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ABSTRACT

Recently proposed l1-regularized maximum-likelihood opti-
mization methods for learning sparse Markov networks re-
sult into convex problems that can be solved optimally and
efficiently. However, the accuracy of such methods can be
very sensitive to the choice of regularization parameter, and
optimal selection of this parameter remains an open prob-
lem. Herein, we propose a maximum a posteriori probability
(MAP) approach that investigates different priors on the reg-
ularization parameter and yields promising empirical results
on both synthetic data and real-life application such as brain
imaging data (fMRI).

Index Terms— Markov networks, sparse optimization,
l1-regularization, maximum a posteriory probability (MAP),
fMRI data analysis

1. INTRODUCTION

In many applications of statistical learning the objective is not
simply to construct an accurate predictive model but rather to
discover meaningful interactions among the variables. This is
particularly important in biological applications such as, for
example, reverse-engineering of gene regulatory networks,
or reconstruction of brain-activation patterns from functional
MRI (fMRI) data. Probabilistic graphical models, such as
Markov networks (or Markov Random Fields), provide a
principled way of modeling multivariate data distributions
that is both predictive and interpretable.

A standard approach to learning Markov network struc-
ture is to choose the simplest model, i.e. the sparsest network,
that adequately explains the data. Formally, this leads to regu-
larized maximum-likelihood problem with the penalty on the
number of parameters, or l0 norm, a generally intractable
problem that was often solved approximately by greedy
search [2]. Recently, even better approximation methods
were suggested [4, 8, 9, 6, 1] that exploit sparsity-enforcing
property of l1-norm regularization and yield convex opti-
mization problems that can be solved efficiently. However,
those approaches are known to be sensitive to the choice of
the regularization parameter, i.e. the weight on l1-penalty,
and to the best of our knowledge, selecting the optimal value

of this parameter remains an open problem (discussed in the
next section)1.

In this paper, we focus on a maximum a posteriory proba-
bility (MAP) approach to selecting regularization parameter λ
when learning the structure of a Markov network over Gaus-
sian variables. We advocate using non-uniform prior on λ
and present encouraging empirical results on both synthetic
and real datasets. Our method compares favorably to existing
approaches, often resulting into higher accuracy and a more
balanced trade-off between false-positive and false-negative
errors.

2. PROBLEM FORMULATION

Let X = {X1, ..., Xp} be a set of p random variables, and let
G = (V, E) be an undirected graphical model (Markov net-
work) representing conditional independence structure of the
joint distribution P (X). The set of vertices V = {1, ..., p}
is in the one-to-one correspondence with the set X . The
set of edges E contains the edge (i, j) if and only if Xi is
conditionally dependent on Xj given all remaining variables;
lack of edge between Xi and Xj means that the two vari-
ables are conditionally independent given all remaining vari-
ables. Let x = (x1, ..., xp) denote a random assignment to X .
We will assume a multivariate Gaussian probability density
p(x) = (2π)−p/2 det(C)

1
2 e−

1
2xT Cx, where C = Σ−1 is the

inverse covariance matrix, and the variables are normalized
to have zero mean. Let x1, ...,xn be a set of n i.i.d. samples
from this distribution, and let S = 1

n

∑n
i=1 xT

i xi denote the
empirical covariance matrix.

Missing edges in the above graphical model correspond
to zero entries in the inverse covariance matrix C, and thus
the problem of structure learning for the above probabilis-
tic graphical model is equivalent to the problem of learn-
ing the zero-pattern of the inverse-covariance matrix2. A
common approach is to use l1-regularization that is known

1The difficulty of selecting the regularization parameter has also mo-
tivated alternative approaches [3] that avoid the l1-regularized maximum-
likelihood formulation of [6].

2Note that the inverse of the empirical covariance matrix, even if it ex-
ists, does not typically contain exact zeros. Therefore, an explicit sparsity
constraint is usually added to the estimation process.



to promote sparse solutions. From the Bayesian point of
view, this is equivalent to assuming that the parameters of
the inverse covariance matrix C = Σ−1 are independent
random variables Cij following the Laplace distributions
p(Cij) = λij

2 e−λij |Cij−αij | with zero location parameters
(means) αij and equal scale parameters λij = λ. Then
p(C) =

∏p
i=1

∏p
j=1 p(Cij) = (λ/2)p2

e−λ||C||1 , where
||C||1 =

∑
ij |Cij | is the (vector) l1-norm of C.

A common approach to recovering a sparse inverse co-
variance matrix is to assume a fixed parameter λ and find
arg maxCÂ0 p(C|X), where X is the n × p data matrix, or
equivalently, since p(C|X) = P (X, C)/p(X) and p(X) does
not include C, to find arg maxCÂ0 P (X, C), over positive
definite matrices C. This yields the following optimization
problem considered in [6, 1, 9]:

max
CÂ0

ln det(C)− tr(SC)− λ||C||1 (1)

where det(A) and tr(A) denote the determinant and the trace
(the sum of the diagonal elements) of a matrix A, respectively.

The regularization parameter λ controls the number of
non-zero elements (the sparsity) of solutions. The advantage
of the above approach is that the problem in eq. 1 is con-
vex, its optimal solution is unique [6] and can be found ef-
ficiently using recently proposed methods such as COVSEL
[6] or glasso [1].

However, there is a known issue with the above approach.
As we (and others) observe empirically, the accuracy of
the Markov network reconstruction can be very sensitive
to the choice of the regularization parameter λ, and there
is no known method for optimal selection of λ. The two
most commonly used approaches are (1) cross-validation and
(2) theoretical derivations. However, λ selected by cross-
validation, i.e. the estimate of the prediction-oracle solution
that maximizes the test data likelihood (i.e. minimizes the
predictive risk) is typically too small and yields high false-
positive rate3. Existing theoretical derivations for λ have their
own drawbacks: although [4] show that consistent estimate
of the structure is possible, they admit that “such asymptotic
considerations give little advice on how to choose a specific
penalty parameter for a given problem”. As a proxy for
“best” λ, [4] in their neighborhood-selection approach pro-
vide λ that allows a consistent recovery of sparse structure
of the covariance rather than the inverse covariance matrix,
i.e. the recovery of marginal independencies between i-th
and j-th variables, rather than conditional independencies
given the rest of the variables. Similar approach is used in [6]

3Moreover, [4] proved that cross-validated λ does not lead to consistent
model selection for the Lasso problem, since it tends to include too many
noisy connections between the variables. This is not necessarily surprising,
given that cross-validation selects λ that is best for prediction that might be
quite different from the model-selection goal, since it is well-known that mul-
tiple probabilistic models having quite different structures may yield very
similar distributions.

to derive λ for the optimization problem in eq. 1. In prac-
tice, however, this may result into very high values of λ that
effectively ignore almost all dependencies (i.e., have high
false-negative rate); this was acknowledged by the authors
of [6] in their empirical section, and also confirmed by our
experiments. Thus, proper choice of regularization parameter
for the purpose of model selection remains an open problem.

3. OUR APPROACH

Herein, we investigate a Bayesian approach, treating λ as
a random variable with a prior density p(λ), rather than
as a fixed parameter. Our goal is to find a joint maximum-
aposteriory probability (MAP) estimate of λ and C by solving
maxCÂ0,λ ln p(C, λ|X), or, equivalently, maxCÂ0,λ ln p(X, C, λ),
where p(X,C, λ) = p(X|C)p(C|λ)p(λ) =

=
∏n

i [(2π)−p/2 det(C)
1
2 e−

1
2xT

i Cxi ](λ/2)p2
e−λ||C||1p(λ).

This results into the following problem instead of eq. 1:

max
λ,CÂ0

n

2
[ln det(C)− tr(SC)] + p2 ln

λ

2
− λ||C||1 + ln p(λ).

We considered two types of priors: a uniform (flat) and an
exponential prior p(λ). The uniform (flat) prior puts equal
weight on all values of λ ∈ [0, Λ] (assuming sufficiently high
Λ), and thus effectively ignores p(λ); this prior was used in
Regularized Likelihood method discussed in the next section.
The exponential prior assumes that p(λ) = be−bλ, yielding

max
λ,CÂ0

n

2
[ln det(C)− tr(SC)] + p2 ln

λ

2
− λ||C||1 − bλ. (2)

Currently, we estimate b as ||S−1
r ||1/(p2 − 1), where Sr =

S +εI is the empirical covariance matrix, slightly regularized
with small ε = 10−3 on the diagonal to obtain an invertible
matrix when S is not invertible. The intuition behind such
estimate is that b = 1/E(λ), and we approximate E(λ) by
the solution to the above optimization problem with C fixed
to its empirical estimate S−1

r .
We also performed a limited amount of experiments with

the Gaussian prior (see section 4.2).

3.1. Solving Optimization Problem
Exponential Prior. Let us consider the optimization prob-
lem in eq. 2. The objective function is concave in C for any
fixed λ but is not concave in C and λ jointly. Hence we are
looking for a local optimum. We use alternating maximiza-
tion method, which, for each given fixed value of λ, solves
the following problem:

φ(λ) = max
C

n

2
ln det(C)− n

2
tr(SC)− λ‖C‖1 (3)

This problem has a unique maximizer C(λ) for any value of
λ [6]. We now consider the following optimization problem

max
λ

ψ(λ) = max
λ

φ(λ) + p2 ln λ− bλ. (4)



Clearly, the optimal solution to this problem is also optimal
for problem (2). The following simple optimization scheme
for problem (4) is applied:

0. Initialize λ1;

1. find C(λk), φ(λk) and ψ(λk);

2. If |p2/λ− ‖C(λk)‖1 − b| < ε go to step 5.

3. λk+1 = p2/(‖C(λk)‖1 + b);

4. find C(λk+1) and ψ(λk+1);

if ψ(λk+1) > ψ(λk) go to step 3.

else λk+1 = (λk + λk+1)/2. Go to step 4.

5. end

This scheme uses line search along the direction of the
derivatives and will converge to the local maximum (if one
exists) as long as some sufficient increase condition (such
as Armijo rule [5]) is applied in Step 4. Step 1 can be per-
formed by any convex optimization method designed to solve
problem (3). In our experiments we used glasso software [1].

Lambda

Objective
Function

Fig. 1. Typical shape of the objective function ψ(λ).

In Figure 1 we show a typical shape of function ψ(λ).
An analysis of behavior of the elements that compose ψ(λ)
can show that for any positive b this function goes to −∞
as λ goes to ∞. Hence a maximum of ψ(λ) exists for any
positive b. The value of λ for which this maximum is achieved
increases with b.
Regularized Likelihood with Flat Prior. When b = 0, the
problem (2) is equivalent to assuming the flat prior on λ. If
n << p then the term p2 ln λ may dominate the total sum and
ψ(λ) may be unbounded from above. Our experiment show
that typically for n > 3p the maximum of ψ(λ) is finite.

To be able to handle the cases when n < 3p, but only
a flat prior is assumed, we propose the following modified
optimization procedure. Let

φ(λ) = max
C

n

2
ln det(C)− n

2
tr(SC)− λ‖C‖1,0,

where ‖C‖1,0 is a sum of the absolute values of all off-
diagonal elements of C and let C(λ) be the solution to the
above convex optimization problem. As λ grows the maxi-
mum eigenvalue of C(λ) no longer converges to zero. In fact
one can show that the diagonal elements of C(λ) will con-
verge to the inverse of diagonal of the empirical covariance
matrix S. Now we consider the following regularized version
of the maximum log-likelihood problem

max
λ

ψ(λ) = max
λ

φ(λ) + p2 ln λ− λ
∑

i

|Cii|. (5)

As in the case of positive b we can show here that a finite
maximum always exists. The advantage of this formulation,
referred to as Regularized Likelihood, is that it does not de-
pend on the choice of b and the regularization term arises nat-
urally from the optimization algorithm. The drawback of this
approach is that it no longer can be interpreted as a joint like-
lihood optimization problem. A procedure, very similar to the
algorithm described in (5) can be applied to this regularized
approach. The computational results in the next section show
that this approach produces good empirical results.

4. EXPERIMENTAL RESULTS

4.1. Synthetic Data

In order to test the structure reconstruction accuracy, we gen-
erated two “ground-truth” random inverse-covariance matri-
ces: a very sparse one, with only 4% (off-diagonal) non-zero
elements, and a relatively dense one, with 52% (off-diagonal)
non-zero elements. We then sampled n = 30, 50, 500, 1000
instances from the corresponding multivariate Gaussian dis-
tribution over p = 100 variables. We used two methods for
Bayesian learning of λ discussed in the previous section: (1)
Regularized Likelihood and (2) Exponential Prior. We com-
pare the structure-learning performance as well as the predic-
tion performance of the Bayesian λ with the two other alterna-
tives: (1) λ selected by cross-validation using the prediction
error and (2) theoretically derived λ from[6].

We evaluate the structure-learning performance by count-
ing the number of True and False edges that has been discov-
ered. In the following tables FN denotes the false-negative
error (False Negatives / Positives) and FP denotes the false-
positive error (False Positive / Negatives). Positives is the
number of non-zero off-diagonal elements of the original in-
verse covariance matrix and Negatives is the number of zero
elements of the original inverse covariance matrix. SE (Struc-
ture Error) is the overall structure reconstruction error com-
puted as (FN*Positives + FP*Negatives)/(Positives+Negatives).
PE (Prediction error) is the average (over all variables and
over all test cases) squared error of prediction on a held-out
test data of size 100. λr denotes the Bayesian λ that is learned
by the regularized likelihood, λp denotes the Bayesian λ that
is learned by the joint likelihood with the exponential prior
on λ, λb denotes the λ suggested by Banerjee et. al, and λc

denotes the λ that is learned by 5-fold cross validation.
As shown in Table 1, cross-validated λ yields much

higher false-positive error when compared to other methods
(which is consistent with [4]), and the worst total structure-
reconstruction error among all competitors on very sparse
problems. In particular, it learns a nearly-complete graph
when n > p. When the original matrix is dense, cross-
validates λ yields better results, but effectively it is almost
equivalent to setting λ = 0 (non-regularized maximum like-
lihood). On the other hand, λ suggested by Banerjee et al
yields models that are too sparse, and performs poorly both in



Table 1. Results for p = 100 variables.
Original Density = 4% Original Density = 52%

356 Positives and 9544 Negatives 5102 Positives and 4798 Negatives
FN FP SE PE FN FP SE PE

n=30
λr = 190, λp = 34, λb =621, λc=2 λr = 500, λp=32, λb=1120, λc=0.4

λr 0.94 0.006 0.04 4.5 0.992 0.01 0.52 10.2
λp 0.7 0.05 0.07 1.88 0.87 0.12 0.51 1.4
λb 0.995 0 0.04 6.8 0.9997 0.0004 0.52 14.6
λc 0.17 0.3 0.3 1.3 0.5 0.4 0.45 0.54

n=50
λr = 210, λp = 51, λb =664, λc=1 λr = 500, λp=47, λb=2209, λc=0.4

λr 0.87 0.01 0.04 1.4 0.98 0.03 0.52 6.1
λp 0.66 0.05 0.07 1.8 0.87 0.12 0.51 1.36
λb 0.995 0 0.04 6.8 0.999 0.002 0.52 13.5
λc 0.03 0.53 0.51 1.16 0.4 0.5 0.45 0.37

n=500
λr = 55, λp = 63, λb =2517, λc=0.1 λr = 23, λp=22, λb=5438, λc=0.1

λr 0.05 0.1 0.1 0.70 0.56 0.2 0.30 0.28
λp 0.1 0.1 0.1 0.76 0.54 0.29 0.42 0.29
λb 0.9 0.01 0.04 3.7 0.98 0.03 0.52 7.4
λc 0 0.98 0.95 0.71 0.01 0.93 0.46 0.15

n=1000
λr = 27, λp = 26, λb =3401, λc=0.1 λr = 14, λp=14, λb=7115, λc=0.1

λr 0 0.2 0.19 0.60 0.3 0.38 0.34 0.19
λp 0 0.24 0.23 0.61 0.3 0.4 0.35 0.19
λb 0.84 0.02 0.05 2.95 0.97 0.05 0.52 5.4
λc 0 0.99 0.95 0.65 0.01 0.95 0.47 0.13

prediction and model recovery, missing almost all edges with
false-negative error often above 90%. Bayesian approach fits
between those extremes: it produces intermediate values of λ
that yield a much better balance between the two types of er-
rors (see also a typical ROC curve in Figure 2). We note that
λr that is picked by the regularized likelihood tends to learn
a sparser model compared to λp that is picked by the joint
likelihood with exponential prior on λ. λp performs better
when n < p using the informative prior.But as the number of
observations grow both behave very similarly and they out-
perform all other methods in terms of model recovery. They
out perform cross-validation method in terms of prediction
when the original model is sparse and n > p.

Cross Validation
Lambda

Banerjee’s
Lambda

Bayesian
Lambda

Fig. 2. ROC curve for varying λ, with Bayesian λ between the two
extremes: cross-validated and Banerjee’s theoretical λ.

4.2. Real-life dataset: brain imaging (fMRI)
We used the fMRI data from the 2007 Pittsburgh Brain Activ-
ity Interpretation Competition (PBAIC)[7], where the fMRI
data were recorded while subjects were playing a videogame,
and the task was to predict several real-valued response vari-
ables4. Since the “ground truth” network structure is un-

4We experimented with several response variables such as Instruc-
tions(whether a person is listening to audio instructions), Body (looking at

Table 2. Results on fMRI data (PBAIC 2007): correlation be-
tween the predicted and actual response, averaged over 3 subjects.
All methods ran on a subset of preselected 200 voxels (variables)
most-correlated with the response. ’OLS’ - ordinary least-squares
(linear) regression ’EN’ - Elastic Net sparse regression, SMN (prior)
- our sparse Markov Network learner with a particular prior.

Response SMN (exp) SMN (gauss) OLS EN
3 (’Body’) 0.44 0.47 0.41 0.49

15(’Instructions’) 0.52 0.68 0.69 0.69
22(’VRfixation’) 0.77 0.79 0.78 0.80

24(’Velocity’) 0.61 0.63 0.59 0.65

available in real-life scenario (and must be discovered), we
only evaluated the predictive ability of our Markov network
models. In Table 2 we show the average results for 3 subjects,
where the dataset for each subject contained n = 704 samples
(measurements over time) and approximately p = 33, 000
variables (voxels). On this dataset, we also experimented
with Gaussian vs exponential prior on λ; Gaussian prior ap-
pears to yield slightly more accurate results that match the
performance of the state-of-art sparse regression method,
Elastic Net (EN); both clearly outperform linear regression.
Matching state-of-art predictive performance supports our
confidence in the Markov network model quality, while the
sparse structure we learn can provide scientific insights into
brain activation processes (further discussion of which is out
of scope of this paper).
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virtual person), VRfixation (in VR world vs fixation) and Velocity (subject
moving but not interacting with VR objects) - see [7] for more details.


