
RC24856 (W0909-021) September 8, 2009
Computer Science

IBM Research Report

Universally Composable Web Security Protocols
for Delegation

Suresh Chari, Charanjit Jutla
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

Universally Composable Web Security Protocols for Delegation ∗

Suresh Chari Charanjit Jutla
IBM Thomas J. Watson Research Center

Hawthorne, NY 10532.
Email: {schari,csjutla}@us.ibm.com

Abstract

With the advent of content mixing applications or mash-ups there has been a proliferation of
web security protocols for secure delegation i.e. protocols which allow end-users to delegate to
service consumers content which the end-user has stored at other service providers. The OAuth
protocol[OAu07] has emerged as the unofficial standard for these protocols and has been widely
adopted by many consumers and providers. Until now, these protocols have not been subjected
to formal analysis and as recently shown[OAu09], can be vulnerable to attacks. In this paper, we
rigorously analyze OAuth and related protocols using established cryptographic formalisms such
as universal composability. We analyze a corrected version of the OAuth protocol and precisely
characterize the intended abstract functionality and formally argue that the corrected OAuth
protocol realizes this functionality. This work thus gives formal assurance that the corrected
version will indeed make the protocol secure. Using the universal composability framework, we
show the robustness of our definitions by using this abstract functionality in a larger protocol
AppStore which captures the idea of delegated computation or in general a server-side data
mash-up. Our work is the first to rigorously apply established cryptographic formalisms to the
analysis of web security protocols. As part of our proof, to model the common case where
the end-user authenticates to the service password using username and password, we develop a
universally composable proof of pwAKE- a password based asymmetric key exchange where one
of the parties authenticates with a password and the other is able to authenticate with a public
key, a result which is of independent interest.

∗This work is supported in part by the Department of Homeland Security through award FA8750-08-2-0091

Contents

1 Introduction 2

2 Secure Delegation using the OAuth protocol 3

2.1 Session Fixation Vulnerability . 5

2.1.1 Fixing the OAuth Protocol . 5

3 UC Preliminaries 6

4 Ideal Functionalities for Delegation 6

4.1 The Ideal Functionality for Delegated Computation 6

4.2 The Ideal Functionality for Authenticated Delegation and Key Exchange 6

4.3 Implementing FApp,Store using FOAuth∗ . 9

5 Realizing the functionality FOAuth∗ 10

5.1 Ideal Functionality for Password Based Asymmetric Key Exchange 10

5.2 Protocol for OAuth∗ using Password Based Asymmetric Key Exchange 12

5.3 Optimized Protocol for OAuth∗ using Password Based Asymmetric Key Exchange . 13

5.4 The real world OAuth wire protocol . 14

5.5 What went wrong with the original protocol: Can we use FOAuth instead of FOAuth∗? 14

6 Protocol for Password Based Asymmetric Key Exchange 15

7 Conclusion 16

A Appendix 19

A.1 Proof of Theorem 2 . 19

A.2 Realizing Secure Channels . 21

A.3 Functionalities . 22

A.4 Ideal Functionality for the Original OAuth Protocol 22

1

1 Introduction

Modern web applications increasingly mix content and data from multiple trust domains offering
sophisticated content aggregation applications. While these applications typically use public un-
protected data, increasingly, a number of service Providers such as Google, Yahoo etc. permit
end-users to delegate rights to access password protected data to other service Consumers who can
then aggregate this protected data with other content. A canonical example is that of a photo-
sharing website allowing an end-user to delegate to a printing service rights to access a subset of the
end-user’s stored photos: the user does not want to give the photo printing service his password at
the sharing site but wants to grant access only to a set of photos that he wishes to get printed.

A number of web security protocols have been defined to allow for such a revocable and limited
delegation. Initially, service Providers defined proprietary protocols for secure delegation(see
[Aut, BBA, Ope]) but, more recently,OAuth[OAu07] has been defined as a conceptual unification
to enable Consumers to operate against multiple service Providers with a single protocol. OAuth
defines a wire protocol enabling the user to indicate to the service Provider the specific content
which (s)he desires to delegate to the Consumer. At a very high level the protocol works as follows:

1. The Consumer requests a RequestToken from the Provider

2. The Consumer then redirects the user to the Provider with the Request Token. The User
authenticates to the Provider and authorizes the delegation of content to the Consumer. The
Provider then records this Request Token as authorized. and then redirects the user to the
Consumer with the same RequestToken.

3. The Consumer then contacts the Provider to exchange this RequestToken for an AccessToken
which it can use as needed to access the end-user’s content

This high level description of OAuth omits a number of details which will be described in Section
2. OAuth has been implemented by a number of service Consumers and Providers and protocol as
well as extensions[Con] are being used to secure interactions between web applications.

Recently, a session fixation vulnerability in this core protocol has been identified[OAu09] which
exploits the fact that the end-user who authenticates to the Provider in Step 2 need not be the
same as the end-user who returns the authorized token to the Consumer. Using this vulnerability,
a malicious end-user can use a honest Consumer to obtain the data which the victim, another
end-user, has stored with the service Provider. A number of solutions are being proposed[Fix]
and at this time none of these have been officially adopted but a common theme is the use of a
verification token 1 that the Service Provider generates after the RequestToken is authorized and
returns to the Consumer in Step 3. The Consumer is then required to present this verification token
to the Provider before the AccessToken is issued. Note that this will only work if the redirection is
guaranteed to return to the Consumer and can not be interfered with in any manner. The details
of this attack and the fixes are described in greater detail in Section 2.1.

In this paper we use the formalisms of universal composability (UC)[Can06] to analyze this
and related web security protocols. First we define the ideal functionality for secure authenticated
delegation: A trusted third party generates and distributes to the parties pairwise shared secrets.
We note here that the original OAuth protocol with the vulnerability has an ideal functionality of

1It is assumed that this verification token binds the three parties together.

2

three-party entity authentication. The distinction between entity authentication and key exchange
has been previously highlighted[BR95]. We show the robustness of our characterization by defining
a larger protocol AppStore which captures the idea of delegated computation: AppStore consists of
three parties (the Consumer, Producer and the End-User). In the ideal functionality for AppStore
the End-User first stores content m at the Provider. Then the ideal functionality computes f(m)
(intended to represent the function computed by the Consumer) and sends this to the end-user. We
show AppStore can be implemented by a hybrid protocol consisting of our abstract functionality for
secure authenticated delegation and other existing functionalities for secure channels and signatures.

We formally prove that the corrected version of the handshake (Steps 1 and 2) of the OAuth
Protocol described above correctly realizes the ideal functionality for secure authenticated delega-
tion. Our work therefore gives the assurance that the corrections being considered for OAuth are
indeed valid and will correctly implement secure delegation and hence justifies their inclusion in the
protocol. The Universal Composability framework guarantees that any higher level protocol which
uses the ideal functionality for delegation can be implemented by replacing this with the OAuth
protocol.

The OAuth protocol does not specify how the end-user authenticates to the Service Provider
but the most common usage of this protocol in web applications is when the end-users authenticate
to the Service Provider using a username and password provided over a secure channel (SSL) with
server authentication via public keys. Halevi et al [HK98] considered this problem before but
do not give a protocol which is secure in the universally composable sense. While UC protocols
for password based key exchange are known previously[CHK+05] when both parties authenticate
with passwords there are no UC proofs of the aasymmetric case As part of this proof we give
a universally composable proof of pwAKE, a cryptographic primitive which may be independent
interest: pwAKE is the password based asymmetric key exchange protocol where one party uses
a password to authenticate but the other party can authenticate using a public key. This is in a
harder case to deal with due to the possibility of dictionary attacks etc.and the proofs of security
of OAuth with other authentication mechanisms such as public-keys should be simpler.

This paper is organized as follows: Section. 2 describes the details of the OAuth Protocol and
describes the session fixation vulnerability and the proposed fixes. Section 4 introduces the ideal
functionality AppStore, OAuth and shows how to implement AppStore using the ideal functionality
for OAuth. Section 5 shows a protocol which realizes the ideal functionality of OAuth using a
functionality for pwAKE.

2 Secure Delegation using the OAuth protocol

This section describes the OAuth protocol and how it is used for secure access delegation. While our
focus is on OAuth, the formal analysis in the following sections can be adapted to AuthSub[Aut],
BBAuth[BBA] and other protocols.. OAuth captures the commonality in function of all these
protocols: allowing Consumers access to and end-user’s content stored at a service Provider without
requiring the end-user to hand over their credentials to the consumer. To participate in an OAuth
transaction the Provider and Consumer have to perform the following bootstrap steps:

1. Agree on a name for the Consumer: This is referred to as the consumer key in the protocol.
Despite its label, this parameter is just a textual name of the Consumer.

2. Exchange shared keys and/or public-key/certificates so that the Provider can verify requests

3

Message Flows in the OAuth Protocol version 1.0

Participants: A Service Consumer and a Service Provider which are server entities and the end-
user. Key Steps: To begin this process, a specific end-user contacts the Consumer wishing to
authorize the Consumer to access his/her protected content at the Provider.

1. Obtain Unauthorized RequestToken: Service Consumer obtains an unauthorized Re-
questToken from the Provider. The message identifies the Consumer with the consumer key

and is signed by the consumer.

2. Redirect EndUser to authorize RequestToken: Consumer redirects the end-user’s
browser to a Service Provider URL. Here the Provider is expected to authenticate the user
and identify the Consumer. The user is then expected to authorize the RequestToken and
specify for exactly which content (s)he is delegating access to the Consumer.

3. Redirect User to Consumer Callback URL: After user authorizes the RequestToken
the Provider notes that this token is now authorized and redirects end-user to the conumer
callback URL. This URL may optionally be fixed at bootstrap time for this consumer.

4. Consumer exchanges authorized RequestToken for an Access Token: Consumer con-
tacts Service Provider with the RequestToken. If this RequestToken is marked as authorized,
the Service Provider returns an AccessToken to the Consumer.

5. Consumer accesses end-user content: Consumer includes AccessToken in requests for
protected end-user’s content. If AccessToken is valid and the request is signed by the consumer,
the Provider sends back the end-user’s delegated content.

Figure 1: Overview of the OAuth Protocol Version 1.0.

by the Consumer. The Consumer either signs the request with a public key or attaches a
MAC using a shared key and to verify they exchange the shared-key or public keys.

3. Fix other essential parameters: For instance, the callback URL where the Provider redirects
the user’s browser to can be agreed to and verified in each transaction.

With these bootstrap steps, these parties can participate in an OAuth enabled transaction. In
Figure 1, for convenience, we refer to Steps 1 through 3 as the Handshake portion of the OAuth
protocol. The following are notable features of OAuth version 1.0:

• Messages from the Consumer to the Provider(Steps 1, 4 and 5 in Fig. 1) identify the consumer
by name i.e. consumer key and are signed by the Consumer.

• The RequestToken obtained in Step 1 is conveyed to the Provider in Step 2 of the handshake
and after successful authorization the Provider returns exactly the same token back to the
Consumer in step 3 and is then exchanged for an access token.

• Typically the Service Provider will redirect the end-user back to a previously agreed to URL
i.e. verify that the URL provided by the Consumer in Step 2 is agreed to at bootstrap.

4

2.1 Session Fixation Vulnerability

Recently a vulnerability has been discovered in OAuth which cleverly exploits the fact that there is
nothing in the handshake to enforce that the end-user whose first contacts the Consumer and whose
browser the Consumer attempts to redirect in step 2 is the same as the end-user who authorizes
the token at the Provider. A malicious userM can exploit this vulnerability as follows:

• To initiate an OAuth based transactionM first contacts the Consumer. When the Consumer
redirects M’s browser to the Provider, M stops the flow.

• M then induces the victim end-user V to follow this link to the Provider, typically by social
engineering means. Assuming V can be tricked into visiting the Producer site, (s)he is typically
confronted with a form to authorize content access by the Consumer.Once V authorizes the
RequestToken the Producer will readily provide an AccessToken for V’s content.

• If the Producer will redirect V to any URL given to it in step 2,M can insert a site under its
control. Even if only the Consumer controls the redirection URL,M can attempt to continue
the protocol with the consumer from Step 1 as soon at it is authorized.

• The Consumer then obtains an AccessToken and use it to access the content of V who is the
user who authorized this token. Hence M can illegally view the content belonging to V.

This vulnerability has not been exploited in any implementation but it underscores the importance
of formal analysis of protocols.

2.1.1 Fixing the OAuth Protocol

Since the announcement of the vulnerability a number of solutions[Fix] have been proposed and are
under consideration. The two issues fixed are that the Consumer has to be able to control where
the end-user is being redirected after authorization and that the Provider issues a token after
authorization in the redirect back to the Consumer which binds the three parties in the transaction
together with the RequestToken. The first fix ensures thatM can not force the Provider to redirect
the end-user to a site under his control while the second ensures that the Consumer can not get an
AccessToken without a verification token obtained through the user who authorized the delegation.

Concretely these fixes are implemented in the following modifications to the Handshake:

1. Modification to Obtaining a RequestToken: While obtaining a RequestToken from the
ServiceProvider the Consumer also provides a callback url. The Provider is expected to
redirect end-users to this URL after authorization.

2. Redirect EndUser to authorize RequestToken: This step is as before

3. Modification to Redirect User to Consumer Callback URL: After user authorizes
the RequestToken the Provider redirects to the callback url from Step 1 along with a
verification token which binds the parties to the RequestToken.

4. Modification to Consumer request for Access Token: Consumer must provide the
verification token from Step 3 to obtain an AccessToken

This and other similar fixes are under consideration. In the following sections we will formally
prove that this fix to the protocol will correctly realize the intended functionality.

5

3 UC Preliminaries

In this paper we will use the universally composable framework for proofs of security [Can06]. For
easy reference, protocol executions in the UC framework are provided in Figs 6,7,8 in Appendix A.3.
We will also use many ideal functionalities such as secure channels, authenticated communication,
and public key encryption, which have been previously defined in the literature. These functionali-
ties are defined in Figs 9,11,10,12. In its simplest form, the universal composition theorem [Can06]
states that if protocol π realizes some ideal functionality I in the F-hybrid model then πρ securely
realizes I, where ρ is a protocol that realizes ideal functionality F . Please refer to [Can06] for
formal definitions.

4 Ideal Functionalities for Delegation

In this section we define the ideal functionalities for secure authenticated delegation and delegated
computation (or more generally server side mash-ups). First we define the ideal functionality for
AppStore which captures the idea of delegated computation at a Consumer with data that a user
has stored at a Provider. We then define FOAuth∗ which is the ideal functionality for the OAuth
protocol’s handshake. Section 4.3 shows a hybrid protocol which implements AppStore using the
ideal functionality FOAuth∗ .

4.1 The Ideal Functionality for Delegated Computation

This section defines the ideal functionality AppStore for delegated computation. The functionality
involves three parties the User, the Store, and the Application. The Store and Application are
intended to model the service Provider and Consumer respectively. The functionality models the
user storing personal content at the Store, a subset of which the user wants to reveal to the
Application to compute an arbitrary function on. It codifies the following sequence: Initially, the
user Pk uploads a sequence of messages to a server Pj (Store). At some point of time, the user,
possibly driven by the environment, also decides the identity Pi (Application) of the third party
application, as well as the particular function f which is to be computed on data stored at Pj .
The party Pi indicates to the functionality that it needs a certain subset of the data stored at
Pi, specified, in general, by a probabilistic polynomial time Turing machine r (called the filter
function). This is intended to capture the delegation of only a subset of data stored at the Provider
and can be seen as as a restriction of the user’s rights at the Provider. To model the idea of
additional information that the application may use in the computation (to represent a server side
data mash-up) Pi may also specify some proprietary or secret information z which is to be passed
as a parameter in the evaluation of f (the user Pk leaves it to the application’s discretion as to what
value z is used). After, the user Pk and store Pj authenticate that the filtered (by r) information
can be given to Pi, the functionality returns f(z, r(〈mt〉)) to the user Pi. The details of this ideal
functionality are given in Fig 2.

4.2 The Ideal Functionality for Authenticated Delegation and Key Exchange

In this section we define the ideal functionality for the handshake in the corrected OAuth Protocol
i.e. with the verification token issued by the Producer as described in Section 2.1.1. Before we

6

Functionality FApp,Store

Participants: The User (Pk), Store (Pj) and Application (Pi).

Set-up: F receives input (setup-store,Pk,Pj ,sid) from Pk. F writes public-delayed (i.e. sends the
input to adversary A, and waits for a deliver message) the message on Pj ’s subroutine tape
for F and locally associates sid with Pk as the user, and Pj as the store.

Upload: F receives (upload, Pk, sid, mt) from Pk. F writes private-delayed (i.e. sends the length
of the input to adversary A, and waits for a deliver message) the message on Pj ’s subroutine
tape , and appends mt to its local list of messages meant to be stored at Pj (for Pk). In
practical terms this models all the user’s personal data which is maintained by the service
Provider.

Compute: 1. F receives a message (compute, Pi, Pk, Pj , f , sid) from the user Pk and public-
delayed forwards it to Pi. The application Pi is meant to compute, on behalf of Pk,
the function f on the list of messages stored at Pk. In practical terms this models the
step where the end-user picks a specific Consumer who will be delegated access to the
content stored at the Provider to perform a server-side mashup using this data.

2. After F receives a reply (filter, r, z, sid) from Pi, it public-delayed forwards (filter, Pi,
Pk, Pj ,r, sid) to both Pk and Pj The function r signifies a function which computes a
restriction of the data stored by Pk at the store Pj and z signifies a secret additional
input that Pi supplies as an additional parameter to the function f .. The models the
Consumer using a subset of the end-user’s personal data stored at the service provider as
defined by the restriction r and performing s server-side mashup of this restricted data
along with additional data defined by z.

3. After both Pk and Pj respond in the affirmative to F , the functionality F informs
the adversary A of the affirmative response. This models the end-user granting the
Consumer the rights to access the requested restriction of the user’s data.

4. On A’s response, the functionality writes f(z, r(〈mt〉)) on the subroutine tape of Pk.
The adversary is informed of the length of this response, as well as the length of r(〈mt〉).

Corruption: We do not model forward security on corruption of various parties, but various such
models can be defined. Note that on corruption of Pi, the adversary only gets r(〈mt〉) and z.

Figure 2: A remote storage and a third party application functionality

do that we note that the original OAuth protocol is captured by the ideal functionality which
achieves three way authentication of parties i.e user (Pk), the consumer (Pi), and the service
provider (Pj). This ideal functionality is in Appendix A.4. However, as observed in many earlier
works, authentication without a key exchange is more or less useless even in the case of two party
authentication (e.g. [BR95]). We now define an ideal functionality OAuth∗, which achieves an
explicit key exchange after the authentication has completed. There are two independent keys
exchanged, one between the user and consumer, and another between the consumer and the service
provider. The formal definition is given in Fig 3.

This functionality also assures forward security [CK02] on corruption of each of the parties. It
gives the consumer two (independent) keys, one which is shared with the user and the other with
the service provider. It is clear from the description given in Fig 3 that if none of the three parties

7

Functionality FOAuth∗

Particpiants: The User (Pk), Service Provider (Pj), Consumer (Pi), and Adversary A interact
with functionality FOAuth∗ (or F).

Initiate: On receiving a subroutine input message (sid, Pi, Pk, Pj , r, initiator) from Pi, the func-
tionality F public-delayed writes the message to Pk and to Pj and records locally the state of
the protocol. Here r is meant to be a filter function.

Authentication Response: On receiving a subroutine input message from Pl (l ∈ {k, j}) of the
form (sid, Pi, Pk, Pj , response), F forwards the message to A. F records the state change
locally, and if both Pk and Pj have responded, it sets the local state to active and chooses κ1

(intended to be the shared key between Pi and Pj) and κ2 (indended to be the shared key
between Pi and Pk) uniformly and independently at random. This is the abstracttion of the
handshake of the OAuth protocol and the functionality generates pairwise shared keys as a
result of the handshake.

Activation/Key delivery: This step models the delivery of the generated pair-wise key. To model
corruption, this allows the adversary to replace the generated pairwise shared key by an
arbitrary value if the parties are compromised. In particular, if the adversary responds to F
with a “deliver key” message (sid, Ps, κ′

1, κ′

2) (s ∈ {i, k, j}), and the local state is active, it
does the following based on s

s = i: If Pk is already corrupted, set γ2 to κ′

2, else set γ2 to κ2. Also, if Pj is already corrupted,
set γ1 to κ′

1, else set γ1 to κ1. Write (sid, γ1, γ2, key) on subroutine tape of Pi.

s = k: If Pi is already corrupted, set γ2 to κ′

2, else set γ2 to κ2. Write (sid, γ2, key) on
subroutine tape of Pk.

s = j: If Pi is already corrupted, set γ1 to κ′

1, else set γ1 to κ1. Write (sid, γ1, key) on
subroutine tape of Pj .

Corruption: On corruption of any one of the parties Ps (s ∈ {i, k, j}) after the local state of F
has been set to active, the functionality takes the following action based on s

s = i: If it has already received a “deliver key” to Pk message from A, and has not yet
received a “deliver key” to Pi message, then send κ2 to A. Similarly, send κ1 to A (with
Pj replacing Pk in the condition).

s = k: If it has already received a “deliver key” to Pi message from A, and has not yet received
a “deliver key” to Pk message, then send κ2 to A.

s = j: If it has already received a “deliver key” to Pi message from A, and F has not yet
received a “deliver key” to Pj message, then send κ1 to A.

Figure 3: A functionality for delegation with explicit key exchange

are corrupted, then they indeed get random and independent keys, i.e. the user and the consumer
end up with the same random key κ2, and the consumer and the service provider end up with the
same random (and independent of κ2) key κ1. In this paper we use the convention that if a party
P is corrupted by adversary A, then A can write to the environment on behalf of P (even in the
ideal world, where P is just a dummy). Thus, e.g. if Pi is corrupted and the other two parties
are not corrupted, before delivery to Pi (with κ′

1, κ′
2) has been called by A, the functionality just

writes (κ1, κ2) to Pi. However, since Pi is already corrupted, the adversary can just ignore it and

8

write (κ′
1, κ′

2) to the environment as output of Pi. The information given to the adversary A on
corruption of different parties is defined so as to model forward security. For example, if Pk is
corrupted, after the key has already been instructed to be delivered to Pk, he adversary does not
get the key κ2. this is because, by then the user Pk may already have used the key and erased it.

4.3 Implementing FApp,Store using FOAuth∗

In this section we show how the functionality FApp,Store can be built in a hybrid model which has
access to ideal functionality FOAuth∗ . As mentioned earlier, we assume that the application and
the service provider have public keys. We assume that the user does not have publicly registered
(or certified) public keys, and hence has no way of naming itself globally. However, it usually can
setup passwords with parties having public keys very easily, e.g. by just choosing a password and
encrypting it with the public key and sending across. However, the password and the userid it
has with different public key entities cannot be assumed to be linked in any way, and one must
formally prove protocols secure by using different invocations of password based protocols, e.g. key
exchange. We note here that in this asymmetric setting where the server has a public key and the
user has a userid/password with the server, a password based secure channel functionality can be
realized. As we show in Section 5, this can be done by first doing a password based asymmetric
key exchange and then using a MAC and a pseudorandom generator to implemented secret and
authenticated exchange of messages.

For ease of exposition, we assume that the user (Pk) has access to the secure channel functional-
ity Fsc (see 12) with (at most) one public key entity. We can only allow at most one such channel,
as Fsc allows global naming of parties. With this assumption, we have that Pj can authenticate
the name Pk, across different functionalities, including FOAuth∗ . This allows for the crux of the
proof idea to come through, without getting bogged down in details. Although, the application
Pi cannot authenticate the user with the same name Pk, the implementation of FOAuth∗ in sec-
tion 5.2 shows that only Pj needs to authenticate Pk, and hence overall we are only assuming that
Pj authenticates Pk in both the secure channel functionality and in OAuth∗.

The protocol for FApp,Store in this hybrid model is then straightforward. First user Pk and
the store Pj engage in a secure channel session, and the user uploads all the messages to Pj .
Subsequently, Pk sends an unauthenticated message to Pi to initiate OAuth∗ involving Pi, Pk and
Pj , and using function f . Then, Pi initiates FOAuth∗ with role initiator, and a function r. After
both Pk and Pj respond positively to FOAuth∗ , the adversary drives the distribution of keys. At
the end of FOAuth∗ , let Pi hold keys κij and κik. Similarly, let Pk hold the key κki, and let Pj hold
the key κji. If there was no corruption, then κij = κji, and similar equalities hold for other pairwise
keys as well. Hence, using a secure MAC and a pseudorandom generator (just as in [CK02], or
see Appendix Claim 3), we effectively have a secure channel ideal functionality between Pi and Pk,
and between Pi and Pj . Using the secure channel functionality, Pk first authenticates to Pi that it
indeed wants to compute function f . Also, using the secure channel between Pj and Pi, the store
forwards r(〈mt〉) to Pi. Thereafter, Pi computes f(z, r(〈mt〉)), and returns it to Pk using the secure
channel.

A formal definition of password based AppStore functionality, a new functionality (FOAuth∗-aug)

which is the special case of OAuth∗ where the end-user authenticates to the Service Provider using
paswords,and a proof of realization of this AppStore in a hybrid model including FOAuth∗-aug,

and password based asymmetric key exchange will be given in the full paper.

9

5 Realizing the functionality FOAuth∗

In this section we want to build a real protocol which realize the ideal functionality F oauthstar.
To do this we need to consider the authentication mechanism between the end-user and the Service
Provider. The OAuth protocol does not specify this mechanism and leaves it up to the Service
provider.Most web applications use the asymmetric authentication mechanism where the end-user
authenticates to the Provider with a username and password over a secure channel such as an
SSL/TLS session with server authentication using public keys and certificates.We first define a
functionality for password based asymmetric key exchange and show how this can be used to
realize the functionality FOAuth∗ for the case when the end-user authenticaion to the Provider is
via username/password. Note that we would have a different proof for other cases (such as for e.g.
when the end-user can authenticate using a public-key) but we believe that those proofs will be
simpler than the case we consider.

5.1 Ideal Functionality for Password Based Asymmetric Key Exchange

We define an ideal functionality for password based asymmetric key exchange which has some impor-
tant differences from an ideal functionality for password based key exchange defined in [CHK+05].
The differences stem from the fact that the latter models a key exchange where none of the parties
have a public key, and the only information on which they base mutual authentication and key
exchange is a password. However, here we model a situation where one of the parties has a public
key (certified by a trusted authority). As we will later see in Section 6, the new functionality has
a much simpler implementation (i.e. more or less what is used in practice; see e.g. [HK98]).

The new functionality is defined in Fig 4 and at a high level functions as follows: it first allows
two parties, one in a client role and the other in a server role, to register a password for a given
session. Then as directed by the adversary, if the registered passwords for a session match, it
generates a new random session key and sends it to the two parties. This functionality mirrors the
Strong Key Exchange functionality Fke described in Figure. 11 which abstracts the key exchange
when the two parties have public keys.

The functionality Fpwake incorporates a number of stronge features and additional properties
which make it easier to use in realistic situations. For instance, it allows the parties to explicitly
abort the key exchange session, as opposed to agreeing on different keys (i.e. random and inde-
pendent keys). The functionality models adversaries who can try to guess the password for this
session: when the adversary issues a TestPwd query with a wrong password, the server record is
marked interrupted. This models the case where the server gives the client only a single wrong
guess of the password and can be easily extended to model the case when a small finite number
of wrong guesses are permitted. Later, when issuing the key to the server the functionality can
definitely abort. Further, if the server is not corrupted in the meanwhile, the client can also abort.
We note here that the TestPwd query can only be made against the server record. One consequence
of the stronger definition is that the situation for NewKey issuance for the server and for the client
are slightly different, and hence the asymmetry in the definitions too.

Finally, we remark that the definition includes a DOS (Denial of Service) call from the adversary.
This models the fact that an adversary can always delay message delivery to the server indefinitely,
and if a server has to explicitly abort a session, one must provide an ideal functionality to model
timeouts. A similar need arises, if the public key (which is adversarially chosen in Fpke) produces

10

Functionality Fpwake

The functionality Fpwake is parametrized by a security parameter k. It interacts with an adversary
S and a set of parties as follows:

New Session: On receiving an input (NewSession, sid, pw, role) from a party Pa, the functionality
sends (NewSession, sid, Pa, role) to S, as well as records (sid, Pa, pw, role) locally as fresh.
The role can be either client or server, and for each role, only one such input is accepted.

Test: On receiving a message (TestPwd, sid, Pi, pw’) from S, if there is a record (sid, Pi, pw, server)
which is fresh, then do: if pw = pw’, mark the record as compromised, and reply to S in the
affirmative. Otherwise, mark the record as interrupted, and reply to S in the negative.

Denial of Service: On receiving a message (DOS, sid) from S, and if the server record is marked
fresh, then mark it as interrupted.

New Key for Server: On receiving a message (NewKeyServer, sid, Pi, sk) from S, where |sk| = k,
and if there is a record of the form (sid, Pi, pw, server) which is not marked completed, and
there is a record (sid, Pj , pw’, client), the functionality does the following:

• If the server record is marked compromised then output (sid, sk) to Pi.

• Else, if the server record is marked interrupted, or the passwords in the server and the
client records are different, then output (sid, aborted) to Pi.

• Else, if Pj is corrupted then output (sid, sk) to Pi.

• Else, if a key sk′ was already sent to Pj , then send (sid, sk′) to Pi.

• Otherwise, pick a random key sk′ of length k and send (sid, sk′) to Pi.

In all cases, mark the server record as completed.

New Key for Client: On receiving a message (NewKeyClient, sid, Pj , directive) from S, where
directive is issue/abort, and if there is a record of the form (sid, Pj , pw, Client) which is
not marked completed, and there is a record (sid, Pi, pw’, server), the functionality does the
following:

• If Pi is corrupted, and if directive is abort, then send (sid, aborted) to Pj .

• Else, if Pi is corrupted or the server record is marked compromised send a new random
key of length k to Pj .

• Else, if the server record is marked interrupted, output (sid, aborted) to Pj .

• Else, if the passwords in both records are the same, and a key sk′ was already sent to
Pi, then send (sid, sk′) to Pj .

• Else, if the passwords are not the same, then send (sid, aborted) to Pi.

• Otherwise, pick a random key sk′′ of length k and send (sid, sk′′) to Pj .

In all cases, mark the client record as completed.

Figure 4: A Functionality for Password based Asymmetric Key Exchange

too many colliding ciphertexts, and hence the server fails to uniquely decrypt ciphertext messages.
This can be seen as a denial of service attack, and in fact our proof of security of Theorem 2 uses
this DOS call specifically to simulate this situation.

11

As is standard, the functionality models explicit corruption of any of the parties by allowing
the adversary to provide random keys to distribute to the parties. The details of this functionality
are given in Fig. 4.

5.2 Protocol for OAuth∗ using Password Based Asymmetric Key Exchange

In this section we describe a protocol which implements OAuth∗ in a hybrid model using ideal
functionalities F-auth for message authentication, the functionality for public-key encryption Fpke,
and the functionality for password based asymmetric key exchange Fpwake define above. We note
that the the functionality F-auth can only be used for sending messages by parties which have
publicly known (or certified) public keys. Note that we can define similar implemetations of OAuth∗

iwhich use the functionality for public key signatures (instead of F-auth), but this would lead to
a cumbersome proofs involving certification using global registration. So, we prefer this former
modelling for ease of exposition, and we refer to it as the restricted hybrid model. Note that in
the real-world server authenticaiton is done in SSL/TLS by public key signatures and registration.

As we described, we will be modeling the authentication of the end-user and Provider using
password based asymmetric key exchange the ideal functionality for which is given in Fig. 4. This
functionality captures a number of features unique to the paasword case such as the adversary’s
ability to guess passwords using the TestPwd interface. Since we will use Fpwake as a subroutine in
our protocols we need to modify the functionality OAuth∗ by requiring Pk and Pj to respond with
a password each in their Authentication Response, and by saving them locally as records for client
and server resp. Further, a query TestPwd will check the queried password against the recorded
password for the server, and change the status of the record to compromised or interrupted,
exactly as in Fpwake. One would also require related changes in the key delivery. We refer to this
functionality as FOAuth∗-aug This simply reflects the effect of embedding a component protocol

into a larger one: the adversay will be able to affect the larger protocol in a similar fashion. However,
rather than defining this modified functionality in detail, we focus here on the simpler case where
the password between Pk and Pj is of full strength, i.e. of entropy k bits, where k is the security
parameter. Then, w.l.o.g. we can assume that the adversary in the hybrid model never calls the
TestPwd query. 2

We now describe the protocol to realize the enhanced version of OAuth∗.

Public-Key Generation: On input (OAuth∗, sid, Pi, Pk, Pj , initiator) from the Envi-
ronment, the party Pi (the consumer) calls Fpke with input (KeyGen, sid0, Pi). After the
adversary replies with algorithm e it records this value.

Session Initiation The Consumer Pi initiates an OAuth session with the three parties by
invoking F-auth with input (Send, sid1, Pi, Pk, 〈initiate, e, Pj〉).

Initiate Authentication to the Provider: On receiving (Send, sid1, Pi, Pk, 〈initiate, e, Pj〉)
from F-auth, the end-user (party Pk) uses the password pwd which it had obtained earlier
from the environment and engages in a password based asymmetric key exchange with Pj (the
Service Provider) as follows. Party Pk invokes Fpwake with input (NewSession, sid2, pwd,

2Similarly, OAuth∗ needs to include a denial of service call (one each for Pi and Pj). Or one could strengthen
Fpwake by removing the DOS call option, and such a functionality can be implemented if we assume that the
adversary always selects a public key e which always results in non-colliding ciphertexts with high probability.

12

client). Party Pk also sends an unauthenticated message to Pj to invoke the functionality with
session ID sid2 and a password which the two parties had secretly shared earlier (e.g. using
the public key of public entity Pj ; for sake of exposition, we do not go into details of doing
this formally). Thus, Pj is expected to invoke the functionality with input (NewSession, sid2,
pwd, server).

Forward session-key (verification token): After the adversary calls the functionality
with both the NewKeyServer and NewKeyClient messages, the parties Pj and Pk end up with
keys keyj and keyk respectively (or with session aborted). If the client Pk did not have the
session aborted, it calls the public key encryption functionality Fpke with input (Enc, sid0,
〈keyk, Pk, Pi〉). On receiving ciphertext c, Pk sends it unauthenticated to Pi.

Decrypt Session-key(verification token): The Consumer Pi on receiving the ciphertext
c′ from some party Pa, calls the Decryption part of Fpke to obtain a message of the form
〈key0, Pa, Pi〉.

Key Exchange with Provider(Obtaining an Access token):Using 〈key0, Pa, Pi〉 the
Consumer engages with Service Provider Pj in a password based asymmetric key exchange,
with password key0, and acting as client (with Pj acting as server and using password keyj).
Let keyij be the key returned to Pj , and keyji be the key returned to Pi (with the possibility
that the key exchange may have been aborted).

Session key between Consumer and End-User: If the previous key exchange was not
aborted for Pi, it now engages in a password based asymmetric key exchange with Pa, with
password key0, and this time acting as server (and Pa acting as client, and if Pa is same as
Pk it uses password keyk). At the end of this invocation, let the key output to Pi be called
keyik, and the key output to Pa be called keyki.

Output: Pi outputs to the environment (sid, keyij , keyik, key). Pj outputs to the envi-
ronment (sid, keyji, key). Pk (and/or Pa) outputs to the environment whatever key it had
obtained in the previous step (if any).

Theorem 1 The above protocol securely realizes FOAuth∗-aug in the above restricted hybrid model.

Detailed proofs of the above theorem, along with complete definition of OAuth∗-aug will be
given in the full version of this paper.

5.3 Optimized Protocol for OAuth∗ using Password Based Asymmetric Key
Exchange

We now show that the protocol for FOAuth∗ given in the previous sub-section can be optimized by
requiring the user Pk to include another random and independent key κki in the encrypted message
(along with a nonce) to Pi in the Forward session-key step.. Later, if in Decryption in the key
exchange with Pi, if Pj does not have its key exchange aborted, it accepts κki (or whatever the
ciphertext decrypted to) as its shared key with Pa, and sends an F-auth message to Pa that the
key from step 3 was accepted. If, on the other hand, the key exchange was aborted in step 4 for
Pi, then it sends an authenticated message to Pa to abort as well.

13

5.4 The real world OAuth wire protocol

The above protocol description of the protocol for OAuth∗ (augmented by the adversarial interfaces
for the username/passsword case) is described at a high level but it has a very strong correspondence
with the (corrected) version of the OAuth protocol. We assume that the Consumer and Service
Provider have public-keys (and certificates) and that the end-user communicates with these server
entities over secure channels(SSL/TLS) and that the end-user authenticates to the Provider using
a username and password. With these assumptions we note the following:

• The Session Initiation step corresponds to the step in the OAuth Protocol where the
Consumer redirects the end-user to the Service Provider’s site to begin an OAuth session.
Note that technically the OAuth protocol includes a step before this to obtain a Request
token. We note here that this step is not required for correctness. In fact as specified in the
protocol here the session identifier chosen by the Consumer can be used instead. This has also
been noted in some of the proposed fixes to the session fixation vulnerability[Fix]. However,
as specified in the corrected protocol, the initial exchange can be used to exchange a URL
where the Service Provider can redirect the end-user to the Consumer after authorization.

• The Initiate Authentication to the Provider corresponds directly to the username-
password authentication of the end-user to the Provider.As we have mentioned this step could
be replaced by other authentication mechanisms. Technically from the OAuth∗ functionality
this would also be the step at which the Provider binds the restriction r which corresponds
to the specific rights that the user wishes to delegate to the Consumer.

• The shared key exchanged with the user, corresponding to the verification token in the pro-
posed correction to OAuth 1.0 is forwarded to the Consumer in the Forward session-
key(verification token) step.

• The Key Exchange with the Provider corresponds to the AccessToken request in the
OAuth protocol.

Note that the shared key between the end-user and the Consumer can be simply part of the
SSL/TLS session as mentioned in the optiimization section above.While the proof of the actual
wire protocol including the vulnerabilties introduced by browser artifacts such as reedirects and
ceritificate verification etc.is a little beyond most formal abstractions we note that the protocol we
have described for OAuth∗ is almost identical to the protocol flow in the real world OAuth protocol.
Hence our proof of correctness is strong evidence of the formal correctness of the corrections being
considered for the OAuth protocol.

5.5 What went wrong with the original protocol: Can we use FOAuth instead
of FOAuth∗?

Now that we have set up a considerable amount of formal machinery, a natural question to ask if
the models can yield insight into the session fixation vulnerabily in the original OAuth protocol
Version 1.0 as described in Section 2. The ideal functionality of the original OAuth protocol is
that of entity authentication as described by FOAuth in Fig. 14 of Section A.4. The proof that
the original OAuth protocol realizes this functionality is deferred to a full version of the paper.

14

Here, we elaborate on how an attempt to implement the AppStore functionality FApp,Store
using FOAuth (instead of the corrected FOAuth∗) fails. Comparing with the implementaiton
described in section 4.3, one notices that now an implementation must build secure sessions without
having the benefit of the pairwise keys distributed by FOAuth∗ . The important observation again
is that the user does not have a public key, and hence cannot use its identity (say Pk) in a global
sense. To reiterate, the end-user can have a userid-password with one particular server entity, and
possibly many such with different servers, but they cannot be assumed to be associated with each
other i.e. there is no global association of the end-user’s names.

Thus, an attempted implementation may start with an unauthenticated user (say Pa) request-
ing a consumer Pi to start an FOAuth functionality with IDs Pi, Pk and Pj (see Fig 14 in Ap-
pendix A.4). This can even be a request under SSL (using functionality Fssl in fig 13). Now, if Pa

is same as Pk, then the implementation behaves as desired. But, if Pa is different from Pk, there
is no way for Pi to know where the request came from (as Pa is unauthenticated), and hence it
will invoke FOAuth with IDs Pi, Pk and Pj (as requested)3. During execution of FOAuth, Pk is
somehow convinced (by Pa) to respond in the affirmative, as a result Pi and Pj are convinced about
the three-way authentication, as they are sent “active” messages by FOAuth. Next, Pj delivers
useful information about Pk to Pi (e.g. the stored data 〈m〉). The consumer then computes f on
this data and sends it to the original initiator (using Fssl), i.e. Pa. We note here that this precisely
describes the session fixation vulnerability.

6 Protocol for Password Based Asymmetric Key Exchange

In this section we give a protocol for password based asymmetric key exchange and show that it
securely realizes the ideal functionality Fpwake. The protocol is given in a hybrid model, which
assumes the functionality for public key encryption Fpke (but only for the server as decryptor),
and the functionality for authenticated message delivery F-auth (again, only for the server as
sender). The functionalities Fpke and F-auth are defined in Figs 10, and 9 respectively. As we
have discussed before, instead of F-auth, we could also use the ideal functionality for public key
signatures, but then we will need to have a mechanism for global setup (e.g. global registration)
which would make the proofs rather complicated. Thus, for sake of exposition, we just assume
the availability of authenticated message delivery (for just the server). We will refer to this as the
asymmetric (Fpke, F-auth)-hybrid model.

The protocol is described in Figure 5. It shows the server T which has access to the functionality
Fpke as a decryptor, and the client U which has access to the functionality as a normal encryptor.
The instantiation of Fpke shown on the left and the right side of the table is the same, with session
id sid1.

The protocol has four main phases, as shown in the table. In the first phase, the server just gets
a public key (or algorithm) e from the functionality (which is really provided by the Adversary;
for a discussion on this see [Can06]). In the second phase, the server chooses a fresh nonce n, and
passes the nonce and the public key to the client (using F-auth). The client U then chooses a
random key k (of size given by twice the security parameter). Next, it invokes Fpke to encrypt
〈U, T, n,pwd, k〉, where pwd is the password which has already been registered with the server T

3In practice (i.e. OAuth protocol Version 1.0), Pk is not even listed in this request, and hence FOAuth is already
a bit more advanced, yet not adequate.

15

under the userid U . Note that the server only recognizes the userid U as associated with this
password pwd, and other than that U has no significance to T . In particular, the user does not
have access to F-auth to send messages as U .

The user receives a reply c (ciphertext) from the functionality Fpke, which it sends to the
server along with the nonce n. Now, since this is an unauthenticated message, the adversary can
arbitrarily distort c to c′. In the third phase, the server receives a message n, c′ (wlog, assume
that the adversary does not change the nonce, as the server would immediately reject this message
otherwise). The adversary can also distort the identity of the originator of this message to, say, Pa.
The server calls the functionality Fpke to decrypt the ciphertext message c′, and receives a reply
m.

In the fourth phase, if m is not of the form 〈U ′, T, n,pwd’, k′〉, the server aborts. If it is of the
correct form, it checks if (U ′,pwd’) is in its password file (i.e. previously registered). If not, it again
aborts. Otherwise, k′ is split into two equal length strings k′ = 〈k′

1; k
′
2〉, and T sets (or outputs to

the environment) the key as k′
2. It also sends an authenticated message to Pa, which includes n,

and the first part of k′, i.e. k′
1. In the case it aborts, it selects a new random k′

1, and sends that
instead.

Now, the adversary may decide to deliver the message to U or not. However, if the adversary
does deliver the message to U , then U is assured that it came from T (because of F-auth). Hence
accordingly, it will either abort or outputs the key k2, where again k is split into two pieces
k = 〈k1; k2〉. The party U has an easy way to determine if T wants it to accept: it just checks if k1

equals the authenticated message k′
1.

Having described the protocol, which we will refer to as protocol π, we now show that it securely
realizes the ideal functionality for password based asymmetric key exchange.

Theorem 2 The protocol π in Figure 5 securely realizes Fpwake in the asymmetric (Fpke, F-
auth)-hybrid model.

Proof: See Appendix A.1.

Note that, the protocol π does not assure forward security with respect to server corruption
(nor has Fpwake been defined for forward security). For instance, if the server is corrupted after
it has finished the protocol (and possibly used and erased the key k′

2), the adversary can still get k′
2

from using the Fpke decryptor on c′ (= c). However, as in [HK98], a Diffie-Hellman key exchange
integrated in π assures forward security (in the indifferentiability security model). Moreover, as
π has the ACK property [CK01], it also realizes a forward secure ideal functionality version of
Fpwake, without resorting to non-information oracles [CK01]. Detailed definitions and proofs of
realization will be given in the full version of this paper.

7 Conclusion

In this paper we have use the Universally Composable framework to analyze the security of web
security protocols for delegation. We have defined ideal functionalities for delegated computation
and secure authenticated delegation which capture the ideas of server-side mash-ups and the hand-
shake portion of the corrected OAuth protocol respectively. We have shown that a protocol which
is similar to the corrected OAuth protocol realizes the ideal functionality for secure authenticated
delegation. This gives us assurance that the corrections being considered to the OAuth protocol are

16

Protocol for Password based Asymmetric (with server PK) Key
Exchange

Adv Fpke Server T client U Fpke

KeyGen(sid1)
←−−−−−−−−−

sid1←−−
e,d
−→

e
−→

Choose fresh n
F−auth(sid1,e,n)
−−−−−−−−−−−→ k ← $

Enc(sid1;〈U,T,n,pwd,k〉;e)
−−−−−−−−−−−−−−−−→

c=e(⊥)
←−−−−

n,c′

←−−

Dec(sid1;c′)
←−−−−−−−−

m
−→

If m = 〈U ′, T, n, pwd’, k′〉

F−auth(n;k′

1
)

−−−−−−−−−→

Suppose k = 〈k1; k2〉
and (U ′, pwd’) in passwd file, if (k1 == k′

1)
set Key= k′

2, where k′ is 〈k′
1; k

′
2〉. Set Key = k2

Otherwise, k′
1 ← $ and Abort else Abort

Figure 5:

indeed correct. To the best of our knowledge ours is one of the first work to consider the security
of web security protocols for delegation.

References

[Aut] Authentication for web applications. Specifications available online at
http://code.google.com/apis/accounts/docs/AuthForWebApps.html.

[BBA] Browser based authentication. Specifications available online at

http://developer.yahoo.com/auth/.

[BR95] M. Bellare and P. Rogaway. Provably securesession key distribution - the three

party case. In Symposium on Theory of Computation, 1995.

[Can06] Ran Canetti. Security and composition of cryptographic protocols: A tutorial.

SIGACT News, 37(3 & 4), 2006.

[CHK+05] Ran Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell, and Philip D.

MacKenzie. Universally composable password-based key exchange. In Ronald

Cramer, editor, EUROCRYPT, volume 3494 of Lecture Notes in Computer Science,

pages 404--421. Springer, 2005.

17

[CK01] R. Canetti and H. Krawczyk. Analysis of key exchange protocols and their use for

building secure channels. In Eurocrypt, number LNCS 2045, 2001.

[CK02] Ran Canetti and Hugo Krawczyk. Universally composable notions of key exchange

and secure channels. In Lars Knudsen, editor, Advances in Cryptology -- EURO-

CRYPT ’2002, volume 2332 of Lecture Notes in Computer Science, pages 337--351,

Amsterdam, The Netherlands, 2002. Springer-Verlag, Berlin Germany. Extended

version at http://eprint.iacr.org/2002/059.

[Con] OAuth Consumer Request 1.0 Draft 1. Specifications available online at

http://oauth.googlecode.com/svn/spec/ext/consumer request/1.0/drafts/1/spec.html.

[Fix] OAuth Session Fixation Advisory. http://wiki.oauth.net/OAuth-Session-Fixation-Advisory.

[HK98] Shai Halevi and Hugo Krawczyk. Public-key cryptography and password protocols. In

ACM Conference on Computer and Communications Security, pages 122--131, 1998.

[OAu07] Oauth core 1.0. Technical Specifications available online at

http://oauth.net/core/1.0/, Dec 2007.

[OAu09] Technical advisory available online at http://oauth.net/advisories/2009-1, Apr.

2009.

[Ope] AOL open authentication api (openauth). Specifications available online at

http://dev.aol.com/api/openauth.

18

A Appendix

A.1 Proof of Theorem 2

In this section we sketch a proof of correctness of the protocol for password based asymmetric key
exchange.

As is usual, IDEALF ,S,Z(k, z, r) will denote the random variable corresponding to the output
of the environment Z, when interacting with dummy parties and adversary S involved with the
ideal functionality F , and where k is the security parameter, z is the initial input of z, and r is
the randomness of all the parties concerned. Similarly, HYBF

π,A,Z(k, z, r) will denote the random
variable corresponding to the output of Z, when interacting with parties involved in protocol π

(with adversary A) in the (asymmetric or otherwise) hybrid model with functionalities F .

Theorem 2 The protocol π in Figure 5 securely realizes Fpwake in the asymmetric (Fpke,
F-auth)-hybrid model.

Proof: We will show that for every PPT adversary A, there exists a PPT adversary S, such that

the ensembles IDEALFpwake,S,Z and HYB
Fpke,F-auth
π,A,Z are computationally indistinguishable. In

the ideal world protocol, the parties U and T run as dummies and just pass back and forth the
messages between Z and Fpwake. In the real (or hybrid) world the parties U and T are running
the protocol π (or playing their part for it). We will show that for every adversary A, there is
an adversary S which uses A as a black box and emulates its move. But, to do so it will need to
simulate the real parties U and T , as well as the functionalities Fpke and F-auth, for A. we will
show that S is able to do so, and hence as far as the environment Z is concerned the hybrid world
and the ideal world are indistinguishable.

S simulates Fpke as follows. Recall that S is also simulating the parties T and U . Thus,
whenever T invokes Fpke with KeyGen, it passes the session id to A, which then replies with d, e.
S retains d and e, and also passes e to its simulation of T . Whenever, any party (including A) calls
Fpke with an Enc query (m, e′), it simulates Fpke and records (m, c) if required (note that there
can be only polynomially many such records to maintain). Therefore, it is also able to simulate
Dec queries.

S simulates F-auth by passing the incoming message to A, and if A responds to allow delivery,
then it passes the message to its simulated copy of the recipient.

Next we see how S simulates the real world parties and their interactions with the environment
Z. In both the real and the hybrid world, Z prompts the parties with initial input (New Session,
sid, (U ′,pw), role), where role is client for U , and server for T , and pw is the password. The values
U ′ and pw can be different for both U and T , and U ′ may have no relation to U . For clarity let U ′

received by U be called Uu, and the password received by U be called pwu. Similarly, the values
received by T are subscripted by t, i.e. Ut and pwt. The session ID sid is same for both parties.

In the ideal world, this input is forwarded directly to Fpwake, which in turn forwards it to S,
excluding the password, and including the identity P of the sender (i.e. U or T). On receiving this
input (and when the role is server), S simulates T in real world by sending (KeyGen, sid1) to its
simulated copy of Fpke. When S receives the input with role set as client, and if the server input
has already been received, and if the sid is same, S picks a fresh nonce n, and informs A about
sending authenticated message from T to U . If A decides to write (deliver) this message to U , then
so does S in its simulated copy of U . If A decides to deliver it to someone else (say, e.g. U ′′ 6= U)
then w.l.o.g. the message is considered as good as lost.

19

If A does write the message to U , S picks a random κ (of size given by the security parameter),
and since it is simulating Fpke it generates c = e(⊥), and appends (〈∗, T, n, ∗, κ〉), c) to its list L

of legitimate plaintext, ciphertext pairs, where * is a placeholder. In the hybrid world, U would
have made a call for plaintext (〈Uu, T, n,pwu, κ〉). Recall that the adversary A may also have made
calls to this encryption functionality, and S maintains those in L as well.

The simulator adversary S now passes n, c to the adversary A for delivery to T . If the adversary
writes n, c′ to T , then so does S to its simulated copy of T . Next, using its list L, S decrypts c′ as
follows. If c′ is in list L, associated with some (unique) plaintext m, then, it checks for m to have
the correct format. Otherwise, if c′ was not in the list, it sets m = d(c′). Thus, there are three
possibilities: (a) there was a duplicate entry associated with c′, and hence error was reported, (b)
c′ is same as c (c) c′ was decrypted either using L or using d.

In case (a), S makes a denial of service call to Fpwake. Since S was simulating Fpke perfectly
by setting ciphertexts to e(⊥) every-time, the probability of getting a collision is identical in the
two worlds. Next, (on a null reply from the functionality), S issues a NewKeyServer call to F .
Next, it gives A a randomly chosen message (simulating F-auth), as in the hybrid world also k′

1 is
chosen randomly. After A directs to deliver the message to U , S just issues a NewKeyClient call
to F with an issue directive.

In case (b), given that there was no collision, S can assume that decryption in the hybrid world
would yield 〈Uu, T, n,pwu, k′〉, where k′ is some value U would have chosen randomly. Thus, iff
Ut = Uu and pwu = pwt (for simplicity, we assume that there is only one entry in the password
file), the hybrid world would yield an accepting condition for the server T . Thus, S issues a
NewKeyServer call to Fpwake with arbitrary sk. Next, it gives adversary A a randomly chosen
message, even though S does not know if it has to simulate an accept or an abort message to U .
This suffices to simulate the hybrid world, as in the hybrid world also k′ is chosen randomly by U

and remains independent of any information A may have (recall c = e(⊥) is independent of k′).
Finally, when A directs to deliver the message to U , S just issues a NewKeyClient call with an
issue directive.

In case (c), if c′ was decrypted using L, then S already has all the messages which A requested
to be encrypted, including the possible passwords in those messages. Hence, corresponding to
this c′, let the message m be 〈U ′, T, n,pwd, γ〉. S then issues a TestPwd query to Fpwake with
password set to (U ′,pwd). Thus, if in the hybrid world, A had managed (by sending c′ instead of
c) to produce a correct password (i.e. matching the one in the password file of server), Fpwake

would also have replied in the affirmative (and marked the server record compromised). Otherwise,
it would have replied in the negative and marked the server record interrupted. Regardless, S

now issues a NewServerKey call to Fpwake with sk set to γ. Moreover, in this case, S knows
whether to simulate an accept or an abort message to U (since a server record marked corrupted
implies an accept message, while interrupted implies an abort message). Further S also knows γ.
Thus, it can supply A with a perfectly simulated message (as part of simulating F). Finally, after
A directs to deliver the message to U , S just issues a NewKeyClient call with an issue directive.

Similarly, if c′ was decrypted using d, then let m = d(c′), which would be same in both the
worlds. If m is not of the correct format, then S behaves as in case (a), i.e. with a denial of service
call, followed by the “new key” calls. Otherwise, if m is of the correct format, S behaves as in the
previous paragraph.

It is easy to see that in all the above cases, the emulation of A by S is statistically perfect.

As far as corruption of parties is concerned, first suppose that the environment directs S to

20

corrupt U , in which case it first informs F to get secrets associated with U (namely, the password
(Uu,pwu)), and then S instructs A to corrupt U by handing over its simulated local state of U ,
and from then on A runs U . After this, if A calls Fpke to encrypt a message 〈Uu, T, n,pwu, δ〉,
and for which S returns a ciphertext c, and which A instructs to be sent to T , then S calls F with
(NewKeyServer, sid, T , δ). On the other hand, if A instructs to send a c′ different from such a c

(i.e. one which does not match the password, or is an illegitimately obtained ciphertext), then S

behaves as before (i.e. the non-corruption case). It is easy to see that in both cases the emulation
is perfect.

If the environment directs S to corrupt T , in which case S informs F that it is corrupting T ,
which hands it over the secret (Ut,pwt). Next, it instructs A to corrupt T , and from then on A

runs T . Now, the adversary A cannot influence the client U much, except it may try to send wrong
messages authenticated on behalf of T . If it sends a wrong public key e′, it does not give any
additional advantage to A. It can send the wrong k′

1 response in the last “authenticated” message,
but this is easily simulated by S by making the NewKeyClient call to F with a similar directive
(i.e. if sent k′

1 is different from k′
1 handed over by U to A, then issue abort directive). �

A.2 Realizing Secure Channels

Let mac be a secure Message Authentication algorithm, and let e = (enc,dec) be a symmet-
ric encryption scheme that is semantically secure against chosen plaintext attacks. Consider the
following “generic secure channels” protocol, gscmac,e, that operates in the Fke-hybrid model.

1. When activated with input (Establish-session, sid, Pj, role), Pi sends an (Establish-session,

sid, Pj , role) request to Fke. When it gets the key κ from Fke, it partitions the key to two
segments, treated as two keys κe and κa. (κe and κa will be used for encryption and authen-
tication, respectively.)

2. When activated with input (Send, sid,m), Pi computes c = eκe(m), a = macκa(c, l), and
sends (sid, c, l, a) to Pj. Here l is a counter that is incremented for each message sent.

3. When receiving a message (sid, c, l, a), Pi first verifies that a is a valid tag for (c, l) with
respect to key κa and that no message with counter value l was previously received in this
sc-session. If so, then it locally outputs decκe(c). Otherwise, it outputs nothing (or an error
message).

4. When activated with input (Expire-session, sid) the sc-session within Pi erases the session
state (including all keys and local randomness), and returns.

Ideally, one would like to claim that protocol gsce,mac securely realizes Fsc in the Fke-hybrid
model, as long as e and mac are secure. Unfortunately, such a strong claim does not hold (see
[CK01]). Instead, [CK01] prove that a restricted version of protocol gsc securely realizes Fsc.
They also demonstrate (using non-information oracles) how to relax functionality Fsc to allow
proving security of the above general form of protocol gsc.

the restricted version of the protocol gsc (mentioned above) is obtained by replacing the generic
use of a semantically secure encryption scheme with the following more specific encryption mech-
anism. This mechanism puts a bound t on the total number of bits to be communicated by each
party in the session. Initially, each party uses a pseudorandom number generator G to expand the

21

encryption key κe to two pads of length t each. Next, κe is erased by both parties. The first pad is
used to encrypt the messages from Pi to Pj , and the second pad is used to encrypt messages from
Pj to Pi. Encryption is done via one-time-pad in the natural way (each message is encrypted by
xoring it with a new portion of the pad. The ciphertext then contains the index of the used part
of the pad).

Claim 3 [CK01] Let mac be a secure Message Authentication Code function and G be a pseudo-
random generator. Then, protocol gsc

′
mac,G securely realizes Fsc in the Fke-hybrid model.

A.3 Functionalities

This section describes protocol execution models as described in Figs 6,7,8, and well known UC
functionailities in Figs 9, 10, 11, and 12. We also give a new definition of the SSL functionality,
which reflects a unauthenticated secure session between two parties with only one of them having
a known public key (see fig 13).

A.4 Ideal Functionality for the Original OAuth Protocol

This section describes the ideal functionality of the original uncorrected OAuth protocol.The ideal
functionality is essentially a three way authentication with the parties being identified as the user
(Pk), the consumer (Pi), and the service provider (Pj). The ideal functionality for this is described
in the Appendix A.4. The protocol is initiated by the consumer who also specifies a role to which
authority is delegated to it. In the most general terms the role is given by a PPT Turing Machine
describing a function r which acts as a filter on information to be provided by the user and/or the
service provider. The functionality is defined in Fig 14.

22

Protocol execution in the real world model

Participants: Parties P1, ..., Pn running protocol π with adversary A and environment Z on input
z. When a party wants to deliver a message to another party, it instructs the Adversary to do so by
writing the message (and the recepient’s identity) on Adversary’s incoming message communication
tape. All participants have the security parameter k.

1. While Z has not halted do:

(a) Z is activated (i.e., its activation tape is set to 1). In addition to its own readable tapes,
Z has read access to the output tapes of all the parties and of A. The activation ends
when Z enters either the halting state or the waiting state. If Z enters the waiting state
then it is assumed to have written some arbitrary value on the input tape of exactly one
entity (either A or of one party out of P1, ..., Pn). This entity is activated next.

(b) Once A is activated, it proceeds according to its program performing one of the following
operations:

i. Deliver a (possibly fake) message m to party Pi. Delivering m means writing m on
the incoming message tape of Pi, together with the identity of some party Pj as the
sender of this message.

ii. Corrupt a party Pi. Upon corruption A learns the current internal state of Pi, and
Z learns that Pi was corrupted. (Say, the state of Pi is written on A’s input tape,
and Z actually drove A to corrupt Pi.) Also, from this point on, Pi may no longer
be activated.

In addition, at any time during its activation A may write any information of its choice
to its output tape.
If A delivered a message to some party in an activation, then this party is activated once
A enters the waiting state. Otherwise, Z is activated as in Step 1a.

(c) Once an uncorrupted party Pi is activated (either due to a new incoming message, deliv-
ered by A, or due to a new input, generated by Z), it proceeds according to its program
and possibly writes new information on its output tape and Adversary’s incoming mes-
sage tape. Once Pi enters the waiting or the halt states, Z is activated as in Step
1a.

2. The output of the execution is the first bit of the output tape of Z.

Figure 6: The order of events in a protocol execution in the real world model

23

The ideal process

Participants: Environment Z and ideal-process adversary S, interacting with ideal functionality F
and dummy parties P̃1, ..., P̃n. All participants have the security parameter k; Z also has input z.

• The ideal functionality acts as a joint sub-routine to all the dummy parties. Hence, all
its communications to the dummy parties is trusted and secure. The ideal functionality
also communicates with the adversary, and to model delayed delivery to the parties, the
functionality takes delivery instructions from the adversary. The functionality may report to
the adversary some crucial state changes, and on corruption of some party by the adversary
(which is communicated to the functionality), the functionality may disclose more information
to the adversary.

• The rest of the process is same as the real process, and the only role of the dummy parties
is to copy its input from the environment to the sub-routine tape of the functionality, and
similarly to copy the output from the functionality to the input tape of the encironment. The
dummy parties never write on the incoming message communication tape of the Adversary.

Figure 7: The ideal process for a given ideal functionality, F .

Protocol execution in the F-hybrid model

Participants: Parties P1, ..., Pn running protocol π with multiple copies of an ideal functionality F ,
with adversary H, and with environment Z on input z. The hybrid process is similar to the ideal
process, with F being a joint sub-routine to the parties, except that now the parties are not just
dummies. They may communicate with the adversary, and have some other internal computations
just as in the real process.

Figure 8: The hybrid model

Functionality F-auth

1. Upon receiving an input (Send, sid, Pi, Pj , m) from party Pi, send the input to the adversary.

2. Upon receiving a “deliver” response from the adversary, write (sid, Pi, Pj , m) on the subrou-
tine tape of Pj .

3. Upon receiving a message (Corrupt-Sender, sid, m′) from the adversary before the “deliver”
response, write (sid, Pi, Pj , m′) on the subroutine tape of Pj and halt.

Figure 9: The message Authentication functionality F-auth

24

Functionality FPKE

For a given domain M of plaintexts, FPKE proceeds as follows. Let ⊥ ∈M be a fixed message.

Key Generation: Upon receiving an input (KeyGen, sid, D) from some party D, send the input
to the adversary. Upon receiving (Algorithms, sid, e, d) from the adversary, where e and d

are descriptions of probabilistic interactive TMs, write (Encryption Algorithm, sid, e) on
subroutine tape of D.

Encryption: Upon receiving input (Enc, sid, m, e′) from any party E, do: If m 6∈M then output
an error message to E. Else, if e′ 6= e, or the decryptor D is corrupted, then let c = e′(m).
Else, let c = e′(⊥) and record (m, c). Write (Ciphertext, sid, c) on the subroutine tape of E.

Decryption: Upon receiving input (Dec, sid, c) from D (and D only), do: If there is a recorded
entry (m, c) for some unique m then write (Plaintext, m) on subroutine tape of D. Else,
write (Plaintext, d(c)). If there are more than one recorded m for the given c, write an error
message.

Figure 10: The public-key encryption functionality with “ideal non-malleability”

Functionality Fke

Fke proceeds as follows, running on security parameter k, with parties P1, ..., Pn and an adversary S.

1. Upon receiving a value (Establish-session, sid, Pi, Pj , role) from some party Pi, record the
tuple (sid, Pi, Pj , role) and send this tuple to the adversary. In addition, if there already is
a recorded tuple (sid, Pj , Pi, role

′) (either with role′ 6= role or role′ = role) then proceed as
follows:

(a) If both Pi and Pj are uncorrupted then choose κ
R

← {0, 1}k, send (key, sid, κ) to Pi and
Pj , send (key, sid, Pi, Pj) to the adversary, and halt.

(b) If either Pi or Pj is corrupted, then send a message (Choose-value, sid, Pi, Pj) to the
adversary; receive a value κ from the adversary, send (key, sid, κ) to Pi and Pj , and
halt.

2. Upon corruption of either Pi or Pj , proceed as follows. If the session key is not yet sent (i.e.,
it was not yet written on the outgoing communication tape), then provide S with the session
key. Otherwise provide no information to S.

Figure 11: The (Strong) Key Exchange functionality

25

Functionality Fsc

Fsc proceeds as follows, running with parties P1, ..., Pn and an adversary S.

1. Upon receiving a value (Establish-session, sid, Pj, initiator) from some party, Pi,
send (sid, Pi, Pj) to the adversary, and wait to receive a value (Establish-session,

sid, Pi, responder) from Pj . Once this value is received, set a boolean variable active. Say
that Pi and Pj are the partners of this session.

2. Upon receiving a value (Send, sid, m) from a partner Pe, e ∈ {i, j}, and if active is set, send
(Received,sid, m) to the other partner and (sid, Pi, |m|) to the adversary.

3. Upon receiving a value (Expire-session, sid) from either partner, un-set the variable active.

Figure 12: The Secure Channels functionality, Fsc

Functionality Fssl

Fsc proceeds as follows, running with parties P1, ..., Pn and an adversary S.

1. Upon receiving a value (Establish-session, sid, Pj, initiator) from some party, Pi, send
(sid, Pi, Pj) to the adversary and a delayed message sid to Pj , and wait to receive a value
(Establish-session, sid, responder) from Pj . Once this value is received, set a boolean
variable active. Say that Pi and Pj are the partners of this session.

2. Upon receiving a value (Send, sid, m) from a partner Pe, e ∈ {i, j}, and if active is set, send
(Received,sid, m) to the other partner and (sid, Pi, |m|) to the adversary.

3. Upon receiving a value (Expire-session, sid) from either partner, un-set the variable active.

Figure 13: The SSL functionality, Fssl

26

Functionality FOAuth

Participants: The ideal functionality FOAuth which acts as a joint subroutine to parties Pi (the
consumer), Pk (the user), and Pj (the service provider).

Initiate: On receiving a subroutine input message (sid,Pi, Pk, Pj , r,initiator) from Pi, the func-
tionality F forwards the message to adversary A. Here, r is a function given by a PPT TM
(which is meant to be a role or filter). The adversary then replies twice, once each for Pk and
Pj , whereupon F also writes the message to Pk and Pj resp. F records locally the state of
the protocol.

Authentication Response: On receiving a subroutine input message from Pl (l ∈ {k, j}) of the
form (sid, Pi, Pk, Pj , response), the functionality forwards the message to A. F records the
state change locally, and if both Pk and Pj have responded, it sets the local state to active.

Activation: If the adversary responds to F with a “deliver” message for Ps (s ∈ {i, k, j}), and the
local state is active, then F writes the message (sid, Pi, Pk, Pj , active) to Ps.

Corruption: On corruption of any one of the parties Ps (s ∈ {i, k, j}), there is nothing additional
to reveal to the adversary.

Figure 14: A functionality for delegation

27

