
RC24838 (W0908-050) August 14, 2009
Computer Science

IBM Research Report

The Pattern Instance Notation: 
A Simple Hierarchical Visual Notation for the Dynamic
Visualization and Comprehension of Software Patterns 

Jason McC. Smith
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It  has been issued as a Research
Report for early dissemination of its contents.  In view of the transfer of copyright to the outside publisher, its distribution  outside of IBM prior to publication should be limited to peer communications and specific
requests.  After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties).  Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598  USA  (email:  reports@us.ibm.com).  Some reports are available on the internet at  http://domino.watson.ibm.com/library/CyberDig.nsf/home .



The Pattern Instance Notation: A Simple Hierarchical Visual
Notation for the Dynamic Visualization and Comprehension of

Software Patterns

Jason McC. Smith1

1 jasonmsm@us.ibm.com, IBM T. J. Watson Research, Hawthorne, NY

Abstract: Design patterns are a common tool for developers and architects to un-
derstand and reason about a software system. Visualization techniques for patterns
have tended to be either highly theoretical in nature, or based on a structural view of
a system’s implementation. The Pattern Instance Notation is a simple visualization
technique for design patterns and other abstractions of software engineering suitable
for the programmer or designer without a theoretical background. While based on
a formal representation of design patterns, using PIN as a tool for comprehension
or reasoning requires no formal training or study. PIN is hierarchical in nature, and
compactly encapsulates abstractions that may be spread widely across a system in a
concise graphical format, while allowing for repeated unveiling of deeper layers of
complexity and interaction on demand. It is designed to be used in either a dynamic
visualization tool, or as a static representation for documentation and as a teaching
aid.
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1 Introduction

Design patterns[GHJV95] are a common and useful mechanism for software developers and
designers to document, understand, and reason about the abstractions that are used to create
software systems. Notations for visualizing design patterns, however, have required either a very
strong background in design theory, or an adherence to the particular structure of an implemented
design. The former causes issues with developers who are not trained in the subtleties of abstrac-
tion research, while the latter causes issues when considering a design independent of a specific
implementation.

The Pattern Instance Notation is a formal visualization technique for representing design pat-
terns and other abstractions. PIN provides a simple box-and-line approach that is familiar to
most software engineers and designers, yet offers a unique hierarchical abstraction that mirrors
the concepts of patterns closely. PIN is suitable for use as a static diagramming notation, but
is also intended as a dynamic system for direct interaction by a user investigating a design. It
is not intended to be a full replacement for, or formal form of, design pattern definitions. The
goal is a pragmatic, simple notation that conveys the underlying connections and relationships in
an abstract view of software to assist developers and designers in comprehending and reasoning
about the abstractions expressed in their software.

I will discuss the limitations of current graphical systems for pattern description, and then
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briefly describe the underlying formalisms that inspired the PIN. Next, I will provide a definition
of the PIN in its three modes - collapsed, simple, and expanded, and show how each can be used
as an adjunct to a standard UML diagram, or as a standalone diagram. Finally, I will discuss
ways in which these modes can be utilized in an interactive system for program discovery and
understanding.

2 Background

The Pattern Instance Notation has its roots in the System for Pattern Query and Recognition
project[SS03, SS07]. SPQR is a comprehensive system of abstraction formalization, detection,
and reporting tools that detects instances of known design patterns and other abstractions directly
from source code in a language independent manner. PIN was created because the existing
graphical notations were often found to be too abstract or too complex to be readily useful for
the average practitioner, or too closely tied to the structure of code to properly represent the
abstractions that are inherent in patterns, independent of the source code implementation.

This latter point is important because a pattern can be instantiated in a multitude of ways in
implementation. SPQR was designed to find those instances that were expressed in a non-direct
manner, with relationships being created through transitive chains of interaction, instead of im-
mediate and direct expression. An example of this is a chain of method calls that ultimately leads
to a relationship between the first method, and the nth method in the chain. This relationship may
be precisely what fulfills a design pattern requirement, but it is not directly found in the source
code. In these cases, the pieces of a pattern are often scattered across the system in a way that has
little to no congruence with the physical or structural view. SPQR’s rho-calculus[Smi05] creates
an alternative to the rigid physical locality constraints found in most pattern description work,
and transforms the source code into a space defined by the conceptual relationships between the
fundamental entities of object-oriented programming.

It is these conceptual relationships, or reliances, that form the basis of a hierarchical pattern
language, the Elemental Design Patterns, or EDPs[SS02]. The EDPs are the core building blocks
of object-oriented software design, and through well-formed composition and combination, nat-
urally and quickly lead to the more familiar design patterns from the literature. Further, as shown
in [Smi05], all object-oriented systems can be broken down into a collection of interacting EDPs,
and design patterns are necessarily comprised of EDPs combined in familiar forms. PIN was cre-
ated to address these needs: simplicity, pragmatism, non-physical locality of pattern expression,
and explicit hierarchical information.

2.1 Previous Work

While several graphical notations for pattern description have been suggested, they can be orga-
nized roughly into two groups: structural, and abstract. Structural notations are those that mimic
the structures found in software as artifacts. This is a natural way of thinking about software,
and the ubiquity and success of the Unified Modeling Language[RJB04] acts as an example of
how this approach is useful in many instances. Not surprisingly, most suggested pattern nota-
tions are designed to be used as an extension of UML[DYZ07, BT06, Vli98]. These systems



tend to be fairly simple, and are generally easy for a developer to use, being based closely on
preconceptions of ‘how software exists’. For pragmatism, these notations do well, but they have
a fundamental mismatch with the role-based view of design patterns and abstraction in general.

The core issue with notations that follow the structural view of software is that they impose the
physical locality mentioned above on the view. The most straightforward example of this is the
pattern:role annotation originally developed to augment UML diagrams with basic design pattern
concepts[Vli98]. A class, method or field is tagged with a pattern name and a role, as shown in
Figure 1. The roles associated with a particular pattern may be scattered around a UML diagram,
making it difficult to see the conceptual interactions. The pieces of the pattern instance are spread
across the structural UML notation, and it is up to the viewer to create their own connections in
their head. This is an odd burden to place on the user of a visual notation, but is common to all
in this group, with the exception of UML Collaboration annotations[RJB04] which does place
the collaboration, or pattern instance, as a first-class entity. Collaboration annotations, however,
are limited in their abilities. They represent a named abstraction, and provide role names, but do
not scale well to finer or coarser granularities that are often useful, as we will see in Section 3.

Algorithm()
PhysicalObject

Algorithm()
AlgorithmA

Algorithm()
AlgorithmB

Algorithm()
AlgorithmC

Strategy:ConcreteStrategy Strategy:ConcreteStrategy Strategy:ConcreteStrategy

Strategy:Strategy

Figure 1: Pattern:role Annotation tags in UML

Despite this, these annotations are adequate for cases where a single instance of a particular
pattern exists in the diagram, such as when teaching students how a design pattern may map to
an implementation. This approach quickly breaks down, however, in real world systems, when
multiple instances of a pattern exist, as in even the simple diagram in Figure 2. While both the
UML Collaboration notation and the stereotypes described in [DYZ07] do allow for multiple
instances, the lack of flexibility in the former and the lack of treating patterns as first class visual
entities in the latter make them more difficult to use than necessary. This adds an additional goal
for PIN: dealing with multiple instances.

The other group of pattern visual descriptions can be described as abstract notations. These,
such as LePUS[Ede01], DPML[MHG02], and RBML[KFGS03], correctly identify the main
criteria of design patterns as non-structural abstractions, and are aimed appropriately at the the-
oretician or researcher. As tools for the average practitioner, however, these have had limited
adoption. A complete representation of a formalism for design patterns represents a significant
learning curve to a developer who is unused to thinking about software as abstract roles and frag-
ments. Rich metamodels that capture the detailed and nuanced inner workings of an abstraction
theory require understanding that theory before being truly useful. If this were a simple body of
work to understand, every developer would be a theoretician as well.
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Figure 2: Pattern:role Annotation tags in UML - multiple instances

PIN is designed to straddle these two realms, striking a balance between the simplicity of
a direct modeling notation, and the richness of a concept-based notation, while avoiding the
physical locality issues seen in most structural notations, and refraining from the complexity of
complete metamodels.

3 Pattern Instance Notation Definition

The goals for PIN as listed above are: pragmatic simplicity for the average developer, support for
multiple instances in a single diagram, and a concept-based approach with a clear hierarchical
expression. By starting with a basic box-and-line notation, we can add support for these goals
in stages, to define the full PIN. First, however, a brief conceptual formalization of PIN can
be provided. As in the rho-calculus which inspired this notation, patterns or other abstractions
are described as a series of conceptual roles. This can be expressed as a simple tuple of the
form Pattern(Role1,Role2,Role3...). Such a tuple is the product of reduction rules describing
the subpatterns and primary entities and relationships that form it. The recursive nature of the
definitions ultimately results in the relationships defined by the denotational semantics of rho-
calculus. As an example, the definition for the Decorator pattern is given in Equation 1. Instances
of the subpatterns, Object Recursion and Extend Method, are explicitly listed, and the occurrence
of the same name in multiple role slots, such as Decorator, means that whatever implementation
feature fulfills that role in one subpattern fulfills the other ones as well. For further details on the
rho-calculus and the full pattern definition catalog, see [Smi05]. PIN captures this hierarchy of
concepts cleanly and effectively when appropriate, and encapsulates the detail when necessary.

ObjectRecursion(Component,Decorator,ConcreteComponent,any)
ExtendMethod(Decorator,ConcreteDecorator,operation)

Decorator(Component,Decorator,ConcreteComponent,ConcreteDecorator,operation)
(1)



3.1 Collapsed

The most basic form of PIN fulfills the first two goals, pragmatic simplicity and multiple in-
stances, by using the most common diagramming elements: boxes and lines. PINboxes, as
shown in Figure 3 are simple rectangles, with rounded corners and an optional slightly shaded
or thick border. This is to distinguish them from the right-angle corner rectangles used in UML
when the two notations are blended, as described later in Subsection 4.2. Each PINbox repre-
sents a separate instance of a pattern, and is labeled internally with the name of the pattern or
abstraction. It is suggested that the name placement be centered along both axes.

Pattern

Figure 3: Collapsed PIN Instance

Unidirectional arrows are used to connect instances to entities in UML. An arrow indicates that
the instance at the tail end of the arrow uses, or relies on, the UML entity at the head end of the
arrow. There is no cardinality associated with the arrows, as each pattern instance is illustrated
separately. The relationship here has a different basis than the Uses relationship of UML, and
should not be confused with it. The more accurate term, adopted from the terminology of rho-
calculus, would be Relies On. Figure 4 shows an example of this connection, where the instance
of Pattern has a reliance on the class entity Class Name.

Pattern
Operation
Operation

Attribute
Attribute

Class Name

Figure 4: Collapsed PIN Connection

This seemingly informal connection still makes immediate sense in many cases. For instance,
a Singleton pattern has an obvious single class it is connected to; a Decorator pattern can usually
be hinted at by a single arrow to the operation in the base class being decorated; an Abstract
Factory may only need a single connection to the factory class, and so on. Each pattern or
abstraction represented by a PINbox will have one or two primary concepts that link to an im-
plementation diagram such as UML as an annotation. These concepts can be tagged in a formal
definition of the pattern if desired for tool manipulation. The intent is simply to give the reader
of the collapsed PINbox a hint or quick reminder of the concepts at work in the implementation
notation.
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This collapsed PIN format is suitable for quickly connecting a pattern instance graph, or as a
shorthand for demonstrating the abstractions in a UML diagram. It has no detail, however, and
is most commonly used for sketching out a rough design or as a lightweight mnemonic.

3.2 Standard

The standard PIN notation expands on the next of our intended goals: a concept-based approach.
Following on the role-based formalisms of rho-calculus, a pattern is defined as having certain
Roles that are fulfilled by the programmatic entities of a system. For instance, from a reading
of the common definition[GHJV95], a Decorator instance has Roles of Component, Concrete-
Component, Decorator, ConcreteDecorator, and operation. Each of these required class types
and methods is fulfilled by a specific entity in the implementation. We saw a simplified ver-
sion of this in the collapsed PIN form, where only the critical primary roles were connected to
their implementations. Now we build on that to show all the roles, and which classes, objects,
attributes or operations they are fulfilled by. It is somewhat analogous to the UML Collabora-
tion annotation[RJB04], but unlike the UML variant, can be used to show design interactions
independent of a UML, or implementation-oriented, representation.

PIN demonstrates this role-based view by providing ‘sockets’ around the edge of the instance
PINbox, which are then connected to their fulfilling entities in either other PIN instances, or
UML entities. Figure 5 shows this role ring. N roles are represented by N boxes around a
central name label. Because experience with SPQR has shown that the number of formal roles
in most patterns is less than 6, this is manageable, and demonstrates a clear concept of external
connection from the pattern instance. Roles may be arranged around the core in any order, as
necessary for clean graph connection. Text may be rotated parallel with the core edges as desired
for compactness. As with the collapsed form, shading is often used to visually clarify the role
ring, but is optional. Rigidity of form is not the goal here, but a clear expression that a pattern
instance, as named in the core, has a number of roles that must be fulfilled by external means.

Pattern A

Role 1

Role 2 Role 5
Role 

4
Role 

6

Pattern B

Role 2Role 
1

Role 
3

Figure 5: Standard PIN Roles

Solid lines between external roles of instances indicate that these roles are tied to the same
implementation entity, and have a shared purpose in the design. The shared implementation
entity isn’t necessarily shown in such cases, since it can be considered as a fulfillment regardless
of how or where it is implemented. This is used as in Figure 6 to show collaboration between
design instances and roles without exposing implementation details. Pattern A:Role 3 and Pattern
B: Role 1 are implemented by the same entity, even though the conceptual roles and the pattern
abstractions may be very different. In this diagram, the two pattern instances are interacting in a



specific well-formed manner. This is a way of focussing on a design’s conceptual relationships
without being distracted by the implementation.

Pattern A
Role 2Role 1

Role 3

Pattern B
Role 1 Role 2

Role 3

Figure 6: Standard PIN Role Connections

3.3 Expanded

With the PINbox supporting roles, we can meet our final goal: hierarchical expression of pat-
tern composition. Just as the role ring expressed the external needs of the pattern instance, the
expanded PINbox shows the internal conceptual relationships of the instance. As in Figure 7,
the basic instance box of the standard notation is physically expanded, by increasing the size of
the core box. This provides a canvas on which to draw the sub-patterns that compose the exter-
nal pattern, as further PINbox instances. Roles of the sub-patterns are connected to other roles,
both internally to other sub-patterns, and externally to the main role ring of the primary pattern,
using the solid lines described above. The role ring, particularly when shaded, visually conveys
its function as an encapsulation technique, translating the internal conceptual complexity to a
simple external interface.

The expansion ability of any non-Elemental pattern means that this process can continue ex-
posing deeper layers of the hierarchy. As new instances are revealed, they can be similarly
expanded, until only the Elemental Design Patterns are left, and the full conceptual hierarchy is
exposed. Since this is done on a per-instance basis, some portions of a diagram can be deeply
exposed, with other portions left in the standard encapsulated form. With multiple levels of ex-
pansion or contraction, a viewer can find the right balance of abstraction and detail for a specific
purpose. This is a highly useful device as a teaching tool, making the conceptual connections
tangible to the student. It is also, in a dynamic visualization environment, a powerful tool for the
developer or designer wishing to more fully understand a software system.

As a final note, it should be stated what PIN is not. PIN is not a metamodel. PIN does not
attempt to describe behavior. The design pattern explanations already in the literature fulfill this
need through prose and other notations. PIN is not a notation for executable models. There are
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Role 1 Role 2

Role 5

Role 3 Role 4

Pattern

SubPattern A
Role 2Role 1

Role 3

SubPattern B
Role 1 Role 2

Role 3

Figure 7: Expanded PIN Instance

existing notations in this space, and existing formalisms that are appropriate. PIN fulfills the
needs of the practitioner, not the theorist, while maintaining a strong theoretical foundation. PIN
is simple, concise, and flexible, and applicable to a number of use cases.

4 Example Uses

In this section I will discuss the prime uses of PIN, as both a standalone notation and as an
adjunct to other more familiar notations, such as UML.

4.1 Standalone

PIN is appropriate for displaying the conceptual design of a system, independent of implementa-
tion constructs such as classes, methods, or fields. It allows a more ‘pure’ view into the design of
a system, and lets the developer or designer consider only the abstractions of interest to them at a
particular point in time. Expanding instances allows a designer to see further detail of a system,
and consider implementation details that may be hidden at higher levels of encapsulation.

In teaching environments, a PIN diagram can show the collaboration and interaction between
known abstractions, providing a template for the student that is not tied to a specific implemen-
tation language or code structure. For instance, Figure 8, shows that the Decorator pattern from
Equation 1 has five roles that need to be fulfilled by an implementation, and is composed of two
subpatterns as described in SPQR. Further, this shows the student that these concepts connect in
a very specific way. Given a familiarity with Bobby Woolf’s Object Recursion[Woo98] pattern,
and the Extend Method EDP [SS02], discussing the Decorator as a recursive object structure that
extends a method in a subclass becomes natural, which is precisely what the diagram shows.



Concrete Decorator
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Concrete Component Decorator

Decorator

Object Recursion

RecurserTerminator

Handler

Extend Method

Original Behavior operation

Extended Behavior

Figure 8: PIN Diagram of Design Pattern Definition

4.2 UML Partnership

Used in conjunction with UML, PIN takes on a function as an explanatory tool. It allows design
to be treated orthogonally to implementation, and the same design in PIN can be mapped to a
number of implementations in various languages. The external roles of the instances are con-
nected to the UML diagram via the arrow notation introduced in Subsection 3.1. Figure 9 shows
a very simple example in PIN standard from, with a single instance of the Decorator pattern.
The Decorator instance can be collapsed and connected to one or more UML entities based on
what the user thinks is the proper level of clarity. In Figure 10, a single connection to the class
fulfilling the Decorator role of the Decorator pattern is enough to provide guidance to the viewer.
Most patterns have one or two roles that are considered primary, and a practitioner familiar with
the design patterns literature will frequently only need a shorthand pointer to the implementation
entities in a UML structure diagram to provide understanding.
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TintedDecorator

draw()

SimpleWindow

window

window.draw()

DecoratedWindow::draw();
drawScrollBar();

draw()
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Component ConcreteComponent

operation
Decorator Concrete
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Figure 9: PIN Instance used with UML
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Figure 10: Collapsed PIN Instance used with UML

Expansion can be done here as well, and an additional aspect of PIN can be used: peeling.
Peeling is related to expansion in that the outer layers of the expanded PINbox are removed.
This promotes the inner subpatterns to primary patterns, and the previous connections from the
UML entities to the outer role ring are instead extended through to the roles of the previous inner
subpatterns. A small tab is added to an edge of the subpatterns to indicate that they are part of
a larger pattern instance. This tab is not intended to specify which instance, but instead is just
a reminder of their original non-primary status. Figure 11 shows the above example, expanded
and peeled.
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Extend Method
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Figure 11: Peeled PIN instance used with UML

A more concise notation in Figure 12 demonstrates the expressive power of such a simple
notation. By collapsing the above two subpatterns and connecting them to the minimal entities
needed to point the developer in the right direction, they still provide the necessary information:
“The DecoratedWindow class in involved in an Object Recursion, and it is also the base class for
an Extend Method on method draw(), which is extended in the ScrollBarDecorator class.” That
is perhaps the most concise description of the essence of a Decorator pattern.
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Figure 12: Peeled and Collapsed PIN instance used with UML

4.3 Dynamic Notation

PIN is useful when used as a static notation, but the flexible expansion and peeling become
much more so when implemented in a dynamic environment, such as a GUI based tool. Not
only can the expansion and peeling be done on demand, but instances from previously peeled
patterns can now be dynamically reconstituted into their original form. The tab annotation to
indicate membership in a larger abstraction is an obvious user action trigger for this. When used
in this manner, the diagram can be adjusted on the fly to best match the developer’s needs. This
interactivity supports a natural process of discovery of the concepts in a system, and lets the
developer or designer act on the design and the implementation quite separately, and reveal or
encapsulate the design at the appropriate level of granularity. At that point a static representation
can be saved for later use.

5 Conclusion

The Pattern Instance Notation was created to support software developers and designers in docu-
menting and understanding software systems in a concise and simple format that uses a concept-
based approach to provide a cleaner view of design patterns. While firmly rooted in a formal
abstraction semantics of software design, it reduces the complexities of a theoretical metamodel
down to a system that is natural and intuitive. A flexible notation centered around a single visual
entity, the PINbox, provides multiple levels of detail within a single notation, and is suitable for
static and interactive visualizations, either on its own, or as an adjunct to more traditional UML
or other structurally-based notations. Using PIN to visualize software design results in a flexible
system that mirrors the needs of developers and designers in industry, as well as the casual needs
of the theoretician or patterns researcher.

Acknowledgements: Many thanks to my reviewers and colleagues for highly useful feedback.
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