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Optimal Long Code Test with One Free Bit

Nikhil Bansal Subhash Khot

March 31, 2009

Abstract

For arbitrarily small constants ε, δ > 0, we present a long code test with one free bit, completeness
1 − ε and soundness δ. Using the test, we prove the following two inapproximability results:

1. Assuming the Unique Games Conjecture of Khot [17], given an n-vertex graph that has two dis-
joint independent sets of size (1

2 − ε)n each, it is NP-hard to find an independent set of size δn.

2. Assuming a (new) stronger version of the Unique Games Conjecture, the scheduling problem of
minimizing weighted completion time with precedence constraints is inapproximable within factor
2 − ε.

1 Introduction

The celebrated PCP Theorem [12, 4, 3] states that every NP-statement has a probabilistically checkable
proof where the verifier runs in polynomial time, reads only a constant number of bits from the proof and
uses only a logarithmic amount of randomness. The verifier has the completeness property that every correct
statement has a proof that is accepted with probability 1 and the soundness property that every proof of an
incorrect statement is accepted with only a small probability, say 0.1. In general, one may have parameters
1 ≥ c > s > 0 that specify the probabilities in the completeness and soundness case respectively.

The PCP Theorem is intimately related to inapproximability results for NP-complete problems, i.e.
results showing that for many NP-complete problems, even computing approximate solutions remains NP-
hard. This connection has been used to design customized PCPs and prove strong (and in many cases
optimal) inapproximability results for several NP-complete problems. One of the most notable results is by
Håstad [16] showing that given a satisfiable 3SAT formula, each clause containing three distinct literals, it
is NP-hard to find an assignment that satisfies a fraction c of its clauses for any constant c > 7

8 . Since a
random assignment satisfies 7

8 fraction, 7
8 is a sharp approximability threshold for 3SAT. However, for many

fundamental problems, their approximability threshold remains unknown. In this paper, we address two
such problems, namely Vertex Cover and a scheduling problem denoted by 1|prec|∑wjCj , i.e. minimizing
weighted completion time on a single machine with precedence constraints.

1.1 Vertex Cover

Given a graph G(V, E), a vertex cover is a subset of vertices V ′ ⊆ V such that every edge has at least
one endpoint in V ′. The complement V \ V ′ of a vertex cover is an independent set. It is well-known
that the minimum vertex cover can be approximated in polynomial time within factor 2. The best known
inapproximability result is 1.36 NP-hardness due to Dinur and Safra [10]. Assuming the Unique Games
conjecture, Khot and Regev [19] showed that it is NP-hard to approximate Vertex Cover within any factor
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better than 2. As observed by Bellare, Goldreich, and Sudan [6], inapproximability of the independent set
problem (hence of vertex cover) is equivalent to constructing a PCP with zero free bits.

A PCP verifier is said to make f free queries if there are at most 2f settings of query bits for which the
verifier accepts. Note that there is no restriction on the number of queries itself. For example, suppose that
the verifier reads three bits x, y, and z, accepting if and only if x⊕y⊕z = 0. Then the number of free queries
is two, since there are 22 = 4 accepting answers, namely (0, 0, 0), (0, 1, 1), (1, 0, 1), and (1, 1, 0). Let us
denote by fPCPc,s[r(n), f(n)] the class of languages that have a proof that can be probabilistically checked
by a polynomial time verifier that uses at most r(n) random bits, f(n) free queries, and has completeness c
and soundness s. Bellare et al [6] showed that:

Theorem 1.1 ([6]) The following are equivalent:

1. NP ⊆ fPCPc,s[O(log n), zero].

2. There is a polynomial time reduction mapping a SAT formula φ to an n-vertex graph G such that
if φ is satisfiable then G has an independent set of size cn and if φ is unsatisfiable, then G has no
independent set of size sn.

Note that in a PCP with zero free bits, there is only one accepting answer, and therefore the verifier already
knows what answer to expect from the proof. Nevertheless, such PCPs are powerful enough to capture NP
by the virtue of imperfect completeness. Note also that a reduction as in this theorem would imply that it is
NP-hard to approximate Vertex Cover better than factor 1−s

1−c . Using this equivalence between PCPs and the
independence problem, Khot and Regev’s 2 − ε inapproximability result for vertex cover can be stated as:

Theorem 1.2 ([19]) Assuming the Unique Games Conjecture, for arbitrarily small constants ε, δ > 0,

NP ⊆ fPCP 1
2
−ε,δ[O(log n), zero].

In this paper, we prove a stronger result:

Theorem 1.3 Assuming the Unique Games Conjecture, for arbitrarily small constants ε, δ > 0,

NP ⊆ fPCP1−ε,δ[O(log n), one].

In words, assuming the UGC, we construct a PCP with one free bit (i.e. two accepting answers) that
has near-perfect completeness and arbitrarily low soundness. Since a verifier may further decide, at random,
to pick one of the two answers as an accepting answer, our construction implies a PCP with zero free bits
(i.e. one accepting answer), completeness 1

2 − ε, and arbitrarily low soundness. Thus Theorem 1.3 implies
Theorem 1.2. If one phrases these theorems in terms of independent set problem, we prove (assuming UGC)
that given an n-vertex graph that has two disjoint independent sets of size (1

2 − ε)n each (i.e. the graph is
almost 2-colorable), it is NP-hard to find an independent set of size δn. On the other hand, Khot and Regev
prove that (assuming UGC) given an n-vertex graph that has an independent set of size (1

2 − ε)n each, it is
NP-hard to find an independent set of size δn.

In addition to being stronger, our result has the following interesting features: (1) Both Khot-Regev [19]
and its precursor Dinur-Safra [10] results, are more naturally viewed as combinatorial reductions whereas
our result is more naturally viewed as a PCP construction1. (2) Unlike [19, 10], we do not need to use biased
long codes (see below). (3) In [19], one first needs to transform a given Unique Games instance into another
instance with some special properties; we do not need this transformation.

1Note however that the combinatorial and PCP views are equivalent by Theorem 1.1.
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1.2 The Long Code Test

Most recent PCPs have, as a central building block, a probabilistic procedure to check a long code. A
boolean function f : {0, 1}n �→ {0, 1} is called a dictatorship if it depends on only co-ordinate, i.e. for
some 1 ≤ i ≤ n, f(x1, . . . , xn) = xi. A long code of an index i ∈ {1, . . . , n} is simply the truth-table
of the dictatorship function of co-ordinate i. Thus we desire a probabilistic procedure that has access to
the truth-table of a function f , accepts with probability at least c if f is a dictatorship, and accepts with
probability at most s if f is far from a dictatorship. To formalize what we mean by far from a dictatorship,
let influence of the co-ordinate j be defined as Prx[f(x) 	= f(x ⊕ ej)] where ej is the input with the jth

co-ordinate equal to 1 and the rest of the co-ordinates 0. Note that if f is a dictatorship of co-ordinate i, then
the influence of that co-ordinate equals 1 and all other influences are zero. Thus it makes sense, and turns
out useful, to call a function as far from a dictatorship if all its influences are small2.

Naturally, the properties that we desire of the PCP construction, namely the number of free queries,
completeness probability c and the soundness probability s, are inherited from the respective properties of
the long code test. We propose the following new test that is at the heart of our PCP constructions:

Theorem 1.4 Given a function f : {0, 1}n �→ {0, 1} that is balanced, i.e. (say) 1
3 ≤ E[f ] ≤ 2

3 , and
constants ε, δ > 0, there is a constant η = η(ε, δ) > 0 and a probabilistic test such that:

1. The test makes one free query.

2. (Completeness) If f is a dictatorship, the test accepts with probability at least 1 − ε.

3. (Soundness) If all influences of f are smaller than η, then the test accepts with probability at most δ.

It is quite easy to describe our test. It picks a random subset S ⊆ {1, . . . , n} of co-ordinates of size
|S| = εn and a random input x ∈ {0, 1}n. Let Cx,S denote the sub-cube of the hypercube defined as
Cx,S := {z ∈ {0, 1}n | ∀j 	∈ S, zj = xj}. Note that the sub-cube contains 2|S| = 2εn points. The test
accepts if and only if the function f is constant on the sub-cube Cx,S . Since there are only two accepting
answers, namely the constant 0 or constant 1 on the sub-cube, the test makes only one free query (the number
of queries however is huge, namely 2|S|). If f is the dictatorship of co-ordinate i, then with probability 1−ε,
i 	∈ S, and in that case f is constant on the sub-cube Cx,S . Thus a dictatorship is accepted with probability
at least 1 − ε. Finally, we give a fairly short proof (see Section 3.1) of the soundness property, though it
also follows directly from the It Ain’t Over till It’s Over Theorem, first conjectured by Friedgut and Kalai,
and proved by Mossel, O’Donnell, and Oleszkiewicz [24]. In fact, Mossel et al’s theorem is stronger in
the following respect: they show that for a (balanced) function with all small influences, w.h.p. a random
sub-cube of dimension εn has a non-negligible fraction of both 0s and 1s. On the other hand, we only show
that w.h.p., a random sub-cube of dimension εn is non-constant (and this is all we need for our purpose).
Nevertheless, our proof is quite different, without relying on the use of invariance principle. We believe that
our test and the soundness analysis could be useful towards proving inapproximability of graph coloring
problems.

We also use our long code test to prove a new inapproximability result for a scheduling problem that we
describe next. In fact, the scheduling problem was our original motivation that led us to the new long code
test and the application to the vertex cover problem.

2We actually need a more refined notion in terms of low degree influences.
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1.3 Weighted Completion Time with Precedence Constraints

We consider the following scheduling problem known as minimum total weighted completion time with
precedence constraints, denoted by 1|prec|∑wjCj in the standard scheduling notation. There is a set
J = {1, . . . , n} of jobs. Job i has size pi and weight wi. In addition there is a collection of precedence
constraints specified by a directed acyclic graph (i.e. a partial order) G = (J, P ) where (i, j) ∈ P implies
that job i must be completed before job j is started. The goal is to find an ordering of jobs that minimizes
the total weighted completion time

∑
j wjCj , where the completion time Cj of job j is the time at which it

is completed in the schedule.
This is a classic scheduling problem and has been extensively studied since the 70s [29, 26, 21, 11].

Since then, many approximation algorithms that achieve a guarantee of 2 have been designed for it using
several different techniques and various different linear programming relaxations [27, 15, 7, 14, 23, 25, 1].
However, despite much interest, there has been a relatively large gap in our understanding of the approx-
imability of this problem. On one hand no approximation better than 2 is known, and yet until recently
only NP-Hardness was known for it [21, 22]. The first inapproximability result of any kind was shown
only recently by Ambuhl, Mastrolli and Svensson [2] who ruled out the possibility of a polynomial time
approximation scheme. Specifically, they use the Quasi-random PCP due to Khot [18], which is based on
the randomized subexponential time hypothesis, to show their result. Narrowing the approximability gap
for 1|prec|∑wjCj is considered one of the most important open problems in scheduling, see for example
[28].

Understanding the approximability of 1|prec|∑wjCj is also interesting because of its relation to Vertex
Cover. While a connection to vertex cover was long suspected (see for example [28]), it has been established
relatively recently in a series of papers [8, 9, 1]. The connection is quite non-trivial and we do not describe
the details here, but at a high-level, the objective function of the problem can be divided into a fixed part
and a variable part, where the variable part can be viewed as a vertex cover problem with a special structure.
This structure has been used to obtain better than 2 approximation algorithms for various special cases of
1|prec|∑wjCj . Recently, [2] showed that the variable part in fact is as general as vertex cover, and gave
a reduction where an arbitrary vertex cover instance can be converted into an instance of 1|prec|∑wjCj .
However, even if we assume that vertex cover is 2 − ε hard to approximate, their result does not imply
even APX Hardness for 1|prec|∑wjCj as the cost of fixed part is much larger than the variable part. In
fact reducing the fixed part cost is quite challenging as it is known that if the fixed part is removed, then
the problem becomes trivial and polynomially time solvable. One may speculate that perhaps the fixed
part may always have substantial contribution in hard instances of the problem, and hence a better than 2
approximation may indeed be possible for 1|prec|∑wjCj . Contrary to such speculation, we prove:

Theorem 1.5 Assuming a new variant of the Unique Games conjecture (specifically Hypothesis 5.1), it is
NP-hard to approximate the scheduling problem 1|prec|∑wjCj within any factor strictly less than 2.

2 Preliminaries

This section describes some of the technical tools needed in the paper.

2.1 Influences and Friedgut’s Theorem

Given a boolean function f : {0, 1}n �→ {0, 1}, the influence of its i-th co-ordinate is defined as

Infli(f) := Prx[f(x) 	= f(x ⊕ ei)].
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The ith influence can also be expressed as

Infli(f) =
∑

S:i∈S

f̂(S)2.

The total influence of a function is the sum of all influences Infl(f) :=
∑n

i=1 Infli(f) =
∑

S |S|f̂(S)2. The
sum of influences is also referred to as the average sensitivity. The degree k-influence of ith co-ordinate
Inflk

i (f) is defined as
Inflk

i (f) =
∑

S:i∈S,|S|≤k

f̂(S)2.

Since
∑

S f̂(S)2 ≤ 1, the sum of all degree k-influences is at most k. A function h : {0, 1}n �→ {0, 1} is a
k-junta if it only depends on k co-ordinates. Two functions f and g are γ-close if Prx[f(x) 	= g(x)] ≤ γ.

Theorem 2.1 (Freidgut [13]) Let f be a boolean function on {0, 1}n with average sensitivity at most s and
γ > 0. Then there exists a k-junta h that is γ-close to f , where k = �e3s/γ�.
In contra-positive, Freidgut’s theorem says that a boolean function that is not close to any junta must have a
large average sensitivity.

Lemma 2.2 If f : {0, 1}n �→ {0, 1} is such that:

1. E[f ] ≥ δ.

2. There exists a set B ⊆ [n], |B| = k and a string s ∈ {0, 1}k such that

Pr
x

[
f(x) = 0

∣∣∣x|B = s
]
≥ 1 − δ/2.

Then there is a variable i ∈ B such that Inflk
i (f) ≥ δ2/22k+4.

Proof: Assume w.l.o.g. that B = {1, . . . , k}. We know that

Pr [f(s1, . . . , sk, xk+1, . . . , xn) = 0] ≥ 1 − δ/2.

This implies that

Ex

[
f ·
(

k∏
i=1

1 + (−1)xi⊕si

2

)]
≤ δ/2

2k
. (1)

Since E[f ] ≥ δ, there exists input t ∈ {0, 1}k, t 	= s such that

Pr [f(t1, . . . , tk, xk+1, . . . , xn) = 1] ≥ δ.

This implies that

Ex

[
f ·
(

k∏
i=1

1 + (−1)xi⊕ti

2

)]
≥ δ

2k
. (2)

Subtracting Equation (1) from Equation (2), we get

1
2k

∑
A⊆[k], A �=∅

Ex

[
f ·
(∏

i∈A

(−1)xi

)]
·
(∏

i∈A

(−1)ti −
∏
i∈A

(−1)si

)
≥ δ − δ/2

2k
= δ/2k+1,
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which implies that
1
2k

∑
A⊆[k], A �=∅

|f̂(A)| · 2 ≥ δ/2k+1.

This implies that there exists A ⊆ [k], A 	= ∅ and |f̂(A)| ≥ δ/2k+2. Any variable in A satisfies the
requirement of the lemma.

Lemma 2.3 Suppose f, g : {0, 1}n �→ {0, 1} are two functions such that

f ≤ g and δ ≤ E[f ] ≤ E[g] ≤ 1 − δ.

Further assume that g is γ-close to a k-junta for some γ ≤ δ2/4. Then ∃ i such that Inflk
i (f) ≥ δ2/22k+4.

Proof: Let h : {0, 1}k �→ {0, 1} be a function such that (after re-ordering indices),

Pr [g(x) = h(x1, x2, . . . , xk)] ≥ 1 − γ.

Since E[g] ≤ 1 − δ, we have E[h] ≤ 1 − δ + γ ≤ 1 − δ/2. Also there exists input s ∈ {0, 1}k such that
h(s) = 0 and

Pr [g(s1, . . . , sk, xk+1, . . . , xn) = h(s) = 0] ≥ 1 − 2γ/δ ≥ 1 − δ/2.

Since f ≤ g, we have that

Pr [f(s1, . . . , sk, xk+1, . . . , xn) = 0] ≥ 1 − δ/2.

Using this condition and the fact that E[f ] ≥ δ, we can apply Lemma 2.2 and conclude the existence of a
variable i ∈ {1, . . . , k} such that Inflk

i (f) ≥ δ2/22k+4.

2.2 Sunflower Lemma

A sunflower with k petals and a core Y is a collection of distinct sets S1 . . . Sk such that Si ∩ Sj = Y for
all i 	= j. The sets Si \ Y are the petals. The following lemma is well-known.

Theorem 2.4 (Sunflower lemma) Let F be family of sets each of cardinality s. If |F| > s!(k− 1)s then F
contains a sunflower with k-petals.

2.3 A Probability Estimate

Lemma 2.5 Suppose X1, . . . , Xm are [0, 1]-valued random variables defined on the space Ω = [n]m, such
that ∀j ∈ {1, . . . , m}, Xj depends only on the first j co-ordinates i1, . . . , ij of ω = (i1, . . . , im) ∈ Ω and
for any values of i1, . . . , ij−1, we have that E[Xj |i1, . . . , ij−1] ≥ β. Then

E

[
e−

Pm
j=1 Xj

]
≤ e−βm/2.
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Proof: We first note that if a random variable Y takes values in [0, 1] and E[Y ] ≥ β, then by convexity,
E[e−Y ] ≤ (1 − β)e−0 + βe−1 = 1 − (1 − 1/e)β ≤ e−β/2.

We prove the lemma by induction on m. By the observation above, the lemma clearly holds for m = 1.
Assume that it holds for m, and let X1, . . . , Xm+1 be random variables on [n]m+1 satisfying the conditions
of the lemma. Note that for every value i1 = t, the variables X2|i1=t, . . . , Xm+1|i1=t are random variables
on [n]m and satisfy the conditions of the lemma. Thus by induction hypothesis

E

[
e−

Pm+1
j=2 Xj |i1=t

]
≤ e−βm/2.

Therefore

E

[
e−

Pm+1
j=1 Xj

]
=

n∑
t=1

Pr[i1 = t] · e−X1(t) · E

[
e−

Pm+1
j=2 Xj |i1=t

]
≤

n∑
t=1

Pr[i1 = t] · e−X1(t) · e−βm/2

= E[e−X1 ] · e−βm/2 ≤ e−β(m+1)/2,

completing the inductive step.

2.4 The Unique Games Conjecture

Definition 2.6 An instance L(G(V, W, E), [n], {πv,w}(v,w)∈E) of Unique Games consists of a regular bi-
partite graph G(V, W, E) and a set [n] of labels. For each edge (v, w) ∈ E there is a constraint specified by
a permutation πv,w : [n] �→ [n]. The goal is to find a labelling 
 : V ∪ W → [n] of the vertices such that as
many edges as possible are satisfied, where an edge e = (v, w) is said to be satisfied if 
(v) = πv,w(
(w)).

Definition 2.7 Given a Unique Games instance L(G(V, W, E), [n], {πv,w}(v,w)∈E) let OPT(L) denote the
maximum fraction of simultaneously satisfied edges of L by any labeling, i.e.

OPT(L) :=
1
|E| max

�:V ∪W→[n]

|{ e ∈ E : 
 satisfies e }|.

A formal statement of the Unique Games Conjecture appears below; the conjecture has been widely
employed to prove strong inapproximability results for several problems.

Conjecture 2.8 ([17]) For any constants ζ, γ > 0, there is a sufficiently large constant n = n(ζ, γ) such
that, for Unique Games instances L with label set [n] it is NP-hard to distinguish between

• OPT(L) ≥ 1 − ζ,

• OPT(L) ≤ γ.
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3 Long Code Tests

A long code test, for our purpose, is a probabilistic test on a given boolean function f such that: (Complete-
ness) If f is a dictatorship, then it passes with high probability. (Soundness) If f has no influential variable,3

the test passes with low probability.
In the next four subsections, we present four long code tests denoted Tε, Fε, Tε,t, Fε,t respectively, where

ε and t are parameters. The test Tε is the most basic test that we describe first. It is a zero free bit test with
completeness close to 1

2 and its soundness property works only when the given boolean function equals
1 on a constant fraction of inputs. The test is useful towards proving inapproximability of the scheduling
problem. The test Fε is a minor variant of the test Tε. This is an optimal long code test with one free bit and
useful towards proving inapproximability of vertex cover. The analysis of test Fε follows easily from the
analysis of test Tε. For the actual PCP or inapproximability applications, we actually need to test that given
a collection of boolean functions, all of them are indeed long codes and are identical. We modify the tests
Tε and Fε towards this purpose and denote the tests by Tε,t and Fε,t respectively. Analysis of the test Tε,t is
along the lines of that of the test Tε, but more involved. Analysis of the test Fε,t follows easily from that of
the test Tε,t.

3.1 The Long Code Test Tε

In this section, we propose and analyze the following test:

Test Tε Given f : {0, 1}n �→ {0, 1} and ε > 0.

• Pick x ∈ {0, 1}n at random.

• Let m = εn. Pick indices i1, . . . , im randomly and independently from {1, . . . , n} and let S =
(i1, . . . , im) be the sequence of these indices.4

• Define the sub-cube:
Cx,S := {z | zj = xj ∀j /∈ S}.

• Accept if and only if f is identically zero on Cx,S .

Note that Cx,S is a sub-cube determined by fixing the co-ordinates outside S and letting the co-ordinates in
S take any setting of bits. The number of points in the sub-cube is 2m′

where m′ is the number of distinct
co-ordinates in the sequence S.

3.1.1 Completeness

Suppose f is the dictatorship of co-ordinate i. Then the test fails if either i ∈ S or if i 	∈ S and f(x) = 1.
Since |S| = εn, the dictatorship passes the test with probability at least 1

2 − ε.

3We in fact require the soundness property to hold even when f does not have a low-degree influential variable.
4We could instead pick S to be a random subset of size εn, but thinking of S as a sequence of independently picked indices

makes the analysis easier.
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3.1.2 Soundness

The soundness of the test is given by:

Theorem 3.1 For every ε, δ > 0, there exists η > 0 and integer k such that any f : {0, 1}n �→ {0, 1} that
satisfies

E[f ] ≥ δ and ∀i ∈ [n], Inflk
i (f) ≤ η,

passes the test Tε with probability at most 2δ.

Intuitively, the test works for the following reason: suppose that f is a balanced function. Since all its
influences are small, the function cannot be (even close to) a junta, and by Friedgut’s theorem, the sum
of influences must be large. This means that a relatively large fraction (β/n for a suitably large constant
β) of the hypercube edges are non-monochromatic, i.e. value of f on its end-points is different. Hence a
random sub-cube is likely to contain such an edge and the test rejects. In our argument the sub-cube has
dimension εn and we need β � 1/ε and the individual influences to be small enough to ensure that the sum
of influences is at least β/n. We proceed with a formal proof.

Proof: Observe first that if E[f ] ≥ 1 − δ, we are done. This is because x chosen in the test Tε satisfies
f(x) = 1 with probability at least 1 − δ and since x ∈ Cx,S , the test rejects for every choice of S. So
henceforth we assume that δ ≤ E[f ] ≤ 1 − δ.

It is more convenient to view the test as first choosing the sequence S = (i1, . . . , im) by picking m
co-ordinates one at a time and then choosing x, specifying the sub-cube. As we pick indices in S, we will
construct a sequence of functions f = f0 ≤ f1 ≤ . . . ≤ fm (these functions depend on S) such that
∀j ∈ {1, . . . , m}:

1. fj does not depend on co-ordinates i1, i2, . . . , ij .

2. For a fixed S and an arbitrary input x, the test Tε accepts fj if and only if it accepts f = f0.

From the second property, we know that

Prx
[
Test Tε accepts f

∣∣∣S] = Prx
[
Test Tε accepts fm

∣∣∣S] .

We will show that with probability at least 1 − δ over the choice of S, we have E[fm] ≥ 1 − δ. When this
happens, we saw that the test Tε accepts fm (and hence f ) with probability at most δ. Thus the test overall
accepts f with probability at most δ + δ = 2δ, completing the proof.

Now we define the functions fj and prove that they satisfy properties (1) and (2) above. We let:

fj+1(x) :=
{

fj(x) if fj(x) = fj(x ⊕ eij+1)
1 otherwise

}
(3)

Thus fj+1 is obtained by symmetrizing fj over the co-ordinate ij+1 in a specific way. It is not difficult
to see that an equivalent way to define fj+1 is the following: fj+1(x) = 0 if and only if f is identically
zero on Cx,(i1,...,ij+1), the sub-cube defined by x and the prefix of indices (i1, . . . , ij+1). Clearly, fj+1 is
independent of co-ordinates i1, . . . , ij+1. Moreover, for fixed S and an arbitrary x, fj+1 is identically zero
on the sub-cube Cx,S if and only if f is identically zero on Cx,S . This proves both property (1) and (2).
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Now we prove the assertion that with probability at least 1 − δ over the choice of S, we have E[fm] ≥
1 − δ. From equation (3), it is clear that fj ≤ fj+1 and

E[fj+1] = E[fj ] + Inflij+1(fj). (4)

Since the sequence of functions {fj}m
j=1 is increasing, it suffices to prove that with probability at least

1 − δ over the choice of S, there exists j∗ ∈ {1, . . . , m} such that E[fj∗ ] ≥ 1 − δ (the least index j∗ for
which this happens could depend on the choice of S).

Let γ := δ2/4, k := 216 log(1/δ)/(εγ), η := δ2/22k+4. Assume on the contrary that for every j ∈
{1, . . . , m}, E[fj ] ≤ 1 − δ. Thus,

f ≤ fj and δ ≤ E[f ] ≤ E[fj ] ≤ 1 − δ,

and by the hypothesis of the theorem, ∀i, Inflk
i (f) ≤ η = δ2/22k+4. Applying Lemma 2.3, we see that fj

is not γ-close to a k-junta. This implies, by Friedgut’s Theorem, that the average sensitivity (i.e. sum of
influences) of fj is at least 4 log(1/δ)/ε. Thus when index ij+1 is chosen,

E[Inflij+1(fj)] ≥ 4 log(1/δ)/ε

n
:= β.

Writing Xj+1 = Inflij+1(fj),

E[fm] = E[f ] +
m∑

j=1

Inflij (fj−1) = E[f ] +
m∑

j=1

Xj . (5)

Xj+1 depends on choice of i1, . . . , ij+1, and we already noted that E[Xj+1|i1, . . . , ij ] ≥ β. Though
X1, . . . , Xm are not independent, we will prove that with probability at least 1 − δ,

∑m
j=1 Xj ≥ 2. This

would be a contradiction since
∑m

j=1 Xj ≤ E[fm] ≤ 1.

Towards this end, we use Lemma (2.5) and conclude that E[e−
Pm

j=1 Xj ] ≤ e−βm/2. Hence,

Pr

⎡⎣X =
m∑

j=1

Xj ≤ 2

⎤⎦ = Pr
[
e−X ≥ e−2

] ≤ E[e−X ]
e−2

≤ e2 · e−βm/2 = e2 · e−2
log(1/δ)/ε

n
·εn ≤ δ.

This completes the proof.

3.2 The One Free Bit Long Code Test Fε

We now develop a long code test with one free bit, completeness close to 1 and soundness close to 0. The
test is a minor variation of the test Tε.

Test Fε Given f : {0, 1}n �→ {0, 1}

• Pick x ∈ {0, 1}n at random. Let x denote the input obtained by flipping every bit of x.

• Let m = εn. Pick indices i1, . . . , im randomly and independently from {1, . . . , n} and let S =
(i1, . . . , im) be the sequence of these indices.

10



• Define the sub-cubes:
Cx,S := {z | zj = xj ∀j /∈ S}.
Cx,S := {z | zj = xj ∀j /∈ S}.

• Accept if and only if for some bit b ∈ {0, 1}, f is identically b on Cx,S and identically b⊕ 1 on Cx,S .

Remark 3.2 Probability that the functions f and 1 − f pass the test Fε is the same.

3.2.1 Completeness

A dictatorship of co-ordinate i passes the test Fε whenever i 	∈ S, i.e. with probability at least 1 − ε.

3.2.2 Soundness

Theorem 3.3 For every ε, δ > 0, there exists η > 0 and integer k such that any f : {0, 1}n �→ {0, 1} that
satisfies

∀i ∈ [n], Inflk
i (f) ≤ η,

passes the test Fε with probability at most 4δ.

Proof: Let η be as in Theorem 3.1. Assume that ∀i ∈ [n], Inflk
i (f) ≤ η. Since f and 1 − f pass the test

with the same probability, we may assume that E[f ] ≥ 1
2 . Then

Pr[f passes Fε] = Prx,S [f |Cx,S
≡ 0 ∧ f |Cx,S

≡ 1] + Prx,S [f |Cx,S
≡ 1 ∧ f |Cx,S

≡ 0]
≤ Prx,S [f |Cx,S

≡ 0] + Prx,S [f |Cx,S
≡ 0]

= 2 · Prx,S [f |Cx,S
≡ 0] = 2 · Pr[f passes Tε] ≤ 4δ,

using Theorem 3.1.

3.3 The Test Tε,t for Multiple Long Codes

For PCP applications, we need to test that given a collection of several long codes, they are (indeed long
codes and are) identical. We modify the tests Tε and Fε for this purpose.

Test Tε,t Given f (1), . . . , f (t) : {0, 1}n �→ {0, 1}

• Pick x ∈ {0, 1}n at random.

• Let m = εn. Pick indices i1, . . . , im randomly and independently from {1, . . . , n} and let S =
(i1, . . . , im) be the sequence of these indices.

• Define the sub-cube:
Cx,S := {z ∈ {0, 1}n |zj = xj ∀ j 	∈ S}.

• Accept if and only if every f (�), 1 ≤ 
 ≤ t, is identically zero on Cx,S .

11



3.3.1 Completeness

Clearly, if for some i ∈ [n], f (1), . . . , f (t) are all dictatorship of the (same) ith co-ordinate, then the test Tε,t

passes with probability 1
2 − ε.

3.3.2 Soundness

Theorem 3.4 For every ε, δ > 0, there exists η > 0 and integers t, k such that any collection of functions
f (1), . . . , f (t) : {0, 1}n �→ {0, 1} that satisfy:

∀j, E[fj ] ≥ δ and ∀i ∈ [n], ∀ 1 ≤ 
1 	= 
2 ≤ t, min{ Inflk
i (f

(�1)), Inflk
i (f

(�2))} ≤ η,

pass the test Tε,t with probability at most 3δ.

Remark 3.5 The influence condition says that in the collection of functions f (1), . . . , f (t), no two functions
share an influential variable (where the notion of influence is the degree-k influence).

Proof: The proof is along the lines of proof of Theorem 3.1, but is more involved. The trouble is that
we can only assume that the t functions do not share an influential variable, whereas proof of Theorem 3.1
assumes that the (single) function itself has no influential variable.

We start by noting that the test Tε,t includes the test Tε on every f (�), 1 ≤ 
 ≤ t. We attempt to
carry out the proof of Theorem 3.1 for every f (�). Thus, we define the increasing sequence of functions
f (�) = f

(�)
0 , f

(�)
1 , . . . , f

(�)
m as in Equation (3). We assume that E[f (�)

m ] ≤ 1 − δ because otherwise the test Tε

on f
(�)
m would reject with probability 1 − δ and we are done.
Define X

(�)
j+1 = Inflij+1(f

(�)
j ) so that as in Equation (5),

E[f (�)
m ] = E[f (�)] +

m−1∑
j=0

Inflij+1(f
(�)
j ) = E[f (�)] +

m−1∑
j=0

X
(�)
j+1. (6)

If f (�) did not have any influential variable, then as in the proof of Theorem 3.1, we could conclude that the
sum of influences of f

(�)
j is large, and thus E[X(�)

j+1|i1, . . . , ij ] ≥ β for some appropriate β. However, we
can only assume that the t functions do not share an influential variable. So we instead sum-up Equation (6)
over all 
 and look at:

1
t

t∑
�=1

E[f (�)
m ] =

(
1
t

t∑
�=1

E[f (�)]

)
+

m−1∑
j=0

(
1
t

t∑
�=1

X
(�)
j+1

)
.

Define Xj+1 = 1
t

∑t
�=1 X

(�)
j+1. We will prove that E[Xj+1|i1, . . . , ij ] ≥ β where β := 4 log(1/δ)/ε

n .

After this, as in the proof of Theorem 3.1, we conclude that E[e−
Pm−1

j=0 Xj+1 ] ≤ e−βm/2, and hence
Pr[
∑m−1

j=0 Xj+1 ≤ 2] ≤ e−2 · e−βm/2 ≤ δ by the choice of β. This would be a contradiction since∑m−1
j=0 Xj+1 ≤ 1.
Now we will prove that E[Xj+1|i1, . . . , ij ] ≥ β, i.e.

1
t

t∑
�=1

Eij+1 [Inflij+1(f
(�)
j )] ≥ β.

12



If for t
2 out of t values of 
, the sum of influences of f

(�)
j is at least 2βn, we are done. Therefore we will

assume that for at least t
2 values of 
, say w.l.o.g. 1 ≤ 
 ≤ t

2 , the sum of influences of f
(�)
j is at most

2βn = 8 log(1/δ)/ε and derive a contradiction. Henceforth we only restrict to indices 1 ≤ 
 ≤ t
2 .

Let γ := δ4, k := exp(24 log(1/δ)/(εγ)), r := 8 log(1/δ)/δ, t := 4k!(k + 2r − 1)k, and η :=
δ2/(22k+4). Applying Friedgut’s Theorem, every f

(�)
j for 1 ≤ 
 ≤ t

2 , is γ-close to a function h(�) that
depends only on co-ordinates in a set A� with |A�| = k. Applying Sunflower Lemma 2.4 to the collection

of sets {A�}t/2
�=1, since t/2 > k!(k + 2r − 1)k, there is a sunflower with core B and k + 2r petals. Assume

w.l.o.g. that the sets in the sunflower are A1, . . . , Ak+2r.
Suppose on the contrary that for at least k + 1 values of 
 ∈ {1, . . . , k + 2r}, f (�) has some variable

j� ∈ B such that Inflk
j�

(f (�)) ≥ η. By pigeon-hole principle, there will be some i ∈ B (recall |B| ≤ k) and
indices 1 ≤ 
1 	= 
2 ≤ k + 2r for which

Inflk
i (f

(�1)) ≥ η, Inflk
i (f

(�2)) ≥ η

contradicting the hypothesis of the theorem.
Therefore assume, w.l.o.g. that for 1 ≤ 
 ≤ 2r, f (�) has no variable i ∈ B such that Inflk

i (f
(�)) ≥ η. A

consequence of this, by Lemma 2.2, is that for every setting s ∈ {0, 1}|B|, we have

Pr
[
f (�) = 0

∣∣∣x|B = s
]
≤ 1 − δ/2.

Since f (�) ≤ f
(�)
j , we have

Pr
[
f

(�)
j = 0

∣∣∣x|B = s
]
≤ 1 − δ/2.

Now we prove that for a randomly chosen x ∈ {0, 1}n, with probability at least 1 − 3δ, at least one of

{f (�)
j (x)}2r

�=1 equals 1. Whenever this happens, the test Tε,t rejects on input x. This would complete the
proof.

For 1 ≤ 
 ≤ 2r and s ∈ {0, 1}|B|, call the pair (
, s) bad if Pr[f (�)
j 	= h(�)|x|B = s] ≥ γ/δ. Since f

(�)
j

is γ-close to h(�), for every 
, the fraction of s such that the pair (
, s) is bad is at most δ. This implies that
for 1− 2δ fraction of s (call such s special), the number of 
 ∈ {1, . . . , 2r} for which (
, s) is bad is at most
r. Fix any such special s. Assume w.l.o.g. that for indices 
 = 1, . . . , r the pair (
, s) is not bad. This means
that for this fixed special s and 1 ≤ 
 ≤ r,

E[h(�)|x|B = s] ≥ E[f (�)
j |x|B = s] − Pr[f (�)

j 	= h(�)|x|B = s] ≥ δ/2 − γ/δ ≥ δ/4.

It follows that for any fixed special s,

Pr[∨r
�=1f

(�)
j = 1|x|B = s] ≥ Pr[∨r

�=1h
(�) = 1|x|B = s] −

r∑
�=1

Pr[f (�)
j 	= h(�)|x|B = s]

= 1 −
r∏

�=1

(1 − E[h(�)|x|B = s]) −
r∑

�=1

Pr[f (�)
j 	= h(�)|x|B = s]

≥ 1 − (1 − δ/4)r − rγ/δ

≥ 1 − δ.

The second step follows as the functions {h� | x|B = s} do not share any variable (as the petals of a

sunflower are disjoint). Since 1 − 2δ fraction of s are special, it follows that Pr[∨r
�=1f

(�)
j = 1] is at least

(1 − 2δ)(1 − δ) ≥ 1 − 3δ.
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3.4 The One Free Bit Test Fε,t for Multiple Long Codes

Now we describe the test that we will use to prove hardness of vertex cover.

Test Fε,t Given f (1), . . . , f (t) : {0, 1}n �→ {0, 1}
• Pick x ∈ {0, 1}n at random. Let x denote the input obtained by flipping every bit of x.

• Let m = εn. Pick indices i1, . . . , im randomly and independently from {1, . . . , n} and let S =
(i1, . . . , im) be the sequence of these indices.

• Define the sub-cubes:
Cx,S := {z ∈ {0, 1}n | zj = xj ∀ j 	∈ S}.
Cx,S := {z ∈ {0, 1}n | zj = xj ∀ j 	∈ S}.

• Accept if and only if for some bit b ∈ {0, 1}, every f (�), 1 ≤ 
 ≤ t is identically b on Cx,S and
identically b ⊕ 1 on Cx,S .

3.4.1 Completeness

Clearly, if for some i ∈ [n], f (1), . . . , f (t) are all dictatorship of the (same) ith co-ordinate, then the test Fε,t

passes with probability 1 − ε.

3.4.2 Soundness

Theorem 3.6 For every ε, δ > 0, there exists η > 0 and integers t, k such that any collection of functions
f (1), . . . , f (t) : {0, 1}n �→ {0, 1} that satisfy:

∀i ∈ [n], ∀ 1 ≤ 
1 	= 
2 ≤ t, min{ Inflk
i (f

(�1)), Inflk
i (f

(�2))} ≤ η,

passes the test Fε,t with probability at most 6δ.

Proof: For given ε, δ, let η, t′, k be as given in Theorem 3.4 and let t := 2t′. Note that the collection of
functions {1−f (�)}t

�=1 passes the test Fε,t with the same probability as the collection {f (�)}t
�=1. Therefore,

complementing all functions if necessary, we can assume that for at least t/2 = t′ values of 
, say 
 =
1, . . . , t′, E[f (�)] ≥ 1

2 . Then,

Pr
[
{f (�)}t

�=1 passes Fε,t

]
≤ Pr

[
{f (�)}t′

�=1 passes Fε,t′
]

= Prx,S

[
∀
 ∈ [t′], f (�)|Cx,S

≡ 0 ∧ f (�)|Cx,S
≡ 1
]

+ Prx,S

[
∀
 ∈ [t′], f (�)|Cx,S

≡ 1 ∧ f (�)|Cx,S
≡ 0
]

≤ Prx,S

[
∀
 ∈ [t′], f (�)|Cx,S

≡ 0
]

+ Prx,S

[
∀
 ∈ [t′], f (�)|Cx,S

≡ 0
]

= 2 · Prx,S

[
∀
 ∈ [t′], f (�)|Cx,S

≡ 0
]

= 2 · Pr
[
{f (�)}t′

�=1 passes Tε,t′
]
≤ 6δ

using Theorem 3.4.
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4 Inapproximability of Vertex Cover

We now present, assuming the Unique Games Conjecture, a PCP with one free bit, completeness 1− 2ε and
soundness 12δ where ε, δ > 0 are arbitrarily small constants. This proves Theorem 1.3.

Definition 4.1 For x = (x1, . . . , xn) ∈ {0, 1}n and π : [n] �→ [n],

π(x) := (xπ(1), . . . , xπ(n)).

One Free Bit PCP Given Unique Game Instance L(G(V, W, E), [n], {πv,w}(v,w)∈E).

• Pick a random vertex v ∈ V .

• Pick vertices w1, . . . , wt randomly and independently from N(v) := {w ∈ W | (v, w) ∈ E}. Let
π� := πv,w�

.

• Let f (�) be the long code for w� for 1 ≤ 
 ≤ t. Define functions f (�) ◦ π� as:

f (�) ◦ π�(x) = f (�)(π�(x)).

• Run the test Fε,t on the collection f (�) ◦ π�, 1 ≤ 
 ≤ t.

4.1 Completeness

Assume that the Unique Games instance has a labeling ρ : V ∪ W �→ [n] that satisfies 1 − ζ fraction of its
edges. For every w ∈ W , let the long code corresponding to w be the long code (i.e. dictatorship) of ρ(w).

When (v, w1, . . . , wt) are picked by the PCP verifier, with probability at least 1 − ζt, all the edges
(v, w�) are satisfied, i.e. ∀
 ∈ {1, . . . , t}, π�(ρ(w�)) = ρ(v). Assume that this holds. We will show that
the test Fε,t then accepts with probability at least 1 − ε (and hence the overall test accepts with probability
1 − ζt − ε ≥ 1 − 2ε for ζ small enough). From the completeness property of test Fε,t (Section 3.4.1), it
suffices to show that f (�) ◦ π�, 1 ≤ 
 ≤ t are dictatorships of the same co-ordinate. We will show that each
of them is a dictatorship of the co-ordinate ρ(v). Indeed, for any input x,

f (�) ◦ π�(x) = f (�)(xπ�(1), . . . , xπ�(n)) = xπ�(ρ(w�)) = xρ(v),

since ∀
, f (�) is a dictatorship of ρ(w�) and π�(ρ(w�)) = ρ(v).

4.2 Soundness

Suppose on the contrary that the PCP accepts with probability 12δ. Let k, η, t be as in Theorem 3.6. We will
derive a labeling ρ : V ∪W �→ [n] to the Unique Games instance that satisfies at least 6δη2/(k2t2) fraction
of its edges. This would be a contradiction if the soundness of the Unique Games instance was chosen to be
small enough.

First define a set L[w] of candidate labels for every w ∈ W as:

L[w] := {i ∈ [n] | Inflk
i (f

w) ≥ η}.
Since the number of co-ordinates with degree k-influence at least η is bounded by k/η, we have |L[w]| ≤
k/η. Now, for every w ∈ W , define ρ(w) to be a random label from L[w] (define ρ(w) arbitrarily if L[w] is
empty). For every v ∈ V , pick its random neighbor w ∈ N(v) and define ρ(v) = πv,w(ρ(w)).
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Since the acceptance probability of the verifier is 12δ, with probability 6δ after picking the tuple
(v, w1, . . . , wt), the verifier accepts with probability at least 6δ. Call such a tuple good. From Theorem
3.6, it must be the case that there exist 1 ≤ 
1 	= 
2 ≤ t such that ∃i ∈ [n] and Inflk

i (f
(�1) ◦ π�1) ≥ η

and Inflk
i (f

(�2) ◦ π�2) ≥ η. This is same as saying that there exist j ∈ L[w�1 ], j
′ ∈ L[w�2 ] such that

π�1(j) = π�2(j
′). Overall if we pick the tuple (v, w1, . . . , wt) at random and then w, w′ at random from the

set {w1, . . . , wt}, then with probability 6δ the tuple (v, w1, . . . , wt) is good, with probability 1/t2 we have
w = w�1 , w

′ = w�2 , and with probability 1/(k2/η2), the labeling procedure defines j = ρ(w), j′ = ρ(w′).
Thus,

Pr
v,w,w′[πv,w(ρ(w)) = πv,w′(ρ(w′))] ≥ 6δ · 1

t2
1

k2/η2
.

Since the labeling procedure defines the label of v by picking a random neighbor w′ ∈ N(v) and then letting
ρ(v) = πv,w′(ρ(w′)), we have, expected over the randomness of the labeling procedure,

Pr
(v,w)∈E

[ρ(v) = πv,w(ρ(w))] ≥ 6
δη2

k2t2
.

This shows that there exists a labeling to the Unique Games instance that satisfies 6δη2/(k2t2) fraction of
its edges, completing the proof.

5 Inapproximability of Scheduling Problem

We first give some intuition for the basic gadget that we use to prove inapproximability result for the schedul-
ing problem. Let C1, . . . , Cm be a collection of sets on a universe U = {1, . . . , n} of n elements. We asso-
ciate a natural scheduling instance with this set system as follows. For each element j in U , there is a job j
of size 1 and weight 0. Similarly, for each set Ci there is a job Ci of size 0 and weight 1. The precedence
constraints require that job Ci can only be scheduled after all the elements j ∈ Ci have been scheduled5. As
only the jobs in U have size 1, minimizing the weighted completion time for this instance is equivalent to
(up to a multiplicative factor) finding a permutation σ of {1, . . . , n}, that minimizes

1
|U |Ei∈{1,...,m}

[
max
j∈Ci

σ(j)
]

.

Suppose we choose U to be the 2n elements of the hypercube {0, 1}n and the sets C to be all possible
sub-cubes of dimension εn. Let σ be an ordering of U . We show that: (Completeness:) A dictatorship
function on U corresponds to a good ordering σ, and (Soundness:) Any good ordering corresponds to a
boolean function with a high influence co-ordinate.

For the completeness part, observe that a dictatorship function induces a partition U = U ′ ∪ U ′′ with
|U ′| = |U ′′| = 2n−1. Consider an ordering that first orders elements of U ′ arbitrarily, followed by elements
of U ′′ ordered arbitrarily. A random sub-cube C of dimension εn lies entirely inside U ′ with probability at
least 1−ε

2 . Therefore the value of this ordering is

1
|U |EC

[
max
j∈C

σ(j)
]
≤ 1

2n

(
1 − ε

2
· |U ′| + 1 + ε

2
· |U |

)
=

3
4

+
ε

4
.

For the soundness part, suppose σ is an ordering such that 1
|U |EC [maxj∈C σ(j)] ≤ 1− 2δ. Let U ′ ⊆ U

be the set of jobs that are the last δ|U | of the jobs in the ordering and let fσ be the indicator function of fσ.

5Such instances were originally considered by Woeginger [31], and he showed that they are as hard as the general problem.
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The fact that the value of the ordering is at most 1 − 2δ implies that for at least δ fraction of the sub-cubes
C, the entire sub-cube is contained inside U \ U ′. In other words, for at least δ fraction of sub-cubes C, the
function fσ is identically zero on S. This is same as saying that the function fσ is accepted with probability
at least δ by the test Tε in Section 3.1. Applying Theorem 3.1, fσ must have an influential variable.

Thus we achieve a gap of 3
4 + o(1) versus 1 − o(1) between the completeness and the soundness case.

We push this to the optimal gap of 1
2 + o(1) versus 1 − o(1) by repeating the construction over the Q-

ary hypercube [Q]n and using functions f : [Q]n �→ Q. In fact, we let Q = 2q, identify [Q]n with
({0, 1}q)n = {0, 1}qn and reduce the analysis essentially to the binary case. We formally describe the
gadget next.

5.1 Gadget for the Scheduling Problem

Let Q = 2q be an integer. The gadget consists of a collection of jobs and precedence constraints among
them. There are two sets of jobs J and C.

• The jobs in J are called element jobs and correspond to vertices in the Q-ary hypercube [Q]n. Each of
these jobs has size 1 and weight 0. We will identify the set of integers 0, 1, . . . , Q− 1 with {0, 1}q by
associating an integer with its binary representation. Thus [Q]n can be viewed as the binary hypercube
{0, 1}qn = ({0, 1}q)n.

• The jobs in C are called sub-cube jobs and are defined as follows: For x ∈ {0, 1}qn and every
sequence of indices S = (i1, . . . , im) ∈ [qn]m, where m = εqn, we have a job Cx,S corresponding
to the sub-cube Cx,S := {z ∈ {0, 1}qn | ∀j 	∈ S, zj = xj }. Each of these jobs has weight 1 and size
0.

Cx,S cannot be scheduled before any job in the sub-cube corresponding to it, i.e. there is a precedence
constraint z < Cx,S for every z ∈ Cx,S . These are the only precedence constraints.

As discussed above, minimizing the weighted completion time for this instance is equivalent to ordering
the jobs in J i.e, find a one-to-one map σ : {0, 1}qn �→ {1, . . . , 2qn}, so as to minimize

1
2qn

Ex,S

[
max

z∈Cx,S

σ(z)
]

.

5.1.1 Completeness

We show that for every index s ∈ [n], there is an ordering of jobs for which the objective function is at most
1
2 + εq. This ordering corresponds to a dictatorship function of index s.

Fix the index s ∈ [n]. Denote an input x ∈ {0, 1}qn as x = (x∗
1, . . . , x

∗
n) where x∗

j ∈ {0, 1}q for
1 ≤ j ≤ n. Consider the map σ∗ : {0, 1}qn �→ {0, 1}q:

∀x ∈ {0, 1}qn, σ∗(x∗
1, . . . , x

∗
n) = x∗

s.

σ∗ gives a partition of the set of jobs J into 2q equal sized subsets. Identify {0, 1}q with the set of integers
{0, 1, . . . , Q−1} by associating an integer with its binary representation. Denote the subsets in the partition
given by σ∗ as J0, . . . , JQ−1. Thus,

∀
 ∈ {0, 1, . . . , Q − 1} = {0, 1}q, J� := {x ∈ {0, 1}qn | x∗
s = 
}.
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Now, let σ be the following ordering of the set of jobs. The sets J0, J1, . . . , JQ−1 appear in the ordering
in that sequence, and within every set J�, the jobs are ordered arbitrarily.

We show that the ordering σ achieves objective value of at most 1
2 + εq. Note that when the set of

indices S = (i1, . . . , im) is chosen at random, with probability 1 − εq, none of the indices is in the range
[(s − 1)q + 1, . . . , sq]. Call this a good event. In the good event, the entire sub-cube Cx,S is inside the set
Jx∗

s
. Therefore maxz∈Cx,S

σ(z) is at most the index of the job in Jx∗
s

that appears last in the ordering, which
is (2qn/2q) · (x∗

s + 1). Also, for a random x, x∗
s is equally likely to take the values in {0, 1, . . . , Q− 1}. On

the other hand, when the good event fails to happen, maxz∈Cx,S
σ(z) is at most the index of the last job in

ordering σ, i.e. 2qn. Therefore,

Ex,S

[
max

z∈Cx,S

σ(z)
]
≤ (1 − εq) ·

(
1
Q

Q−1∑
�=0

2(qn−q) · (
 + 1)

)
+ εq · 2qn ≤ 2qn · (1

2
+ εq)

provided εq ≥ 1/Q.

5.1.2 Soundness

Now we show that any ordering σ of {0, 1}qn that achieves an objective value at most 1−3δ, must correspond
to an influential co-ordinate. This follows as an easy application of Theorem 3.1.

Let A ⊆ {0, 1}qn be the last δ fraction of the jobs in the ordering σ. Let fA be the indicator function of
A. Let η, k be as in Theorem 3.1. We will show that if ∀i ∈ [qn], infki (fA) ≤ η, then the objective value is
at least 1 − 3δ.

A sub-cube Cx,S does not intersect A if and only if fA is identically zero on Cx,S , i.e. if and only if the
test Tε accepts on (x, S). By Theorem 3.1 this happens with probability at most 2δ. Thus, at least 1 − 2δ
fraction of the sub-cubes Cx,S contain a job from A. For all such sub-cubes maxz∈Cx,S

σ(z) ≥ (1−δ) ·2qn.
It follows that the objective value is at least (1 − δ) · (1 − 2δ) ≥ 1 − 3δ.

5.2 UGC-based Hardness

We now describe how to use the ideas above to obtain a 2 − ε hardness result for the scheduling problem.
To do this, we need a stronger variant of the Unique Games Conjecture that we describe next.

5.2.1 UGC variant

Hypothesis 5.1 For arbitrarily small constants ζ, γ, δ > 0, there exists an integer n = n(ζ, γ, δ) such that
for a Unique Games instance L(G(V, W, E), [n], {πv,w}(v,w)∈E), it is NP-hard to distinguish between:

• (YES Case:) There are sets V ′ ⊆ V, W ′ ⊆ W such that |V ′| ≥ (1 − ζ)|V | and |W ′| ≥ (1 − ζ)|W |
and an assignment to L such that all the edges between the sets (V ′, W ′) are satisfied.

• (NO Case:) No assignment to L satisfies even a γ fraction of edges. Moreover, the instance satisfies
the following expansion property. For every set S ⊆ V , |S| = δ|V |, we have |Γ(S)| ≥ (1 − δ)|W |,
where Γ(S) := {w ∈ W | ∃v ∈ S, (v, w) ∈ E}.

This UGC variant differs from the standard form in two ways. In the NO case, we require that the
instance satisfy certain (arguably weak) expansion property, namely that any two sets of relative size δ
contain an edge between them. This expansion requirement is not ruled out by the known algorithmic
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results for unique games on expanders [5, 30]. We would like to remark that it is always possible to turn the
Unique Games instance into a strong expander by super-imposing a dummy expander on top, only slightly
reducing its completeness.

In the YES case, we require not only that there is an almost satisfying assignment, but a stronger condi-
tion that there are large subsets V ′ ⊆ V and W ′ ⊆ W such that all the edges between (V ′, W ′) are satisfied.
In fact, the same property is needed in Khot and Regev’s paper [20] and they show that any Unique Games
instance can be transformed into one with this property preserving the low soundness.

Thus each of the two extra properties in Hypothesis 5.1 (one in the YES case and the other in the NO
case) can be achieved on its own by a suitable transformation of the Unique Games instance in the standard
form. However we do not know how to achieve both properties simultaneously. In other words, we do not
know whether Hypothesis 5.1 is equivalent to (the standard form of) the UGC.

5.2.2 Reduction

We now describe a reduction to the scheduling problem. Let L(G(V, W, E), [n], {πv,w}(v,w)∈E) be a unique
games instance as in Hypothesis 5.1. In the reduction, we will replace each vertex in V and W by a Q-ary
hypercube [Q]n. As in the gadget above, we will identify [Q]n with ({0, 1}q)n. Given a permutation
π : [n] → [n], and x ∈ [Q]n where x = (x∗

1, x
∗
2, . . . , x

∗
n) where x∗

i ∈ [Q] = {0, 1}q, we will denote
π(x) = (x∗

π(1), . . . , x
∗
π(n)). Consider the following instance of the scheduling problem.

• We replace each vertex v ∈ V by a Q-ary hypercube [Q]n. Let Hv denote the hypercube correspond-
ing to v, and we denote the job in Hv corresponding to x ∈ [Q]n by (v, x). Let J denote the set of all
such jobs, i.e. J := ∪v∈V Hv. Each job in J has size 1 and weight 0.

• We replace each vertex w ∈ W by a Q-ary hypercube [Q]n. Let Hw denote the hypercube corre-
sponding to w, and let (w, x) denote the job corresponding to x ∈ Hw. Let J ′ denote the set of all
such jobs, i.e. J ′ := ∪w∈W Hw. Each such job has size 0 and weight 0.

• For each edge (v, w) ∈ E in the Unique Games instance, we add a precedence constraint between
jobs in Hv and the “corresponding” job in Hw where the correspondence is via the permutation πv,w,
i.e. for every x, we add the constraint (v, x) < (w, πv,w(x)).

• Finally, we define jobs that correspond to subsets of J ′ as follows. For (v, w) ∈ E, x ∈ {0, 1}qn and
indices S = (i1, . . . , im) ∈ [qn]m, where m = εqn, let Cv,x,S,w denote the sub-cube

Cv,x,S,w := {(w, z)|z ∈ {0, 1}qn and ∀j /∈ S zπv,w(j) = xj}.
Note that Cv,x,S,w is the image of the sub-cube Cv,x,S via πv,w.

For each vertex v ∈ V and t neighbors w1, . . . , wt ∈ N(v), we define a job Cv,x,S,w1,...,wt corre-
sponding to the subset ∪t

i=1Cv,x,S,wi . Let C denote the set of all such jobs. Each job in C has size 0
and weight 1. A job j in C can only be scheduled after all the jobs in the subset corresponding it are
scheduled. That is, there is a precedence constraint j < Cv,x,S,w1,...,wt for every j ∈ ∪t

i=1Cv,x,S,wi .

Note that only the jobs in J have a non-zero size and only the jobs Cv,x,S,w1,...,wt ∈ C have non-zero
weight. Let σ be an ordering of 2qn|V | jobs in J , i.e. σ : J �→ {1, . . . , 2qn|V |}. For any j ∈ J ′, by abuse
of notation, let σ(j) denote the earliest time at which j can be scheduled (i.e. immediately after each of
its predecessors in J are complete). Thus the problem is to find an ordering σ : J �→ {1, . . . , 2qn|V |} that
minimizes
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1
2qn|V |Ev,x,S,w1,...,wt

[
max

j∈Cv,x,S,w1,...,wt

σ(j)
]

.

5.2.3 Completeness

Consider a labeling ρ of the Unique Games instance in the YES case of hypothesis 5.1. In this case we will
show that there is a solution to the scheduling problem that satisfies all the precedence constraints and has
value arbitrarily close to 1

2 . We will describe an ordering of jobs in J . This will automatically determine the
ordering of jobs in J ′ and C since these jobs have size 0 and can be placed at the earliest position when all
their predecessors have been scheduled.

Let V ′ ⊆ V and W ′ ⊆ W be such that |V ′| ≥ (1 − ζ)|V |, |W ′| ≥ (1 − ζ)|W | and all the edges
between V ′ and W ′ are satisfied. We will define a partition of jobs in J . Consider the jobs Hv for v ∈ V ′.
Each such job has the form (v, x) for x = (x∗

1, . . . , x
∗
n). We assign each job (v, x) the label x∗

ρ(v). This
partitions Hv into Q equal sized sets Hv,0, . . . , Hv,Q−1. We partition J as P ∪ J0 ∪ . . . ∪ JQ−1, where
P := {(v, x)|x ∈ [Q]n, v ∈ V \ V ′} is set of all jobs corresponding to v ∈ V \ V ′ and Ji := ∪v∈V ′Hv,i for
i = 0, . . . , Q − 1.

Consider the ordering where we first schedule the jobs in P followed by the sets J0, J1, . . . , JQ−1 in
that order. The jobs can be ordered arbitrarily within a set Ji or within P . As there are ζ2qn|V | jobs in P ,
and all sets Ji have equal size, any job in Ji appears no later than

ζ|V |2qn + (1 − ζ)|V |2qn i + 1
Q

≤ 2qn|V |(ζ +
i + 1
Q

).

As mentioned above this completely determines the schedule for all other jobs in the instance. First we
place each job in J ′ at the earliest position by which all its predecessors in J have been scheduled. Next,
we place each job in C at the earliest position by which all its predecessors in J ′ have been scheduled. By
construction, the ordering satisfies all the precedence constraints.

Now consider a vertex w ∈ W ′. For each job (w, z) ∈ Hw, where z = (z∗1 , . . . , z∗n), we assign this
job the label z∗ρ(w). This partitions Hw into Q equal sized sets Hw,0, . . . , Hw,Q−1. Consider an edge (v, w)
in unique games instance that is satisfied by the labeling. An important observation is the following: for
any job (w, z) ∈ Hw, let (v, x) denote its “corresponding” job in Hv, i.e. z = πv,w(x) and we defined the
predecessor constraint (v, x) < (w, z). We claim that (v, x) ∈ Hv,i and (w, z) ∈ Hw,i for the same index
i. This follows because, by definition, (w, z) ∈ Hw,z∗

ρ(w)
and (v, x) ∈ Hv,x∗

ρ(v)
. As the labeling satisfies the

edge (v, w) and πv,w(x) = z, we have

z∗ρ(w) = (πv,w(x))∗ρ(w) = x∗
πv,w(ρ(w)) = x∗

ρ(v)

as desired. We claim that for any job (w, z), all its predecessors have been placed by position 2qn|V |(ζ +
z∗
ρ(w)

+1

Q ). Indeed, any predecessor of (w, z) is of the form (v, x) for some (v, w) ∈ E and πv,w(x) = z.
If v ∈ V \ V ′, then (v, x) ∈ P and hence is scheduled no later than ζ2qn|V | and the condition is trivially
satisfied. On the other hand if v ∈ V ′, then we are guaranteed that labeling satisfies the edge (v, w) and
hence by the above observation this predecessor belongs to the set Jx∗

ρ(v)
= Jz∗

ρ(w)
which implies the claim.

Finally we consider the jobs in C. Recall that jobs in C correspond to subsets Cv,x,S,w1,...,wt . Consider
the event where we choose v ∈ V , S ∈ [qn]m and w1, . . . , wt ∈ N(v) at random. Call this event good
if v ∈ V ′, each w1, . . . , wt in W ′ and none of the indices in S lies in {(ρ(v) − 1)q + 1, . . . , ρ(v)q}. The
probability that an event is good is at least 1 − ζ − tζ − εq.
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In the good event, for any choice of x, the entire sub-cube Cv,x,S := {(v, y)|∀j /∈ S yj = xj} lies inside
the set Hv,x∗

ρ(v)
. Moreover, since the labeling satisfies all the edges (v, w1), . . . , (v, wt), by the claim above

all the jobs in the sub-cubes Cv,x,S,wi finish no later than the last job in Jx∗
ρ(v)

. Thus in this case, the job

Cv,x,S,w1,...,wt can be scheduled no later than 2qn|V |(ζ +
x∗

ρ(v)
+1

Q ). Also, for a random x, x∗
ρ(v) is equally

likely to take the values in {0, 1, . . . , Q − 1}. On the other hand, when the good event fails to happen, the
completion is at most the length of the schedule i.e. |V |2qn. Therefore,

Ev,x,S,w1,...,wt

[
max

j∈Cv,x,S,w1,...,wt

ρ(j)
]

≤ (1 − εq − (t + 1)ζ) ·
(

1
Q

Q−1∑
�=0

2qn|V | · (ζ +

 + 1

Q
)

)
+ ((t + 1)ζ + εq) · 2qn|V |

≤ 2qn|V | ·
(

1
2

+
Q

2
ζ +

1
2Q

+ (t + 1)ζ + εq

)
≤ 2qn|V |

(
1
2

+ o(1)
)

.

5.2.4 Soundness

Now we show that for any schedule that achieves an objective value at most 1 − (8 + t)δ, there exists a

labeling of the unique games instance that satisfies at least a 3δη2

k2t2
fraction of the edges.

Let A ⊆ V × {0, 1}qn be the last 2δ fraction of the jobs J in the ordering ρ (i.e. all jobs that are
scheduled at time (1 − 2δ)|J | or later. Let fA be the indicator function of A, i.e. ∀(v, x) ∈ |V | × {0, 1}qn,
fA(v, x) = 1 if and only if (v, x) ∈ A. This induces a function fv(x) := fA(v, x) for each vertex v ∈ V .
Since Ev,x[fA] ≥ 2δ, we have that Ex[fv] ≥ δ for at least δ fraction of the vertices v ∈ V . Call such vertices
good and let S ⊆ V be the set of good vertices, |S| ≥ δ|V |. By the expansion property of the unique games
instance, |Γ(S)| ≥ (1 − δ)|W |, i.e. all but δ fraction of vertices in W have a neighbor in S.

For w ∈ Γ(S), let fw : Hw �→ {0, 1} be a function such that fw(z) = 1 if and only if the job (w, z)
is scheduled at time (1 − 2δ)|J | or later. Consider the edge (v, w) for some v ∈ S. We have a precedence
constraint between every job in Hv and its corresponding job in Hw. This implies that Ex[fw] ≥ Ex[fv] ≥ δ.
For the sake of convenience, define fw ≡ 0 for w 	∈ Γ(S).

Suppose the objective value is less than 1− (8+ t)δ. Then at least (6+ t)δ fraction of the jobs in C must
be scheduled before time (1−2δ)|J |. For any such job, say Cv,x,S,w1,...,wt , fwi is identically zero on the sub-
cube Cv,x,S,wi . This can be interpreted as if the test Tε,t from Section 3.3 accepts the collection of functions
fw,i◦πv,wi , 1 ≤ i ≤ t on pair (x, S). Thus overall at least (6+t)δ fraction of the tests pass. When we choose
a vertex v and its t neighbors at random, call a tuple (v, w1, . . . , wt) good if ∀i ∈ [t], wi ∈ Γ(S) (we do not
care whether v is good or not). Since the unique games graph is regular and |Γ(S)| ≥ (1 − δ)|W |, a tuple
is good with probability at least 1 − tδ. Thus the test must pass with probability at least (6 + t − t)δ = 6δ
over good tuples. Thus for at least 3δ fraction of good tuples the test passes with probability at least 3δ.

Let t, k, η be as in proof of Theorem 3.4. Applying the theorem, for every good tuple, it must be the case
that there exist 1 ≤ 
1 	= 
2 ≤ t such that ∃i ∈ [n] and Inflk

i (fw�1
◦πv,w�1

) ≥ η and Inflk
i (fw�2

◦πv,w�2
) ≥ η.

The analysis now is identical to that for vertex cover. For each vertex w, we define a candidate set of labels
L[w] as those variables i for which Inflk

i (fw) ≥ η, and note that |L[w]| ≤ k/η. The above condition says
that there exist j ∈ L[w�1 ], j

′ ∈ L[w�2 ] such that πv,w�1
(j) = πv,w�2

(j′). The labeling procedure defines the
label of v by picking a neighbor w ∈ N(v) at random and setting ρ(v) = πv,w(ρ(w)), and as in the vertex
cover analysis we obtain that
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Pr(v,w)∈E [ρ(v) = πv,w(ρ(w))] ≥ 3δη2

k2t2
.
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