
RC24847 (W0908-100) August 19, 2009
Computer Science

IBM Research Report

Problem Classification Method to Enhance the ITIL
Incident, Problem and Change Management Process

Yang Song
Department of Computer Science and Engineering

The Pennsylvania State University
University Park, PA 16802

Anca Sailer, Hidayatullah Shaikh
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Problem Classification Method to enhance the ITIL
Incident, Problem and Change Management Process

1Yang Song,
∗

2Anca Sailer, 2Hidayatullah Shaikh,

1Department of Computer Science and Engineering,
The Pennsylvania State University,

University Park, PA 16802, USA

2IBM TJ Watson Research Center,
Hawthorne Research Lab,

19 Skyline Drive,
Hawthorne, NY 10532, USA

ABSTRACT
Problem determination and resolution PDR is the process
of detecting anomalies in a monitored system, locating the
problems responsible for the issue, determining the root
cause and fixing the cause of the problem. The cost of PDR
represents a substantial part of operational costs, and faster,
more effective PDR can contribute to a substantial reduction
in system administration costs. In this paper, we propose to
automate the process of PDR by leveraging machine learn-
ing methods. The main focus is to effectively categorize
the problem a user experiences by recognizing the problem
specificity leveraging all available training data such like the
performance data and the logs data. Specifically, we trans-
form the structure of the problem into a hierarchy which
can be determined by existing taxonomy in advance. We
then propose an efficient hierarchical incremental learning
algorithm which is capable of adjusting its internal local
classifier parameters in real-time. Comparing to the tradi-
tional batch learning algorithms, this online learning frame-
work can significantly decrease the computational complex-
ity of the training process by learning from new instances on
an incremental fashion. In the same time this reduces the
amount of memory required to store the training instances.
We demonstrate the efficiency of our approach by learning
hierarchical problem patterns for several issues occurred in
distributed web applications. Experimental shows that our
approach substantially outperforms previous methods.

Categories and Subject Descriptors
H.4.m [Information Systems]: Miscellaneous; D.2 [Software]:
Software Engineering; D.2.8 [Software Engineering]: Met-
rics—complexity measures, performance measures

General Terms
Delphi theory

Keywords
ACM proceedings, LATEX, text tagging

∗This work was done when Yang was an intern at IBM Re-
search.

Copyright is held by the author/owner(s).
WWW2008, April 21–25, 2008, Beijing, China.
.

1. INTRODUCTION
The cost of problem determination and resolution (PDR)

usually represents more than half of the operational costs
in IT services. Specifically, PDR is the process of detect-
ing anomalies in a monitored system, locating the problems
responsible for the issue, determining the root cause and fix-
ing the cause of the problem. Traditionally, once the user
(customer or technical personnel) detects a problem, he first
tries to identify the type of problem in order to search for
the relevant fix. However, in case of software problems in
multi-tier IT environment with complex distributed system
dependencies, the same front-end issue that the user ex-
perienced may be caused by different back-end system or
application problems. Thus, the problem may be only the
effect of an underlying issue within the IT environment and
the fixes found are not addressing the root cause. An ex-
ample of such a multi-tier environment is an e-business sys-
tem which is supported by an infrastructure consisting of
the following subsystems connected by local and wide area
networks: web based presentation services, access services,
application business logic, messaging services, database ser-
vices and storage subsystems.

Therefore, faster, more effective PDR can contribute to a
substantial reduction in system administration costs. Most
existing works that address the issue of PDR either require
human involvement [11], or monitor the system performance
and set threshold for warning [4]. The main limitation of this
prior art are that most are problem specific and as such lack
the potential of being applied to wider type of issues: e.g., [6]
addresseds network problems, [5] addressed hardware prob-
lems, [14] addressed database problems and so on.Because
of the specificity, the methodologies above use only one type
of the available information, ignoring information that may
be relevant to the problem at hand, e.g., [5] only considered
log files and [8] only focused on system performance metrics.

More recently, machine learning techniques have been in-
troduced to problem determination. Among all, [7] analyzed
fault logs and trace logs using statistical methods to deter-
mine the root causes. However, this approach did not take
into consideration the taxonomy of the problem causes and
used a flat structure for detection, which is not scalable to
real-world large systems. In [15], the authors proposed a
decision tree to find the root causes in distributed systems
which leveraged the hierarchical structure of the problem
taxonomy. Nevertheless, decision tree is known to give pref-
erence to features (or attributes) with a large number of po-

1

2 3

4

5 6

7 8 9 10
JDBC

MySQL

General
EJB

RuntimeHTTP

WebSphere

Cache Session CPU

Figure 1: An example of problem taxonomy rep-
resented using two-tree forest with M = 10 nodes.
Each node is associated with a class label. Gray
nodes indicate a problem trace of an error which is
formed using a multilabel assignment in our learning
algorithm.

tential values [13], which may cause bias during the learning
process and reduce the classification performance.

1.1 Our Contribution
In this paper, we propose a framework to address PDR

by classifying the problems into a predefined hierarchical
structure of taxonomies, using an incremental online learn-
ing algorithm that learns the pattern of errors from a set
of manually-labeled training data. Specifically, we make the
following contributions:

• By transforming the structure of a flat problem space
into a hierarchy (see Figure 1) which is predefined ac-
cording to an existing taxonomy, we reduce the com-
plexity of the pattern search for problem determina-
tion, using a more efficient tree structure.

• We propose an incremental learning algorithm which
is capable of adjusting its internal local classifier pa-
rameters whenever a new training instance is avail-
able. Comparing to the traditional batch learning al-
gorithms, this on-line learning framework can signif-
icantly decrease the computational complexity of the
training process by learning from new instances on an
incremental fashion. In the same time this reduces
the amount of memory required to store the training
instances.

• For efficiency, we train a linear classifier at each node in
the hierarchy. Since linear classifiers usually have sim-
pler decision boundaries, which exhibit better general-
ization toward large data sets. Meanwhile, linear clas-
sifiers require less internal parameters to learn, which
potentially avoids the problem of over-fitting caused
by large number of model parameters, and also makes
it scalable to large-scale enterprize-level systems.

• Instead of simply using error logs or system perfor-
mance data as training data, we combine these two
types of data to be a more powerful feature set for
error classification. The log data contains word fea-
tures while the performance data are numerical values.
These two types of data are basically uncorrelated. In
machine learning, it has been shown that combining
features that are less correlated will generally exhibit
better predictive performance for the model [10], which
becomes the motivation of this combination.

2. OUR APPROACH
The hierarchical approach that we consider is suitable for

problem determination since it allows the problem catego-
rization in an automatic fashion. Each problem will be la-
beled with a set of labels that covers the name of the appli-
cation/product as well as the specific cause of the problem.
This set of inter-related labels can be well-represented using
a hierarchical forest structure as shown in Figure 1, where
each tree in the forest specifies possible causes of a specific
application/product. The name of the application/product
is assigned to the root of the tree whose level-structure is de-
cided by the complexity of the application/product. Regard-
less of the tree structure of an application/product, however,
the path of the labels always starts at a root node and ends
at a leaf node. For each individual problem there is one and
only one such path in the entire forest. Note that whenever
a certain node is included in the label set, all the nodes on
the path to the root node must also be included.

When a problem occurs, either the system/application
will generate some error logs, or the administrator will no-
tice some change of the monitoring data. To automate the
process of problem determination, a set of training data is
needed for the classifiers to learn the patterns of the prob-
lem taxonomy. This process requires a manual labeling of
each problem instance that is used for training purpose. In
our problem setting, each problem instance contains a set
of labels which is referred to as multilabel. E.g., {MySQL,
General}, {WebSphere, Runtime, CPU}. The presence of
a multilabel indicates whether a problem instance has been
labeled by all nodes relevant to the problem. A simple repre-
sentation of multilabel is the binary coding schema, where 1
indicates the presence of the problem instance at a node, and
0 indicates the absence of the problem instance at a node.
In the example shown in Figure 1 where a total of M = 10
labels exist, the problem instance (in grey nodes) has two
labels: label 1 and 3. Thus, the associated multilabel can
be represented as {1, 0, 1, 0, 0, 0, 0, 0, 0, 0}.

For training classifiers, each problem instance is trans-
formed into a feature vectors x, where the features in the
vector correspond to the words that appear in the error logs,
the numerical thresholds monitored by the administrator
and so on. Given a set of problem instances xi with their
associated labels yi, we train M classifiers for the taxon-
omy, where each node in the taxonomy has a local classifier.
The process is shown in Algorithm 1, where each xi is a
d-dimensional feature vector and yi an M dimensional mul-
tilabel vector. Each problem instance xi is passed to all M

nodes for classification. If the predicted label is different
from the actual label at a specific node m, the associated
decision functions are then updated given the feature vector
xi.

We use linear classifier at each node for pattern classi-
fication. Usually, a linear classifier can be represented as
f(x) = wT x + w0, where w is called weight vector that has
the same dimensionality as the feature vector x. w0 indi-
cates the bias or offset of the classifier. w and w0 are the
internal parameters of the classifier which are learnt during
the training phase. For binary classification where each la-
bel ym is either 0 (negative) or 1 (positive), an input vector
xi is classified to the positive class if f(x) ≥ 0 and to the
negative class otherwise.

There are many choices of linear classifiers, including dis-
criminant classifiers like Fisher’s linear discriminant, and

Algorithm 1 Hierarchical Classification: Training
Stage

1: Input training data {xi, yi}
N
1 , xi ∈ R

d d-dimensional feature

vector, yi = {y1, ..., yM} ∈ {0, 1}M multilabel, where
N : number of instances, M : number of labels (nodes)

2: Initialize local classifiers for all M nodes {f1(x), ..., fM (x)}
3: for each training data xi (i = 1...N)
4: for each label m (m = 1...M)
5: classify xi using fm(xi)
6: if xi is misclassified then update fm(xi)
7: end for

8: end for

9: Output M classifiers {f1(x), ..., fM (x)}

generative classifiers like naive Bayes. We use the Percep-
tron algorithm [12] for our online learning purpose because
the algorithm can incremental updates the parameters w

and w0 whenever a new training instance becomes avail-
able. Specifically, the Perceptron updates at each node m

the parameters w and w0 when the instance xi is misclassi-
fied. In the case that the true label of xi is positive (1) but
predicted to be negative (0), the parameters are updated by
adding xi : w = w +xi; if the true label of xi is negative (0)
but predicted to be positive (1), the parameters are updated
by subtracting xi : w = w − xi.

In Algorithm 2, we use a variant of the general Perceptron
which is able to update the parameters more efficiently [12].
In this algorithm, the weight vectors for each node are ini-
tialized to be zero or small random variables. We combine
the parameters w and w0 into one vector w̃, and augment
each feature vector xi by adding 1 to its first column to be x̃,
so that the update of the decision function can be simplified
to f(x) = w̃T x̃.

Each time an instance is misclassified at a node m, the
associated weights are updated by adding x̃i with a constant
factor (line 7). The algorithm stops when all instances have
been classified. We define δ = −w̃T x̃ and use it as the
learning rate for each Perceptron update. ǫ is a very small
positive number. In this way we accelerate the update of
Perceptron by guarantying to reduce the error rate after each
step. When all instances have been classified, the algorithm
stops and outputs the learnt weight vectors.

After training, each node needs to store only the weight
vectors w̃m in the memory. The trained classifiers can be use
for real-time problem determination when a new problem is
reported. Specifically, when a new problem x∗ occurs, the
multilabel y∗ is computed using the same top-down process
as used for training, except for the condition that a node
m is visited only if its parent node parent(m) classifies the
instance x∗ to be positive. The detailed algorithm is listed
in Algorithm 3. The label decision rule is shown below:

ym =

8

<

:

1, if wmx∗ ≥ 0 and m is a root node,

1, if wmx∗ ≥ 0 and yparent(m) = 1,

0, otherwise.

Given a set of N training instances and M predefined
labels, the online learning algorithm iterates N ∗M steps to
update the parameters for learning. During each update, the
prediction is calculated by multiplying two d-dimensional
vectors into a scalar. Thus, the computational complexity
of our algorithm is bounded by O(MNd).

3. EXPERIMENTS

Algorithm 2 Perceptron

1: Initialize the parameters for each fm(x)
wm = {0, ...,0}d, wm

0 = −1, augment w̃m = {wm
0 , wm}

2: for each training data xi (i = 1...N)
3: augment x̃i = {1, xi}
4: for each label m (m = 1...M)
5: classify x̃i using fm(x̃i) = w̃mx̃i

6: if xi is misclassified
7: w̃m = w̃m + δ+ǫ

||x̃i||
2
x̃i, where

8: δ = −w̃mx̃i and ǫ is a small positive number
9: end if

10: end for
11: end for

Algorithm 3 Hierarchical Classification: Test Stage

1: Input M classifiers {f1(x), ..., fM (x)}, a test instance x∗
2: for each classifier fm(x) (m = 1...M)
3: if fm(x) classifies x∗ to be negative (0)
4: assign ym = 0
5: else if fm(x) classifies x∗ to be positive (1)
6: if yparent(m) = 1 then assign ym = 1
7: else assign ym = 0
8: end for
9: Output predicted class label y∗ for x∗

In this section we present some empirical analysis of our
approach. We used a similar experimental setting as pre-
sented in [4]. Specifically, we used Trade 6 [1] as a test-bed
for web applications. For simulating user operations, we
used IBM Websphere Workload Simulator [2] to perform
multi-user activities on Trade 6. Four types of errors were
injected in order to generate errors so that we can collect
the training data, i.e., database shutdown, network failure,
Websphere port change and exceed user connection limit.

Both log data and system performance data were col-
lected. The Websphere error log data were collected as
textual information for the errors, while the metrics from
Snappimon [3] were collected as numerical data for the sys-
tem performance (e.g., CPU usage). Overall, we collected a
total of 1,700 error samples, which consists approximately
2,800 word features and 80 numerical features.

For performance evaluation, we measure both effective-

ness and efficiency of our algorithms. The effectiveness is
calculated by using the precision score, i.e., the percentage
of correctly classified data in the entire test data set. To
evaluate the efficiency, we consider the computational com-
plexity for training the classifiers.

Figure 2 presents the precision on the test data set. We
split the data into training set and test set with different
proportions. It can be observed that with the combination
of both log data and numerical data, our algorithm performs
best in all three cases where the training data contains 10%,
50% and 90% of the entire data. It is evident that with
90% of the training data, the performance of the algorithm
is generally much better than those with few training data.
With the combination of log and numerical, our algorithm
achieves a 96.35% of precision with 90% of the training data.

To justify our hierarchical classification method, we made
a comparison to an approach that uses a flat structure to
classify errors. Specifically, the algorithm performs a bi-
nary classification for each class and chooses the one with
the highest confidence (i.e., highest predictive score) as the
class label. Figure 3 shows the results for the two algo-

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

10% 50% 90%

% of training data

A
cc

ur
ac

y

log+numerical
log only
numerical only

Figure 2: Precision on the test data set. The combi-
nation of log and numerical data performs the best.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

10% 50% 90%
% of training data

Ac
cu

ra
cy

Hierarchical Perceptron

Flat Perceptron

Figure 3: Comparison of the test performance be-
tween hierarchical classification vs. flat classifica-
tion. Our Hierarchical approach shows better re-
sults in all three cases.

rithms. Our hierarchical structure clearly outperforms the
flat stricture in all cases. As explained in the algorithm de-
tails, the hierarchical structure reduces the candidate classes
for a test sample by approximately half after each step of
classification, which potentially reduces the probability of
making errors as well.

Finally, we compare the efficiency of our online Percep-
tron with a batch learning algorithm. We choose a popular
discriminant batch learning support vector machine (SVM)
[9] for comparison. From Figure 4, it can be seen that the
online Perceptron has a constant learning time with the in-
crease data. While for the batch learning algorithm, the
computational cost of training a classifier is linear to the
number of training instances, which cannot be scalable for
large enterprize-level applications.

4. CONCLUSION AND FUTURE WORK
We presented a hierarchical online classification frame-

work for automatically determine the root causes of prob-
lems in IT services. Our approach shown high quality of
classification as well as fast training time for the classi-
fiers. We believe that this approach is suitable for large-
scale enterprize-level systems. Future work involves finding
more numerical and log features to improve the precision,
and better classifiers for online learning.

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0

5

10

15

20

25

30

35

40

T
ra

in
in

g
tim

e
(s

)

% of training data

Online Perceptron
Batch Support Vector Machine

Figure 4: Computational complexity of two learning
algorithm. Our online learning algorithm (shown
in blue) exhibits a constant learning time with the
increase of the training data, while traditional batch
learning algorithm requires linear learning time.

5. REFERENCES
[1] IBM trade performance benchmark sample, http://www-

306.ibm.com/software/webservers/appserv/was/performance.html.
[2] IBM websphere studio workload simulator, http://www-

306.ibm.com/software/awdtools/studioworkloadsimulator/.
[3] Snappimon monitoring suite, http://www.snappimon.com/.
[4] M. K. Agarwal, N. Sachindran, M. Gupta, and V. Mann.

Fast extraction of adaptive change point based patterns for
problem resolution in enterprise systems. In DSOM, 2006.

[5] D. M. Benignus, M. S. Edwards, and A. J. Tysor. Method
and system for performing problem determination
procedures in hierarchically organized computer systems.
U.S. patent application Publication No.US6532552, 2003.

[6] D. D.-H. Chen, W. F. M. Jr., E. DePaolis, and
L. Temoshenko. System and method for collecting and
retrieving network problem determination data with a
generic collection subsystem reporting to an agent on
demand. U.S. patent application Publication
No.US5682523, 1997.

[7] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and
E. Brewer. Pinpoint: problem determination in large,
dynamic internet services. In Dependable Systems and
Networks, 2002. DSN 2002. Proceedings. International
Conference on, pages 595–604, 2002.

[8] I. Cohen and M. Goldszmidt. Determining and annotating
a signature of a computer resource. U.S. patent application
Publication No.US7184935, 2007.

[9] C. Cortes and V. Vapnik. Support-vector networks.
Machine Learning, 20(3):273–297, 1995.

[10] I. Guyon and A. Elisseeff. An introduction to variable and
feature selection. J. Mach. Learn. Res., 3:1157–1182, 2003.

[11] W. D. Pauw and C. E. Williams. Methods for adaptive
problem determination in distributed service-based
applications. U.S. patent application Publication
No.US7360120, 2008.

[12] R. Rojas. Neural networks: a systematic introduction.
Springer-Verlag New York, Inc., New York, NY, USA, 1996.

[13] A. M. Tsvetkov. Development of inductive inference
algorithms using decision trees. Cybernetics and Systems
Analysis, 29:141–145, 1993.

[14] V. R. R. Tummalapalli. Multidimensional repositories for
problem discovery and capacity planning of database
applications. U.S. patent application Publication
No.US6804714, 2004.

[15] A. X. Zheng, J. Lloyd, and E. Brewer. Failure diagnosis
using decision trees. In ICAC ’04: Proceedings of the First
International Conference on Autonomic Computing, 2004.

