] and utilizes LARS [2], an efficient active-set algorithm for
solving Lasso. As a result of using an active set approach, the sparsity of the primal
matrix is recovered more accurately than with the interior point approach, and the
glasso method [5] is faster than COVSEL because it takes advantage of that sparsity.2

A recent row by row (RBR) method for general SDP [17] is based on the same idea
of updating one row and column at a time, as glasso and COVSEL, but is applied
directly to the primal matrix. The resulting subproblem is in general a SOCP, but
is likely to be similar to the dual of the subproblem derived for glasso in [5]. The
application of the RBR method to the problem (8) is a subject of future research and
is beyond the scope of this paper. Other gradient-based approaches for problem (8)
were suggested (e.g. in [12]), but their performance so far does not exceed those of
COVSEL and glasso.

Herein, we propose a novel algorithm which can be viewed as a simplified version of
the RBR method. We refer to our method as “SINCO” for Sparse INverse COvariance
problem. SINCO solves the primal problem directly and also uses coordinate ascent,
which naturally preserves the sparsity of the solution. Unlike COVSEL, glasso and
the general RBR, SINCO only optimizes one diagonal or two (symmetric) off-diagonal
entries of the matrix C at each step. The advantages of this approach are that only one
or two nonzero entries can be introduced at each step, and also that the solution to each
subproblem is available in closed form as a root of a quadratic equation. Computation
at each step requires a constant number of arithmetic operation, independent of p.
Hence, in O(p2) operations a potential step can be computed for all pairs of symmetric
elements (i.e., for all pairs (i, j)). Then the step which provides the best function
value improvement can be chosen, which is the essence of the greedy nature of our
approach. Once the step is taken, the update of the gradient information requites
O(p2) operations. Hence, overall, each iteration takes O(p2) operations. Note that
each step is also suitable for massive parallelization.

In comparison, glasso and COVSEL (and RBR) require solution of a quadratic
programming problem, whose theoretical and empirical complexity varies depending
on the method used, but always exceeds O(p2). The algorithms apply optimization
to each row/column consecutively, hence the greedy nature is lacking. On the other
hand, a whole row and column is optimized at each step, thus reducing the overall
number of steps. As we will show in our numerical experiments, SINCO, in a serial
mode, is comparable to glasso, who is orders of magnitude faster than COVSEL [5].
Also, as it is demonstrated by our computational experiments, SINCO leads to a lower
false-positive error than glasso since it introduces nonzero elements greedily. On the
other hand, it may suffer from introducing too few nonzeros and thus missing some of
the true positives, especially on denser networks.

Perhaps the most interesting consequence of SINCO’s greedy nature is that it repro-
duces the regularization path behavior while using only one value of the regularization
parameter λ. We will discuss this property further in Section 4.

Another advantage of SINCO (as well as of glasso) is the ability to efficiently utilize
warm starts in various modes. For instance, it is easy to compute a range of solutions
for various values of λ, which defines matrix S. One may also use warm starts in

2On the other hand, COVSEL is implemented in C with Matlab interface, while glasso is a Fortran
code with R interface, but not available from Matlab. Hence, for some applications based primarily
on Matlab and C, COVSEL has remained the only alternative so far.
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computing the leave-one-out error in structure recovery.

3.1 Algorithm description

The main idea of the method is the following: at each iteration, the matrix C is updated
by changing one element on the diagonal or two symmetric off-diagonal elements. This
implies the change in C that can be written at C + θ(eie

T

j + eje
T

i ), where i and j are
the indices corresponding to the elements that are being changed. The key observation
is that, given the matrix W = C−1, the exact line search that optimizes the objective
function of problem (8) along the direction eie

T

j + eje
T

i reduces to a solution of a
quadratic equation, as we will show below. Hence each such line search takes a constant
number of operations. Moreover, given the starting objective value, the new function
value on each step can be computed in a constant number of steps. This means that
we can perform such line search for all (i, j) pairs in O(p2) time, which is linear in the
number of unknown variables Cij . We then can choose the step that gives the best
improvement in the value of the objective function. After the step is chosen, the dual
matrix W = C−1 and, hence, the objective function gradient, are updated in O(p2)
operations.

Note that the algorithm does not require to maintain the factorization of W or its
(p− 1)-dimensional submatrices, as in glasso.

We now describe the method. First, let us consider an equivalent reformulation of
the problem (8):

max
C′,C′′

n

2
[ln det(C ′ − C ′′)− tr(A(C ′ − C ′′))]− tr(S(C ′ + C ′′)),

s. t. C ′ ≥ 0, C ′′ ≥ 0, C ′ − C ′′ Â 0

For a fixed pair (i, j) consider now the update of C ′ of the form C ′(θ) = C ′ +
θ(eie

T

j + eje
T

i ), such that C ′ ≥ 0. Let us consider now the objective function as the
function of θ.

f ′(θ) =
n

2
(ln det(C + θeie

T

j + θeje
T

i ) +

tr(A(C + θeie
T

j + θeje
T

i )) + ||C + θeie
T

j + θeje
T

i ||S

Similarly, if we consider the update of the form C ′′(θ) = C ′′ + θ(eie
T

j + eje
T

i ) such
that C ′′ > 0, the objective function becomes

f ′′(θ) =
n

2
(ln det(C − θeie

T

j − θeje
T

i ) +

tr(A(C − θeie
T

j + θeje
T

i )) + ||C + θeie
T

j + θeje
T

i ||S
The method we propose works as follows:
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Algorithm 1

0. Initialize C ′ = I, C ′′ = 0, W = I

1. Form the gradient G′ =
n

2
(W −A)− S and G′′ = −S − n

2
(W + A)

2. For each pair (i, j) such that
(i) G′ij > 0, C ′′ij = 0, compute the maximum off ′(θ) for θ > 0.

(ii) G′ij < 0, C ′ij > 0, compute the maximum off ′(θ) for θ < 0 subject to C′ ≥ 0

(iii) G′′ij > 0, C ′ij = 0, compute the maximum off ′′(θ) for θ > 0.

(iv) G′′ij < 0, C ′′ij > 0, compute the maximum of f ′′(θ) for θ < 0 subject to C′′ ≥ 0.

3. Choose the step which provides the maximum function improvement.
If relative function improvement is below tolerance, then Exit.

4. Update W−1 and the function value and repeat.

As mentioned above, the maximum of the one-dimensional function in Step 3 is
available in closed form. Indeed, consider the step C̄ ′ = C ′ + θ(eie

T

j + eje
T

i ). Let us
assume that θ > 0 and that C ′′ij = 0, which implies that we can write the step as
C̄ = C + θ(eie

T

j + eje
T

i ), since the (i, j) and (j, i) elements do not become zero for any
such step.

The inverse W , then, is updated, according to the Sherman-Morrison-Woodbury
formula (X + ab

T

)−1 = X−1 −X−1a(1 + b
T

X−1a)−1b
T

X−1, as follows

W̄ = W − θ(κ1WiW
T

j + κ2WiW
T

i + κ3WjW
T

j + κ1WjW
T

i )
κ1 = −(1 + θWij)/κ

κ2 = θWjj/κ

κ3 = θWii/κ.

κ = θ2(Wii ∗Wjj −W 2
ij)− 1− 2θWij

Let us now compute the objective function as the function of θ.

f(θ) =
n

2
(ln det(C + θeie

T

j + θeje
T

i ) +

tr(A(C + θeie
T

j + θeje
T

i )) + ||C + θeie
T

j + θeje
T

i ||S

We use the following property of the determinant: det(X + ab
T

) = det(X)(1 +
b

T

X−1a) and the Scherman-Morisson-Woodbury formula. We have

det(C + θeie
T

j + θeje
T

i ) = det(C + θeje
T

i )(1 + θe
T

j (C + θeje
T

i )−1ei)

= det(C)(1 + θe
T

i C−1ej)(1 + θe
T

j C−1ei − θ2e
T

j C−1ej(1 + θe
T

i C−1ej)−1e
T

i C−1ei)

= det(C)(1 + 2θe
T

i C−1ej + (θe
T

j C−1ei)2 − θ2e
T

i C−1eie
T

j C−1ej).
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Given the dual solution W = C−1, and recalling that W and A are symmetric, but
S is not necessarily so, we can write the above as

det(C + θeie
T

j + θeje
T

i ) = det(C)(1 + 2θWij + θ2(W 2
ij −WiiWjj).

Then the change in the objective function is

f(θ)− f =
n

2
(ln(1 + 2θWij + θ2(W 2

ij −WiiWjj))− 2Aijθ − Sijθ − Sjiθ,

the last term being derived from the fact that Cij + θ and Cji + θ remain positive.
Let us now consider the derivative of the objective function with respect to θ

f ′(θ) =
nWij + nθ(W 2

ij −WiiWjj)
θ2(W 2

ij −WiiWjj) + 1 + 2θWij
− nAij − Sij − Sji.

To find the maximum of f(θ) we need to find θ > 0 for which f ′(θ) = 0. Letting a
denote WiiWjj −W 2

ij , this condition can be written as:

nWij − nAij − Sij − Sji − (na + 2Wij(nAij + Sij + Sji)θ + a(nAij + Sij + Sji)θ2 = 0.

To find the value of θ for which the derivative of the objective function equals zero we
need to solve the above quadratic equation

abθ2 − (na + 2Wijb)θ + nWij − b = 0, (10)

where a = WiiWjj−W 2
ij and b = nAij +Sij +Sji. Notice that a is always nonnegative,

because matrix W is positive definite, and it equals zero only when i = j. We know that
at θ = 0 f ′(0) > 0. Let us investigate what happens when θ grows. The discriminant
of the quadratic equation is

D = (na + 2Wijb)2 − 4ab(nWij − b) = (na)2 + 4nWijab + 4W 2
ijb

2 − 4abnWij + 4ab2

= (na)2 + 4b2WiiWjj > 0,

hence the quadratic equation always has a solution. At θ = 0 the quadratic function
equals

nWij − nAij − Sij − Sji = G′ij + G′ji > 0,

Now let us again consider the derivative f ′(θ). At θ = 0 we know that the derivative
is positive. We also know that the denominator

θ2(W 2
ij −WiiWjj) + 1 + 2θWij = (1 + θWij)2 − θ2WiiWjj

is positive when θ = 0 and is equal to zero when θ = θmax = 1/(
√

WiiWjj −Wij) > 0.
The function f(θ) approaches negative infinity when θ → θmax, hence so does f ′(θ).
This implies that f ′(θ) has to reach the value zero for some θ ∈ (0, θmax). Hence
the quadratic equation (10) has one positive solution in this interval. This solution
gives us the maximum of f(θ) and hence the length of the step along the direction
eie

T

j + eje
T

i .
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The objective function value is easy to update using the formula

det(C ′ − C ′′ + θ(eie
T

j + eje
T

i )) = det(C ′ − C ′′)(1 + 2θWij − θ2a));

Let us consider the negative step along the direction eie
T

j + eje
T

i when C ′ij > 0.
The derivations are exactly as above, except for we are now looking for solution θ < 0.
As discussed above, the term under the logarithm

θ2(W 2
ij −WiiWjj) + 1 + 2θWij = (1 + θWij)2 − θ2WiiWjj

is positive when θ = 0 and is also equal to zero when θ = θmin = −1/(
√

WiiWjj +
Wij) < 0. The derivative of f(θ) at θ = 0 is negative, this time (which is why we
are considering a negative step, in the first place), which means that there exists a
θ ∈ (θmin, 0) for which this derivative is zero, hence the quadratic equation (10) has a
negative solution. This negative solution θ− < 0 determines the length of the step in
the direction −eie

T

j − eje
T

i . It is important to note that the length of the step cannot
exceed the value C ′ij , hence the final step length is computed as max(θ−,−C ′ij).

The other two possible steps listed in Step 3 can be analyzed analogously, the main
difference being the sign before the terms nAij , Sij and Sji in the case of the step that
updates C ′′.

Each step can be computed by a constant number of arithmetic operations, hence
to find the step that provides the largest function value improvement it takes O(p2)
operations - the same amount of work (up to a constant) that it takes to update W and
the gradient after one iteration. Hence the overall per-iteration complexity is O(p2).
Moreover, this algorithms lends itself readily to massive parallelization. Indeed, at each
iteration of the algorithm the step computation for each (i, j) pair can be parallelized
and the procedure that updates W involves simply adding to each element of W a
function that involves only two rows of W . Hence the updates can be also done in
parallel and in very large scale cases the matrix W can also be stored in a distributed
manner. The same is true of the storage of matrices A and S (assuming that S needs
to be stored, that is not all elements of S are the same), while the best way to store
C ′ and C ′′ matrices may be in sparse form.

The convergence of the method follows from the convergence of a block-coordinate
descent method on a strictly convex objective function. The only constraints are box
constraints (nonnegativity) and they do not hinder the convergence. In fact we can
view our method as a special case of the row by row (RBR) method for SDP described
in [17]. In the case of SINCO we extensively use the fact that each coordinate descent
step is cheap and, unlike the RBR algorithm we select the next step based on the
best function value improvement. On the other hand, we maintain the inverse matrix
W , which RBR method does not. However, none of these differences prevent the
convergence result for RBR in [17] to apply to our method. Hence the convergence to
the optimal solution holds for SINCO.

3.2 Numerical experiments setting

In order to test structure-reconstruction accuracy, we performed experiments on several
types of synthetic problems. (Note that, unlike prediction of an observed variable,
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structure reconstruction accuracy is harder to test on “real” data since (1) the “true”
structure my not be available and (2) known links in “real” networks (e.g., known
gene networks) may not necessarily correspond to links in the underlying Markov
net.) We generated uniform-random, as well as semi-realistic, structured “scale-free”
networks (following power-law degree distribution), that are known to better model
various biological, ecological, social, and other real-life networks [3]. The scale-free
(SF) networks were generated using the preferential attachment (Barabasi-Albert)
model [3] 3.

We generated networks with various density, measured by the % of non-zero off-
diagonal entries. For each density level, we generated the networks over p variables,
that defined the structure of the “ground-truth” inverse covariance matrix, and for
each of them, we generate matrices with random covariances corresponding to the
non-diagonal non-zero entries (while maintaining positive definiteness of the resulting
covariance matrix). We then sampled n instances, with the value of n depending
on the experiment, from the corresponding multivariate Gaussian distribution over p
variables.

4 Regularization path

One of the main challenges in sparse inverse covariance selection is the proper choice
of the weight matrix S in (8). Typically the matrix S is chosen to be a multiple of
the matrix of all ones. The multiplying coefficient is denoted by λ and is called the
“regularization parameter”. Hence the norm ‖C‖S in (8) reduces to λ‖C‖1 (in the
vector-norm sense) as in (6). Clearly, for large values of λ as λ → ∞ the solution to
(8) is likely to be very sparse and eventually diagonal, which means that no structure
recovery is achieved. On the other hand, if λ is small as λ → 0, the solution C is likely
to be dense and eventually approach A−1, and, again, no structure recovery occurs.
Hence exploration of a regularization path is an integral part of the sparse inverse
covariance selection.

Typically, problem (8) is solved for several values of λ in a predefined range and the
best value, according to some criteria, is selected. The reason only a scalar parameter
λ is usually considered, is because it is expensive to explore solutions along a multi-
dimensional grid.

Since the ground truth for the structure is unknown, except for artificial cases,
the selection of lambda based on the recovery of true structure is not possible. There
are several methods of selecting a good value of the regularization parameter. Some
are based on cross-validation or the prediction error of the resulting Gaussian model.
The cross-validation approach to λ selection often leads to overfitting with the chosen
value of λ being small and the resulting C being too dense. Other methods, such
as in [12] choose one specific value of λ based on theoretical derivations aimed at
asymptotic consistency, but in practical settings, this value tends to be too large (too
conservative, aiming at lowering the false-positive rate), and thus the resulting matrix
C is too sparse. More recently, a Bayesian approach to λ selection was proposed in
[1, 13]; the idea is to treat the regularization parameter as a random variable (or a

3We used the open-source Matlab code available at
http://www.mathworks.com/matlabcentral/fileexchange/11947.
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vector of random variables in the general case of vector-λ formulation) and search
for a maximum a posteriori probability (MAP) solution for both C and λ using an
alternating-minimization approach.

In this section, we concentrate on computing the entire regularization path (or
some parts of it) rather than on specific λ selection methods. SINCO method is very
well-suited for the efficient regularization path computation, since it directly exploits
warm starts. When λ is relatively large, a very sparse solution can be obtained quickly.
This solution can be used as a warm start to the problem with a smaller value of λ
and, if the new value of λ is not much smaller than the previous value, then the new
solution is typically obtained in just a few iterations, because the new solution has
only a few extra nonzero elements. Warm starts can also be used to initiate different
subproblems for leave-one-out validation approach, where the stability of the structure
is measured over a collection of data subsets, each of which is composed of all data
samples but one. Since each leave-one-out subproblem differers from another one by
a rank-two update of matrix A, and since the resulting nonzero pattern is expected to
be not very different, the solution to one subproblem can be an efficient warm start
for another subproblem.

Typically the output of the regularization path is evaluated via the ROC curves
showing the trade-off between the number of true positive (TP) element recovered and
the number of false positive (FP) elements. Producing better curves (where the number
of TPs rises fast relative to FPs) is usually an objective of any method that does not
focus on specific λ selection. An interesting property of SINCO is that it introduces
nonzero entries to the matrix C as it progresses. Hence, if we use looser tolerance and
stop the algorithm early, then we will observe fewer nonzero entries, hence a sparse
solution for any specific value of λ. What we observe, as seen in Figures 1 and 2,
is that if we apply SINCO to problem (8) with ever tighter tolerance then the ROC
curves obtained from the tolerance solution path match the ROC curves obtained
from the regularization path. Here we show several examples of the matching ROC
curves for various random networks. We use a randomly generated structured (scale-
free) network that is 21% dense and a randomly generated unstructured network, 3%
dense. We use p = 100 and two instances: N = 500 and N = 5000. We applied SINCO
to one instance of problem (8) with λ = 0.01 (almost no regularization) with a range
of stopping tolerances from 10−4 to 10−7. The ROC curve of that path is presented
by a line with “o”s. We also applied SINCO with fixed tolerance of 10−6 to a range of
λ values from 300 to 0.01. The corresponding ROC curves are denoted by lines with
“x”s. We can see that the ROC curve of the regularization path for the given range
of values of λ is somewhat less steep than that of the tolerance path, but the curves
are still very close in the area where they overlap. For baseline we also present the
ROC curve of the regularization path computed by glasso, which is very similar to the
SINCO’s ROC curves. Note that changing tolerance does not have the same affect on
glasso as it does on SINCO. The number of TP and FP does not change noticeably
with increasing tolerance. This is due to the fact that the algorithm in glasso updates
a whole row and a column of C at each iteration while it cycles through the rows and
columns, rather than selecting the updates in a greedy manner.

Our observation imply that SINCO can be used to greedily select the elements of
graphical model until the desired trade-off between FPs and TPs is achieved. In the
limit SINCO solves the same problem as glasso and hence the limit number of the
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Figure 1: Scale-free networks: SINCO and glasso paths when varying tolerance and λ.

true and false positives is dictated by the choice of λ. But since the real goal is to
recover true nonzero structure of the covariance matrix, it is not necessary to solve
problem (8) accurately. For the purpose of recovering a good TP/FP ratio one can
apply SINCO method, without the adjustments to λ.

We should note that computing the regularization path presented in our experi-
ments is typically more efficient in terms of CPU time than computing the tolerance
path; the largest computational cost lies in computing the tail of the path for smaller
tolerances. On the other hand, the tolerance path appears to be more precise and
exhaustive, in terms of possible FP/TP tradeoffs. It is also important to note that the
entire tolerance path is automatically produced as a sequence of iterates produced by
SINCO, while the regularization path can only be computed as a sequence of solutions
for a given set of values of λ.

The main conclusion we can draw here is that SINCO has the ability to select the
nonzeros in the inverse covariance matrix (or the links in the graph) according to their
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SINCO paths when varying tolerance and λ for a random network
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glasso path when varying λ for random networks
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Figure 2: Random networks: SINCO and glasso paths when varying tolerance and λ.

“importance”.

5 Empirical complexity

Here we will discuss the empirical dependence of the runtime of the SINCO algorithm
on the choice of stopping tolerance and the problem size p. We also investigate the
effect increasing n has on the results produced by SINCO and glasso. Both methods
were executed on Intel Core 2Duo T7700 processor (2.40GHz); note, however, that
glasso is based on well-tuned LARS software which is Fortran code, while SINCO
a straight-forward C++ implementation of the algorithm in Section 3 with Matlab
interface.

First, we apply our algorithm to the 21%-dense scale-free network that we used in
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Figure 3: SINCO’s CPU time per nonzero with increasing tolerance.

the previous section. When computing the tolerance path, we can measure the CPU
time for various tolerance levels. Note that the number of nonzeros in the solution
grows as the tolerance decreases. Hence, we compare the CPU time per nonzero in
the solution instead of the pure CPU time. In Figure 3 we show how the ratio of CPU
time and the number of nonzeros depends on the inverse of the tolerance. As we see,
the dependence is almost linear.

Now let us consider the situation when p increases. If together with p the number
of nonzeros in the true inverse covariance also increases, then to obtain a comparable
problem we need to increase n accordingly. Increasing n, in turn, affects the contribu-
tion of λ, since the problem scaling changes. Here we chose to consider the following
two simple settings, where we can account for these effects. In the first setting, we
increase p while keeping the number of the off-diagonal nonzero elements in the ran-
domly generated unstructured network constant (around 300). We do not, therefore,
increase n or λ. The CPU time necessary to compute the entire path for λ ranging
from 300 to 0.01 is plotted for p = 100, 200, 300, 500, 800 and 1000 in the second plot
of Figure 4.

In the second case, we generated block-diagonal matrices of sizes p = 100, 200,
300, 500, 800, 1000, with 100 × 100 diagonal blocks, each of which equals the inverse
covariance matrix of a 21%-dense structured (scale-free) network from the previous
section. Since the number of nonzero elements grows linearly with p, we increased n
and the appropriate range of λ linearly as well. The CPU time for this case is shown
in the last plot of Figure 4.

Figure 4 shows that the CPU time (in seconds) for SINCO scales up slower than
that of glasso, with increasing number of variables, p. The reason for the difference in
scaling rates is evident in the ROC curves in Figures 5 and 6, which demonstrate that,
for similarly high true-positive rate, glasso tends to have much higher false-positive
rate than SINCO, thus producing a less sparse solution, overall.

As we can see, the CPU time of SINCO grows moderately with increasing p. We
know that each iteration takes O(p2) operations. Overall, we observed that the number
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Figure 4: CPU time comparison: SINCO vs glasso on (a) random networks (N = 500,
fixed range of λ) and (b) scale-free networks (density 21%, N and λ scaled by the same
factor with p, N = 500 for p = 100).

of iterations depends roughly linearly on the number of nonzeros in the solution. The
coefficient of this linear dependence is determined by the tolerance level. Note that
with parallelization the per-iteration cost has a potential of being significantly reduced.

Finally, we investigate the behavior of SINCO for a fixed value of p as n grows. In
this setting, we expect to obtain larger TP values and smaller FP error with increasing
n. The consistency result in [16] suggests that for our formulation, to obtain an
accurate asymptotic structure recovery, we should pick λ that grows with n, but so
that its growth is slower than

√
n.

Here we use λ = log10(n). We again apply our algorithm and glasso to the 21%-
dense scale-free networks with p = 100. In Figures 7 and 8 we show the how the value
of TP and FP returned by the two algorithms changes with growing n (note that λ is
kept fixed for each value of n). We observe that SINCO achieves in the limit nearly 0%
false-positive error and nearly 100% true-positive rate, while glasso’s FP error grows
with increasing n. This result is, again, a consequence of the greedy approach utilized
by SINCO. The CPU time taken by glasso is, again, less than the SINCO’s CPU time,
but the latter is still reasonable and also reduces as n grows.

We note that selecting λ = log10(n) is not a crucial choice. Using constant value
of λ produces similar results, although the consistency result in [16] does not apply in
this case.

6 Results on fMRI data

Here we describe the results of applying SINCO to a real-life data, where the “ground
truth” network structure was not available; thus, we could not measure the structure
reconstruction accuracy, and instead evaluated the prediction accuracy of the resulting
Markov networks. We used fMRI data for mind-state prediction problem described
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Figure 5: ROC curves for SINCO vs glasso on (a) random networks (N = 500, fixed
range of λ) and (b) scale-free networks (density 21%, N and λ scaled by the same
factor with p, N = 500 for p = 100).

in [11]4. The data consists of a series of trials in which the subject is being shown
either a picture (+1) or a sentence (−1). Our dataset consists from 1700 to 2200
features, dependent on a particular subject, and 40 samples, where half of the samples
correspond to the picture stimulus (+1) and the remaining half correspond to sentence
stimulus (-1). (One sample corresponds to the averaged fMRI image over 6 scans
sequentially taken while a subject is presented with a particular stimulus).5. We used
leave-one-out cross-validation, and report average results over 40 cross-validation folds,
each corresponding to one sample left out for testing, and the remaining 39 used for
training.

For each class Y = {−1, 1}, we learn a sparse Markov Net model that provides us
with an estimate the Gaussian conditional density p(x|y), where x is the feature (voxel)
vector; on the test data, we choose the most-likely class label arg maxy p(x|y)P (y) for
each unlabeled test sample x.

Figures 9-11 show the results of comparing SINCO versus COVSEL for 3 subjects
in the above study. We compare with COVSEL in this section because it is the other
available Matlab implementation, and although COVSEL was shown to be slower than
glasso, the objective here was rather to compare the prediction accuracy of the two
approaches. We observe that SINCO produces much sparser solution that glasso, as
shown in the previous sections, and than COVSEL, as shown here. What we want to
demonstrate now is that the solutions obtained by SINCO are just as accurate as those
obtained by COVSEL (and hence glasso since they are different implementations of
the same approach). We consistently observe that (1) SINCO produces classifiers that
are equally (or more) accurate that those produced by COVSEL (Figures 9c-11c), but

4For more details, see the StarPlus website http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-81/www/.
5As suggested by the provided documentation in the StarPlus web-site we have used the following

regions of interest: ’CALC’, ’LIPL’, ’LT’, ’LTRIA’, ’LOPER’, ’LIPS’, ’LDLPFC’. The subjects that
are considered herein are those numbered 04847, 04820 and 05680.
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Figure 6: ROC curves for SINCO vs glasso on (a) random networks (N = 500, fixed
range of λ) and (b) scale-free networks (density 21%, N and λ scaled by the same
factor with p, N = 5500 for p = 1100).

much faster (Figures 9b-11b) and using much sparser Markov Net models (Figures
9a-11a), which suggests that COVSEL learns many links that are not essential for
discriminative ability of the classifier. It is interesting to note that both Markov Net
classifiers are competitive with, and often more accurate than the state-of-art SVM
classifier (Figures 9c-11c).

7 Other applications

Similarly to the row-by-row algorithm in [17], our algorithm can be used to solve
other semidefinite programming problems. However, to take advantage of the special
properties of SINCO algorithm, the positive semidefinite solution matrix must be
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Figure 7: SINCO and glasso accuracy with growing n on 20 random networks (p = 100,
density 3%).
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Figure 8: SINCO and glasso accuracy with growing n on 25 scale-free networks (p =
100, density 21%).
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Figure 9: SINCO vs. COVSEL on fMRI data.

sparse. In many specific examples of semidefinite programming problems this is often
the case for the dual formulation.

Consider for instance, the matrix completion SDP relaxation [4]. Given a sparse
n×m matrix M , the primal problems is

min tr(X)

s.t. X =
[

W1 M
T

M W2

]
º 0.

The dual problem is then

min
n,m∑

i=1,j=1

MijYij

s.t. S =
[

In×n Y
T

Y Im×m

]
º 0

Yij = 0, ifMij = 0. (11)

To be able to apply SINCO we include the positive semidefiniteness constraint into
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Figure 10: SINCO vs. COVSEL on fMRI data.
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Figure 11: SINCO vs. COVSEL on fMRI data.

the objective function via the ln det barrier term with a barrier parameter µ > 0.

min −µ ln detS +
n,m∑

i=1,j=1

MijYij

s.t. S =
[

In×n Y
T

Y Im×m

]

Yij = 0, ifMij = 0. (12)

The smaller the value of µ is, the closer the optimal solution gets to the optimum
of (11). We can see that if M is sparse then so is the dual solution S. Unlike the case
of the inverse covariance problem, the sparsity pattern of S is given here, hence it is
satisfied by all solutions for any µ. This puts additional constraints on the problem
and the progress of the coordinate descent algorithm in this case can slow down when
µ is small. The same issue arises when any other block-coordinate descent approach
is used for positive semidefinite problems; however, when the algorithm is applied to
the primal problem, the algorithm simply stalls for small values of µ and no further
improvement to the solution can be obtained. In that case the best obtained solution is
often acceptable. When applied to the dual problem, however, the algorithm does not
improve the dual solution, but the primal solution infeasibility can actually deteriorate

19



with µ → 0 if the dual optimality is not achieved. Hence, one may want to stop
the optimization before µ gets too small. In the matrix completion case this may
compromise obtaining the original goal of obtaining the low-rank primal solution.

Although from the theoretical perspective SINCO will converge to the optimal
solution of (12) for any µ > 0, by the convergence theorem for the row-by-row method
in [17], the time it takes to converge may be unacceptably large.

In the case of inverse covariance, the low-rank solution is not desirable and the
ln det term appears in the objective without a barrier parameter. The algorithm is
applied directly to the primal problem, hence, while the solution may fail to improve
in certain cases, it will not deteriorate.

We have applied SINCO to randomly generated matrix completion instances and
obtained primal solutions within 10.e−3 accuracy. However, it is unclear if the method
can be competitive for this case of semidefinite problems and other sparse dual SDPs.
This is the subject of future research.

References

[1] N. Bani Asadi, I. Rish, K. Scheinberg, D. Kanevsky, and B. Ramabhadran. A
MAP Approach to Learning Sparse Gaussian Markov Networks. In Proc. of
ICASSP 2009. April 2009.

[2] I. Johnstone B. Efron, T. Hastie and R. Tibshirani. Least angle regression. Annals
of Satistics, 32(2):407–499, 2004.

[3] A.-L. Barabasi and R. Albert. Emergence of scaling in random networks. Science,
286:509–512, 1999.

[4] E. J. Candes and B. Recht. Exact matrix completion via convex optimization.
Foundation of Comp. Math, (to appear), 2009.

[5] J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation
with the graphical lasso. Biostatistics, 2007.

[6] R. Saigal H. Wolkowicz and eds. L. Vanenberghe. Handbook of Semidefinite Pro-
gramming. Kluwer Academic Publoshers, 2000.

[7] D. Heckerman. A tutorial on learning Bayesian networks, Tech. Report MSR-TR-
95-06. Microsoft Research, 1995.

[8] S. Lauritzen. Graphical Models. Oxford University Press, 1996.

[9] N. Meinshausen and P. Buhlmann. High dimensional graphs and variable selection
with the Lasso. Annals of Statistics, 34(3):1436–1462, 2006.

[10] Nicolai Meinshausen and Peter Buehlmann. Stability selection, 2008.

[11] T.M. Mitchell, R. Hutchinson, R.S. Niculescu, F. Pereira, X. Wang, M. Just, and
S. Newman. Learning to decode cognitive states from brain images. Machine
Learning, 57:145–175, 2004.

20



[12] O.Banerjee, L. El Ghaoui, and A. d’Aspremont. Model selection through sparse
maximum likelihood estimation for multivariate gaussian or binary data. Journal
of Machine Learning Research, 9:485–516, March 2008.

[13] K. Scheinberg, N. Bani Asadi, and Irina Rish. Sparse MRF Learning with Priors
on Regularization Parameters. Technical Report RC24812, IBM T.J. Watson
Research Center, 2009.

[14] R. Tibshirani. Regression shrinkage and selection via the Lasso. Journal of the
Royal Statistical Society, Series B, 58(1):267–288, 1996.

[15] M. Wainwright, P. Ravikumar, and J. Lafferty. High-Dimensional Graphical
Model Selection Using `1-Regularized Logistic Regression. In NIPS 19, pages
1465–1472. 2007.

[16] M. Yuan and Y. Lin. Model Selection and Estimation in the Gaussian Graphical
Model. Biometrika, 94(1):19–35, 2007.

[17] S. Ma Z. Wen, D. Goldfarb and K. Scheinberg. Row by row methods for semidefi-
nite programming. Technical Report submitted, Department of IEOR, Columbia
University, 2009.

21


