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Abstract

We consider the joint regression modeling of the mean and dispersion for a conditional response from

the Normal, Gamma and Inverse Gaussian distributions, which are continuous distributions from the

exponential dispersion family for which the likelihood function takes a specific simple form. The re-

gression methodology is based on extending Gradient Boosting (Friedman [8]) to incorporate dispersion

modeling. When compared to a similar extension of Generalized Linear Models for dispersion modeling,

this proposed new approach offers certain advantages, which include for example, the easy incorpora-

tion of relevant nonlinear and low-order covariate interaction effects in the regression function; robust

and computationally-efficient modeling procedures suitable for large, high-dimensional data sets; and

the ability to use high-cardinality categorical covariates directly in the regression without any ad hoc

preprocessing or grouping of the feature levels that is often necessary for computational tractability in

other modeling procedures. We provide the motivation, background theory and algorithmic details of the

proposed methodology along with illustrative computational examples.

1 Introduction

In regression applications involving a conditional response distribution from the exponential dis-
persion family, the primary interest is typically in the regression model for the mean parameter.
The corresponding dispersion parameter is either a fixed constant (e.g., unity for the Poisson
and Bernoulli distributions), or is an unspecified constant that is estimated from the residual
deviance values of the mean regression model.

However, the assumption of constant dispersion implies that the mean and variance of the
conditional response distribution have some fixed and unchanging relationship as a function of
the covariates, although in many cases these two quantities can plausibly vary quite indepen-
dently. For example, Heller et al. [12] describe an auto insurance data set where the mean and
variance for the loss severity distribution have an independent systematic variation across the
levels of a rating factor corresponding to the driver age group (these variations were presumably
the consequence of the details of the underwriting policies used in the individual levels for that
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rating factor, such as the specific values for the deductible and/or claim ceiling limits in each
level).

Although the modeling of the dispersion parameter may not be the primary goal of the
regression application, one consequence of any dispersion parameter variability is that it leads
to non-constant case weights in the deviance-based loss functions used for the mean regression
(irrespective of whether the dispersion variability is specified or to be estimated). In particular,
accurate estimates for the variability of the dispersion parameter lead to tighter confidence
bounds for the parameter estimates in mean regression, since the data associated with the
larger dispersion values is appropriately down-weighted in the deviance-based loss function.
However, the individual regression models for the response mean and dispersion cannot be
obtained independently, or even sequentially, and their joint estimation is intrinsically coupled
in the likelihood-based formulation for regression modeling.

The GLM methodology, which is widely used for mean regression modeling in the case of
conditional response distributions from the exponential dispersion family (see [25] for a review
focused on insurance applications), has been extended to incorporate the joint modeling of mean
and dispersion by Smyth [23], Smyth et al. [24]. The use of non-parametric regression functions
rather than linear models, has been considered the joint modeling case by Nott [21] and Chan et
al. [4], who describe a semi-parametric Bayesian framework. Similarly, Gijbels et al. [9] consider
the use of B-spline regression basis functions for the mean and dispersion in the univariate case,
with model selection being performed using the Generalized Cross-Validation (GCV) criterion
applied to a penalized likelihood function for the double exponential family ([6]).

An alternative to the GLM methodology for the mean regression case, is the well-known Gra-
dient Boosting methodology of Friedman [8] (see also Hastie et al. [11]). For the mean regression
modeling, this methodology has some specific advantages over GLM’s as reviewed below, as well
as over other comparable non-parametric extensions of GLM’s, and these advantages extend to
the joint modeling case as well.

First, even though Gradient Boosting may use the same link and loss function as the equiv-
alent GLM formulation, it often provides a much better model fit by virtue of being able to
directly and flexibly incorporate the most relevant low-order nonlinear and variable-interaction
effects into the regression function.

Second, compared to other methods, Gradient Boosting is relatively unaffected by collinear
features or by irrelevant (noise) features, both of which are invariably present in high-dimensional
data sets. For these data sets, the equivalent GLM formulation would require careful feature
selection and regularization in order to obtain robust models with stable parameter estimates.

Third, high-cardinality categorical covariates, particularly covariates whose levels cannot be
ordered or grouped in any obvious way, can be directly incorporated into Gradient Boosting
models. The equivalent GLM formulation, however, would require significant preprocessing
effort, not only to encode the category levels for analysis, but also to group and aggregate
the individual levels so as to reduce the feature cardinality for computational tractability in
the modeling procedure. In particular, the impact of grouping the levels of a high-cardinality
covariate on the quality of the eventual regression models is often unclear. This issue is of
concern in insurance loss data sets, which typically include several high-cardinality categorical
covariates of this kind, such as territory/zip code, occupation code, or car model type. For
example, Mano and Rasa [16] describe the claims modeling procedure for an auto insurance
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data set, in which a sequence of preprocessing steps is used for the high-cardinality territory
code covariate, with preliminary decision tree models or agglomerative clustering models in the
first-stage to aggregate the levels of this covariate, and with the groupings from these first stage
aggregation then being used as reduced-level factors, for a subsequent second-stage GLM model.

The outline of this paper is as follows. Section 2 summarizes the relevant properties of the
exponential dispersion family for modeling of the Normal, Gamma and Inverse Gaussian condi-
tional response distribution, as described in Section 3. Section 4 provides a brief summary of
joint mean-dispersion modeling using GLM’s, followed by the details for extending the Gradi-
ent Boosting methodology to the joint modeling case. Section 5 contains a description of some
numerical studies with simulated data sets. Section 6 provides the summary discussion.

2 Properties of Exponential Dispersion Family Distributions

We review the properties of the exponential dispersion family that are relevant for regression
modeling applications in this paper (a more extensive review with a specific focus on GLM’s can
be found in Jorgensen [13]).

A random variable Y ∼ ED∗(θ, φ) from the univariate exponential dispersion family with
canonical parameter θ and dispersion parameter φ > 0 has a probability density function

f(y; θ, φ) = exp{(yθ − b(θ) − a(y))/φ − c(y, φ)}, (1)

where y ∈ Range(Y ), b(θ) is the cumulant function, and a(y), c(y, θ) are certain functions that
are specified in (3) for individual distributions.

The cumulant generating function of (1) is given by

KY (t) ≡ log E(etY ) = (b(θ + φt) − b(θ))/φ, (2)

so that, from the identities K ′
Y (0) = E(y);K ′′

Y (0) = Var(Y ), we have

E(Y ) = b′(θ), Var(Y ) = φb′′(θ). (3)

Thus, if µ denotes the mean parameter, we have from (3) that µ = b′(θ), where b′(·) is the
invertible mean-value mapping, and its inverse b′−1(·) is termed the canonical link funtion.
Similarly, from (3) we have Var(Y ) = φV (µ), where V (µ) = b′′(θ) = b′′(b′−1(µ)) ≥ 0 is the
positive variance function.

The inverse mean-value mapping function θ = b′−1(µ) can be used to write ED∗(θ, φ) (1)
in the equivalent form ED(µ, φ), which is explicit in the two parameters µ and φ of primary
interest.

2.1 Convolution property for the ED(µ, φ) Family

The convolution property of the exponential dispersion family yields the relationship between
the statistical parameters of the distribution of homogeneous sample aggregates and that of the
underlying distribution ED(µ, φ).

Consider n independent, identically distributed random variables Yi ∼ ED(µ, φi), where
φi = φ/ωi for ωi > 0, so that the Yi have the same mean, but different inverse weights for the
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dispersion. Then from (2), the random variable Y = (1/ω)
∑n

i=1 ωiYi with ω =
∑n

i=1 ωi has the
cumulant generating function

KY (t) =
n
∑

i=1

KYi
(ωit/ω) =

b(θ + (φ/ω)t) − b(θ)

φ/ω
, (4)

so that the weighted sum has the same distribution Y ∼ ED(µ, φ/ω) as the individual Yi, with
E(Y ) = µ, Var(Y ) = (φ/ω)V (µ).

The case ωi = 1 in (4) with Var(Y ) = φV (µ)/n is of special interest, and the µ and φ param-
eters for n identically distributed Yi ∼ ED∗(µ, φ) can be estimated from the distribution of the
aggregate Y = (1/n)

∑n
i=1 Yi, since from (4) we have Y ∼ ED(µ, φ/n). This result is frequently

used to fit exponential dispersion models to data in contingency tables, where the the group
averages in each cell k correspond to the aggregate distribution with mean µk and dispersion
φk/ωk, in which the weights ωk are the known sample sizes of the aggregated data in cell k, and
µk and φk are the respective mean and dispersion of the underlying distribution. However, for
notational simplicity in this paper, just φk is used to denote the dispersion parameter in cell k,
although when explicit case weights wk for cell k are known, as described above, then φk must
be replaced by φk/wk wherever it appears.

2.2 Deviance and Negative Log-Likelihood functions

For the random variable Y ∼ ED∗(θ, φ) with mean µ and variance function V (µ), the deviance
function d(y, µ) is defined by

d(y, µ) = −2

∫ µ

y

y − s

V (s)
ds. (5)

Thus, noting that s = b′(t), V (s) = b′′(t), we have

d(y, µ) = −2

∫ b′−1(µ)

b′−1(y)
(y − b′(t))dt = −2[yθ − b(θ) − a(y)]. (6)

Comparing (6) with (1), we have

a(y) = yb′−1(y) − b(b′−1(y)), (7)

from which we obtain the identity a′(·) ≡ b′−1(·). From (6), we obtain

∂2d

∂y2
=

2

V (µ)
> 0, (8)

whenever V (µ) is strictly positive, in which case d(y, µ) is convex as a function of y.
Similarly, we have

∂2d

∂µ2
= 2

{

1 + (y − µ)
V ′(µ)

V (µ)

}

1

V (µ)
, (9)

so that while d(y, µ) is always monotonic, it is non-convex as a function of µ for µ−V (µ)/V ′(µ) >
y (in particular, for the Tweedie distributions, which are the subset of exponential dispersion
family distributions with the variance function V (µ) = µp, the deviance is non-convex for p > 1
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if µ(p − 1)/p > y). However, the Expected Value E
(

∂2d/∂µ2
)

= 2/V (µ) > 0 of (9) is always
convex whenever V (µ) is strictly positive.

From (1) and (6), the negative log-likelihood function l(y;µ, φ) for the random variable
Y ∼ ED(µ, φ) can be written in the form

l(y;µ, φ) =
d(y, µ)

2φ
+ c(y, φ). (10)

Since the principal minors of the Hessian of (10) must be positive in order for l(y;µ, φ) to be
convex, from the discussion following (9) we have that l(y;µ, φ) is non-convex as a function of
µ and φ if either d(y, µ) is non-convex, or if φ > 2d(y, µ). The second condition, in particular,
indicates that l(y;µ, φ) can be non-convex even when the deviance function d(y, µ) is convex. For
example, l(y;µ, φ) is non-convex for the Normal distribution, even though its deviance function
d(y, µ) is convex. These regions of non-convex geometry in the likelihood surface l(y;µ, φ) must
be carefully considered in order to obtain robust, convergent optimization algorithms for joint
modeling of mean and dispersion in (4).

3 The Normal, Gamma and Inverse Gaussian distributions

The Normal, Gamma and Inverse Gaussian distributions are the only members of the exponential
distribution family for which c(y, φ) can be written as

c(y, φ) =
1

2
[t̂(y) − ŝ(φ−1)], (11)

(see Jorgenson [13]), and the corresponding negative log-likelihood function (10) takes the special
form

l(y;µ, φ) =
1

2
[φ−1d(y, µ) − ŝ(φ−1) − t̂(y)]. (12)

This special form can be used to derive iterative schemes for the maximum-likelihood estimation
of the mean and dispersion parameters as described in Section (4.2) below (see also, Smyth [23])
.

Furthermore, these distributions are also special cases of the Tweedie family for which the
variance function has the special form V (µ) = µp, with p = 0 (Normal), p = 2 (Gamma) and
p = 3 (Inverse Gaussian) respectively. Therefore, the corresponding cumulant functions bp(θ)
for p = 0, 2, 3, can be obtained by solving b′′p(θ) = (b′p(θ))p (with the arbitrary constants of
integration being set to convenient simplifying values). Similarly, the corresponding deviance
functions dp(y, µ) for p = 0, 2, 3 can also be obtained by substituting the corresponding variance
function in the integral (5).

These three cases are summarized below.

3.1 Normal distribution, N (µ, σ)

The Normal distribution is a ED(µ, φ) distribution with φ = σ2 for which

b(θ) = θ2/2, (13)

d(y, µ) = (y − µ)2, (14)
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so that the canonical link function is the identity link. Then comparing the likelihood with (10),
we have

a(y) = y2/2, c(y, φ) =
1

2
log 2πφ, (15)

so that ŝ(φ−1) = log φ−1, and from (15), we have ∂c/∂φ = (1/2)φ−1, ∂2c/∂φ2 = −(1/2)φ−2.

3.2 Gamma distribution, Ga(α, β)

The Gamma distribution is a ED(µ, φ) distribution with µ = α/β, φ = 1/α, for which

b(θ) = − log(−θ), (16)

d(y, µ) = 2

[

y

µ
− log

y

µ
− 1

]

, (17)

so that the canonical link function is the negative reciprocal link. From (10), we then obtain

a(y) = −(1 + log y) (18)

c(y, φ) = φ−1 − φ−1 log φ−1 + log y + log Γ
(

φ−1
)

. (19)

so that ŝ(φ−1) = 2
[

φ−1 log φ−1 − φ−1 − log Γ
(

φ−1
)]

. In this case, to leading order for φ −→ 0,
we have c(y, φ) ≈ (1/2) log(2πφy2)+φ/12+O(φ3) . However, the derivatives of c(y, φ) (19) can
be evaluated for all values of φ in terms of well-known special functions,

∂c

∂φ
= φ−2

[

log(φ−1) − Ψ(φ−1)
]

, (20)

∂2c

∂φ2
= −φ−3

[

1 + 2 log(φ−1) − 2Ψ(φ−1) − φ−1Ψ′(φ−1)
]

, (21)

where Ψ(.) and Ψ′(.) denote the Digamma and Trigamma functions respectively (Abramovitz
and Stegun, [1]).

3.3 Inverse Gaussian distribution

The Inverse Gaussian distribution IG(µ, σ) is a ED(µ, φ) distribution with φ = σ2, so that

b(θ) = 2θ1/2, (22)

d(y, µ) =

[

y

µ2
−

2

µ
+

1

y

]

, (23)

so that the canonical link is the square reciprocal link. From (10), we then have

a(y) = −y−1, (24)

c(y, φ) =
1

2
log 2πφy3. (25)

Thus ŝ(φ−1) = log φ−1, and from (25), we have ∂c/∂φ = (1/2)φ−1, ∂2c/∂φ2 = −(1/2)φ−2.
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3.4 Relevance to Other distributions

The form c(y, φ) in (11), which is exact only for the Normal, Gamma and Inverse Gaussian
distributions, also results as the leading-order term for φ −→ 0 for the saddlepoint density
approximation to other conditional response distributions from the exponential dispersion family
(Jorgenson [13]).

Following Goustis and Casella [10], an informal derivation of the saddlepoint likelihood
approximation for a exponential dispersion family distribution, is obtained as follows. Since the
density function f(y; θ, φ) of a random variable Y ∼ ED∗(θ, φ) can be represented as the inverse
Fourier transform of the characteristic function with imaginary argument exp{KY (iz)} (Feller
[7], Ch. XV), we have

f(y; θ, φ) =
1

2π

∫ +∞

−∞
eKY (iz)e−izydz. (26)

For a density function from the exponential dispersion family, we have from (2), after setting
θ̃ = b′−1(y), noting from (7) that a(y) = yθ̃ − b(θ̃), and comparing with (1) that

c(y;φ) = − log
1

2π

∫ +∞

−∞
e(b(θ+iφz)−b(θ̃)−y(θ+iφz)+yθ̃)/φdz. (27)

The change of variable iz = s, then transfers the line integral in 27, to the imaginary axis in
complex plane for s. However, since the integrand in (27) is analytic and vanishes for iz −→
±i∞, the value of the inversion integral is unaffected by a translation of the line of integration
parallel to the imaginary axis, and in particular, so that it passes through the saddlepoint of
the argument of the exponential in (27). Thus, using the change of variables iz = s− (θ− θ̃)/φ,
we have

c(y;φ) = − log
1

2πi

∫ +i∞

−i∞
e(b(θ̃+φs)−b(θ̃)−φsy)/φds. (28)

The integrand in 28, for leading order as φ −→ 0, is dominated by the contribution in the
neighborhood of the saddlepoint. Thus

c(y;φ) ≈ − log
1

2πi

∫ +i∞

−i∞
e

1

2
φb′′(θ̃)s2

ds

= log
√

2πφV (y)

≡ c̃(y;φ),

where c̃(y;φ) denotes the saddlepoint approximation to c(y;φ). The various steps in (29) follow
from the fact that b(θ) is at least twice-differentiable, and at the unique saddlepoint s = 0 of
b(θ̃ + iφs) − b(θ̃) − iφs, we have b′′(θ̃) = V (y) > 0 (the special case when V (y) = 0 is addressed
below).

From (29), the negative log-likelihood (10) with the saddlepoint approximation to the exact
density, can be written as

l(y;µ, φ) ≈
d(y, µ)

2φ
+ log

√

2πφV (y). (29)

Thus (29) which is valid to leading order for φ −→ 0, has the same form as (12), with ŝ(φ−1) ≈
− log φ.
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In fact, this approximation (29) is also the exact negative log-likelihood function for the
Normal and Inverse Gaussian distributions, and Goustis and Casella [10] have shown that a
renormalization of (29) leads to the exact negative log-likelihood for the Gamma distribution as
well.

The saddlepoint likelihood (29) also provides a computationally simpler alternative to the
exact negative log-likelihood for joint estimation of µ and φ in the small dispersion (φ −→ 0)
limit, and is equivalent to the extended quasi-likelihood function (Nelder and Pregibon [19]),
and the double exponential family likelihood (Efron [6]) which have been widely used in GLM
modeling.

For Tweedie family distributions Twp(µ, φ) with 1 ≤ p < 2, which correspond to the Poisson
and Compound-Poisson distributions respectively, the value y = 0 is in the range of the distri-
bution with V (0) = 0. As a result the assumptions leading to the saddlepoint approximation are
not uniformly valid for all values of y as φ −→ 0, even though the corresponding c(0;φ is always
well defined. However, for the distributions considered in this paper, the saddlepoint likelihood
(12)) is either exact, or a well-defined approximation uniformly over the range of y.

4 Joint Regression Modeling

The overall framework for joint regression modeling is first described, followed by the description
of the extension of the GLM and Gradient Boosting approaches within this framework.

4.1 Loss function for Joint Modeling

The loss function for joint regression modeling is the empirical negative log-likelihood for a con-
ditional response variable from the ED(µ, φ) family over the training data records {yi,xi,zi}

n
i=1.

From (10), this loss function is given by

L(µ, φ) =
n
∑

i=1

l(yi;µi, φi) =
n
∑

i=1

[

d(yi, µi)

2φi
+ c(yi, φi)

]

. (30)

The regression functions for the mean and dispersion are given by η(x) and ξ(z) respectively,
where x and z denote the respective vector of covariates (these two sets of individual covariates
need not be mutually exclusive). Then, given suitable invertible link functions. g : Range(Y ) −→
IR and h : IR+ −→ IR, we have

g(µ) = η(x), h(φ) = ξ(z). (31)

For twice-differentiable loss (30) and the link (31) functions, the required parameter estimation
can be carried out using Newton-type methods, which require the following derivatives

∂li
∂η

= −
(yi − µi)

φiV (µi)g′(µi)
,

∂li
∂ξ

= −

(

di

2φ2
i

−
∂ci

∂φi

)

1

h′(φi)
, (32)

where we denote di = d(yi, µi) and ci = c(yi, φi). Similarly, we have

∂2li
∂η2

=

[

1 + (yi − µi)

{

V ′(µi)

V (µi)
+

g′′(µi)

g′(µi)

}]

1

φiV (µi)(g′(µ))2
, (33)
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∂2li
∂η∂ξ

=
(yi − µi)

φ2
i V (µi)g′(µi)h′(φi)

. (34)

∂2li
∂ξ2

=

[(

di

φ3
i

+
∂2ci

∂φi
2

)

+

(

di

2φ2
i

−
∂ci

∂φi

)

h′′(φi)

h′(φi)

]

1

(h′(φi))2
. (35)

From (34), it can be seen the µ and φ parameters for an exponential dispersion family distribution
are statistically orthogonal since E(∂2l/∂µ∂φ) = 0.

The use of the canonical link g(µ) = b′−1(µ) in mean regression model leads to considerable
simplification in (32)-(35), since g′(µ)V (µ) = 1, g′′(µ)V (µ) + g′(µ)V ′(µ) = 0 in that case.

4.2 Joint Modeling using GLM’s

4.2.1 General case

The usual GLM methodology for mean regression modeling (McCullagh and Nelder [17], [18])
can be extended to the joint modeling case, by taking η(x) and ξ(z) to be linear functions of
the covariates

η(x) = βT x, ξ(z) = γT z, (36)

Intercept terms can be incorporated in (36) in the usual way by adding a constant-valued dummy
covariate to x and z respectively.

The gradient and Hessian of (30) with respect to the model coefficients in (36) is given by

(∇βL)k =
n
∑

i=1

(

∂li
∂η

)

k

xi, (∇γL)k =
n
∑

i=1

(

∂li
∂ξ

)

k

zi, (37)

and

(Hββ)k =
n
∑

i=1

(

∂2li
∂η2

)

k

xix
T
i , (Hγγ)k =

n
∑

i=1

(

∂2li
∂ξ2

)

k

ziz
T
i , (38)

(Hβγ)k =
n
∑

i=1

(

∂2li
∂η∂ξ

)

k

xiz
T
i , (39)

These derivatives, when taken in conjunction with (32)-(35), lead to the following Newton iter-
ation for estimating {β,γ} in the form

[

βk+1

γk+1

]

=

[

βk

γk

]

−

[

(Hββ)k (Hβγ)k
(Hγβ)k (Hγγ)k

]−1 [
(∇βl)k

(∇γ l)k

]

(40)

As noted in (2.2), since L(µ, φ) is non-convex, the Hessian matrix (40) can be indefinite, so that
this overall iteration is not globally convergent. Although various modifications of this basic
Newton iteration, such as quasi-Newton methods and trust region methods [20], can be used
to provide a globally convergent iteration, these techniques can be difficult to program from
scratch for a high-dimensional optimization problem.

An alternative approach is the joint modeling analog of the Fisher scoring algorithm for
GLM’s, in which the Hessian matrix (40) is replaced by its Expected Value (an approximation
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that is accurate near the optimum solution). From (34), it can be seen that the cross-derivative
term in (39) has has an Expected Value of 0, so that the Fisher scoring algorithm effectively
decouples the updating of the parameters for the mean and dispersion, as follows,

βk+1 = βk − [E((Hββ))k]−1(∇βl)k, (41)

γk+1 = γk − [E((Hγγ))k]
−1(∇γ l)k. (42)

Since E((Hββ)) in (41) is always positive-definite from (2.2), the iteration (41)-(42) will be

globally convergent when E((Hγγ)) is also positive-definite.

4.2.2 Special Case

We now consider (41)-(42) for the special case of the Normal, Gamma and Inverse Gaussian
distributions, for which the negative log-likelihood takes the form (12). From (32) and (33), in
this case we have

E(yi) = µi, E(di) ≡ δi = ŝ′(φ−1
i ). (43)

If we now denote the training data by

y = [y1, . . . , yn]T , X = [x1, . . . ,xn]T , Z = [z1, . . . ,zn]T , (44)

we have from (36) that
g(µ) = βT X, h(φ) = γT Z. (45)

From (33)-(35), we define the diagonal matrices

W = Diag
{

φ−1
i (V (µi))

−1(g′(µi))
−2
}

, (46)

V = Diag

{

−
1

2
φ−4

i ŝ′′(φ−1
i ))(h′(φi))

−2
}

, (47)

D = Diag
{

−φ−2
i ŝ′′(φ−1

i ))
}

, (48)

and let
d = [d((µ1, y1), . . . , d((µn, yn)]T δ = [ŝ′(φ−1

1 ), . . . , ŝ′(φ−1
n ))]T . (49)

Thus, denoting the working responses at iteration k by

µ̂k = g′(µk)(y − µk) + g(µk), (50)

φ̂k = h′(φk)D
−1
k (dk − δk) + h(φk), (51)

the iterations in (41) and (42) can be written in the form,

βk+1 = (XT W kX)−1XT W kµ̂k, (52)

γk+1 = (ZT V kZ)−1ZT V kφ̂k. (53)

Each iteration step in (52)-(53) then corresponds to a pair of weighted least squares problems,
in which the working responses (50)-(51), and the weight vectors W k,V k in (48) are updated
at each iteration.
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Smyth [23] has suggested that the overall convergence of this iteration can be improved
by using the most recently updated values µk+1 from the half-step (52) to obtain the working
response and weight vector in order to solve for φk+1 from the half-step (53). In this way,
the iteration alternates between (52) and (53), always using the most recent updates in each
half-step of the iteration.

The specific form of (53) used to update the dispersion parameter submodel can be interpre-
tated as GLM model in its own right, since the negative log-likelihood in (12) can be regarded as
a “pseudo-deviance,” which has the same form as (6), after interpreting the deviance residual d
as a response, φ−1 as the canonical parameter, and ŝ(φ−1) as the cumulant function respectively.

In the case of the Normal and Inverse Gaussian distributions, we have ŝ(φ−1
i ) = log φ−1

i .
Then from (43), we have E(di) = φi and −φ−2

i ŝ′′(φ−1) = 1, so that in this case Dk in (51)
can be set to the identity matrix, with other simplifications in V k as well. In these two cases,
therefore, the iteration for the dispersion submodel is identical to the Fisher scoring algorithm
for a GLM with response di and E(di) = φi, using the Gamma variance function V (φi) = φ2

i

with fixed dispersion parameter equal to 2.
The Gamma distribution (3.2) is the only case where (12) holds with a non-trivial form for

ŝ(φ−1), with (19)

ŝ′(φ−1
i ) = 2

[

log φ−1
i − Ψ(φ−1

i )
]

, ŝ′′(φ−1
i ) = 2

[

φi − Ψ′(φ−1
i )
]

. (54)

As noted by Aitken [2], the special form of the likelihood function for the Normal and Inverse
Gaussian distributions is such that the structure of the mean and dispersion sub-models in (52)-
(53) correspond to Fisher scoring iterations for known loss functions in GLM’s. This suggests
that instead of programming the iteration in (52)-(53), one can use existing GLM routines
as black-box programs to handle the joint modeling case. Therefore, starting from an initial
estimate of φ, Aitken’s procedure alternates between solving for µ with fixed φ and response yi

using the GLM model for the Normal or Inverse Gaussian as the case may be. This is followed
by solving for φ with fixed µ and response di using the GLM model for the Gamma case.
Although this approach can simplify the programming considerably, by making use of existing
GLM routines in statistical packages, the convergence of this decoupled approach is likely to be
slower than the tightly-coupled iterations used in (52) and (53).

4.3 Joint Modeling of Mean using Gradient Boosting

The Gradient Boosting algorithm [8] can be extended for joint modeling as follows. Let η0 and
ξ0 denote constant offsets, and denoting the sample response mean by ȳ, on possibility is to set
these constant offsets to η0 = g(ȳ), ξ0 = h((1/(n− 1))

∑

i di(yi, ȳ)), which are obtained from the
maximum saddlepoint-likelihood estimators for the unconditional response.

In the Gradient Boosting formulation, the regression functions obtained (31) as stagewise
expansions of the form

g(µk) = ηk(x), h(φk) = ξk(z), (55)

where, starting with the offsets η0 and ξ0, we compute the terms at the next stage in the form

ηk+1(x) = ηk(x) + ak+1R(x,βk+1), ξk+1(z) = ξk(z) + bk+1S(z,γk+1). (56)
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For each such stage, the positive scalar coefficients {ak+1,bk+1}, and the parameterized basis
functions R(x,β),S(z,γ) are chosen to obtain a significant reduction in the loss function (30).

Since the simultaneous optimization of all the variables in (56) is computationally difficult,
the two-step algorithm described below is used to compute the terms at each stage.

4.4 Determination of the Stage Basis Functions

In the first step, the parameters {βk+1,γk+1} for the basis functions in (56) are estimated from

βk+1 = arg minβ

n
∑

i=1

[(

−
∂li
∂η

)

k

− R(xi,β)

]2

, (57)

γk+1 = arg minγ

n
∑

i=1

[(

−
∂li
∂ξ

)

k

− S(zi,γ)

]2

. (58)

The resulting basis functions {R(x,βk+1), S(z,βk+1)} in (56) are optimal in the sense of be-
ing maximally correlated with the corresponding steepest-descent gradient direction of the loss
function (30) evaluated at the current solution.

In Gradient Boosting, a suitable choice for these basis functions are regression trees of fixed
depth, which are computed using a least-squares splitting criterion (57) and (58 as described in
Breiman et al. [3]. For this choice, the parameters {βk+1,γk+1} then represent the covariate
split conditions and leaf-node response estimates in the respective regression stumps.

The use of regression trees with a splitting rule based the least squares criterion, as the stage
basis functions in (56), is responsible for many of the attractive computational properties of
the Gradient Boosting methodology as described further below. These regression trees, which
are typically of small depth (either 1 or 2), are termed “weak learners” in the terminology of
gradient boosting (Friedman [8]). In particular, regression trees of depth 1 (termed “stumps”)
lead to piecewise-constant models for η(x) and ξ(z) that have an additive structure in the
covariates. Similarly, regression trees of depth 2 lead to piecewise-constant models η(x) and
ξ(z) that incorporate first-order local interaction terms. Furthermore, different regression tree
depths can be used in the regression functions R(x,β) and S(z,β) respectively, which provides
an additional modeling flexibility. For example, the constant dispersion case is ensured by using
a regression tree of depth zero as the stage basis function for S(z,β)).

4.5 Determination of the Expansion Coefficients

In the second step, after the basis functions R(x,βk+1) and S(z,γk+1) have been computed
from (57) and (58) as outlined above, the scalar coefficients {ak+1,bk+1} are obtained from

(ak+1, bk+1) = arg min(a,b)L̂k(a, b), (59)

where
L̂k(a, b) = L(g−1(ηk + aR(x,βk+1)), h

−1(ξk + bS(z,γk+1))). (60)

Since this is a bivariate optimization problem, this step differs from the equivalent step in
Friedman [8], where only an univariate optimization problem was solved using a line search
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optimization algorithm. In the present case, the use of Newton’s method seems preferable since
it is unaffected by the local geometry of the optimization surface (59), which may quite poorly
scaled in the initial stages of the stagewise procedure, and gradient line-search methods are
known to be sensitive to the relative scaling of the optimization variables [20].

However, an important aspect of using Newton’s method is that starting from an initial
guess (a, b) = (0, 0), only a single Newton step is taken, rather than iterating the optimization
(59) to convergence. This “early stopping” may help in avoiding overfitting to the specific basis
functions appearing in the early stages of the stagewise procedure. However, there is no loss in
the overall accuracy of the stagewise procedure, since any sub-optimal solutions for (59) at a
given stage, can be corrected since the same stage basis functions may be re-introduced in the
subsequent stages of the overall stagewise procedure (56).

This single-step Newton iteration to solve (59) only requires the derivatives of (59) at (a, b) =
(0, 0), which are given by

(∇aL̂)k =
n
∑

i=1

(

∂li
∂η

)

k

R(xi,βk+1), (∇bL̂)k =
n
∑

i=1

(

∂li
∂ξ

)

k

S(zi,γk+1), (61)

(Ĥaa)k =
n
∑

i=1

(

∂2li
∂η2

)

k

R(xi,βk+1)
2, (Ĥbb)k =

n
∑

i=1

(

∂2li
∂ξ2

)

k

S(zi,γk+1)
2, (62)

(Ĥab)k =
n
∑

i=1

(

∂2li
∂η∂ξ

)

k

R(xi,βk+1)S(zi,γk+1), (63)

and used in conjunction with (32)-(35), we have

[

ak+1

bk+1

]

= −α̂

[

(Ĥaa)k + λ̂ (Ĥab)k
(Ĥba)k (Ĥbb)k + λ̂

]−1 [

(∇aL̂)k
(∇bL̂)k

]

. (64)

Setting the parameters α̂ = 1 and λ̂ = 0 in (64) yields the usual single-step Newton iteration
for (59). However, as noted earlier, particularly in the initial stages of the stagewise procedure,
the optimization geometry may be non-convex and the Hessian in (64) may not be positive-
definite. Furthermore, even when the Hessian is positive-definite, the unmodified Newton step
can occasionally lead to an increase rather than a desired decrease in the objective function (59).

Therefore, the two parameters α̂ and λ̂ are introduced to modify the usual Newton step,
so as to ensure a decrease in the objective function, using ideas from nonlinear optimization
(Nocedal and Wright [20], page 74).

The first modification requires computing the the eigenvalues of the 2× 2 Hessian matrix in
(63), and in the semi-definite or indefinite case, we set λ̂ = −(1 + δ)λ̂min, where λ̂min ≤ 0 is the
smaller eigenvalue, and δ > 0 is some small positive constant. Th modified Newton iteration
matrix is then positive-definite and well-conditioned, and the resulting modified Newton step is
then a descent direction for the objective function (59).

The second modification involves selecting 0 < α̂ ≤ 1 to ensure that the size of the step in the
descent direction from the modified Newton step, actually leads to a decrease in the objective
function (59), since this is only guaranteed for the small enough α̂. Therefore starting with an
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initial value of α̂ = 1 in (64) which would be an unmodified Newton step, the objective function
(59) evaluated, and if is not sufficiently decreased according to the well-known Armijo condition

L̂k(α̂ak+1, α̂bk+1) ≤ L̂k(0, 0) − c1α̂(ak+1(∇aL̂)k + bk+1(∇bL̂)k), (65)

then α̂ is successively halved till the desired condition (65) is satisfied (the constant value c1 in
(65) must satisfy 0 < c1 < 1 and Nocedal and Wright [20] recommend using a small value, say
c1 = 10−4). This choice of α̂ ensures that the largest possible modified Newton step is taken,
consistent with a sufficient decrease in the objective function in this stage.

4.6 Optimum Number of Stages in Expansion

The optimum number of stages in the expansion (56), denoted by K, is obtained from the
cross-validation estimate of the loss

K = arg mink

NCV
∑

I=1

L{I}(µ
{\I}
k , φ

{\I}
k ), (66)

where µ
{\I}
k ,φ

{\I}
k denote the mean and dispersion estimates respectively at the k’th stage from

the training data for the I’th fold (denoted by \I), and L{I}(µ
{\I}
k , φ

{\I}
k ) denotes the loss

function evaluated on the test data in the I’th fold at the k’th stage. The number of cross-
validation folds NCV is typically 5 or 10. Other criteria such as the 1-SE rule (Breiman et al.
[3]), in which the K is the smallest number of stages for which the cross-validation loss is within
1 standard error of the minimum cross-validation loss, can also be used as an alternative to (66).

4.7 Gradient Boosting Implementation details

For mean regression modeling, Friedman [8] has observed that Gradient Boosting leads to highly
competitive and robust procedures, and many of his conclusions extend readily to the joint mod-
eling situation discussed here as well. In particular, the computation of the stage basis functions,
leads to a systematic and modular algorithmic approach that is independent of the specific form
of the overall loss function. Furthermore, the use of the least-squares fitting criterion for for con-
structing the regression-tree basis functions in each stage is especially advantageous, since this
particular criterion can be evaluated very rapidly using fast update algorithms, while examining
the sequence of possible tree splits for the optimal split in the regression tree algorithm.

Another valuable benefit of using the least-squares fitting criterion in the stage regression
tree computations, arises in the treatment of categorical covariate splits, where the convexity of
the least-squares splitting criterion ensures that if Ω is the cardinality of a categorical covariate,
then the best split over all the possible splits in this covariate can be obtained in just O(Ω) steps,
without having to exhaustively search through O(2Ω) possible combinations (Breiman et al [3]).
The ability to evaluate categorical splits in a linear rather than exponential number of steps
allows categorical features of high cardinality to be used in the regression modeling without any
preprocessing or grouping of the corresponding levels for computational tractability in the fitting
procedure. In contrast, regression trees that directly use the overall loss function as the splitting
criterion may not have this useful property for categorical covariates, since in (9) we have noted
that the relevant loss functions may not always be convex, even in the mean regression case.
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Finally, the use of regression trees as basis functions in the stagewise expansion is extremely
useful for high-dimensional data sets with numerous input covariates. In this situation, the
intrinsic dimensionality of the regression response surface is likely to be much smaller than
the dimension of the input covariate space, and the greedy feature selection approach used
for regression trees ensures that any collinear and irrelevant covariates are excluded from the
regression models, so that there is no need for any separate pre-processing feature selection step
in the computational procedure.

The ability of the regression functions to model low-order interaction effects in the covariates
is achieved by using regression trees with depth greater than 1. In practice a depth of 2 or
3 usually suffices, since typically only the low-order interaction effects are important in the
regression modeling. From the model interpretation point of view, the use of regression trees of
depth of 1 has the advantage that the overall regression function is additive, making it possible
to separate out the individual effects of the covariates in the final model.

Friedman [8] has described a number of regression diagnostics for Gradient Boosting models,
which include quantitative measures for the relative importance of covariates appearing in the
regression function, and partial dependence plots that show the trend in the conditional response
as a function of each individual covariate, averaged over the remaining covariate effects. These
diagnostics can be readily extended to the joint modeling case, and we refer to his paper for the
relevant details.

5 Numerical Studies

It is difficult to find non-trivial, public data sets for analysing distributional and heteroscedas-
ticity effects in regression modeling. For real-world data sets, reasonable fits and consistent
interpretations may be obtained by many competing regression models. Therefore, we have also
considered a few synthetic data sets with known response characteristics, in order to explicate
some of the algorithmic issues in the computational results below.

5.1 Synthetic Data Sets

The response variable in the synthetic data sets considered below are always generated from
a specific distribution with a known mean and dispersion dependency on the covariates. As a
result, the joint regression methodology can be evaluated in terms of its ability to identify the
correct response model, and recover the known signal from the data.

The generation of random variates with a given mean and dispersion profile from the Normal,
Gamma and Inverse Gaussian distributions makes use of the well-known property of Tweedie
distributions (Jorgensen [13]), that given a random variable Y ∼ Twp(µ, φ), then for a > 0, the
random variable aY ∼ Twp(aµ, a2−pφ) (or equivalently, aY has the same Tweedie distribution
as Y , but with a scaled mean aµ and scaled variance a2µp) respectively.

It is well known that given a unit normal variate Y ∼ N (0, 1), we have µ + σY ∼ N (µ, σ),
and the former can be sampled using the Cheng-Feast ratio-of-uniforms algorithm with linear
pretest. Similarly, given a unit Gamma variate Y ∼ Ga(α, 1), we have β−1Y ∼ Ga(α, β), and
the former can be sampled using the Cheng-Feast ratio-of-uniforms algorithm for α > 1, and the
Ahrens-Dieter algorithm for α < 1 (Glasserman [22], p. 126-127). Finally, given a unit Inverse
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Gaussian variate Y ∼ IG(µσ2, 1), we have σ−2Y ∼ IG(µ, σ), and the former can be sampled
using the Michael-Schucany-Haas algorithm. These sampling algorithms for the unit Normal,
Gamma and Inverse Gaussian distributions are discussed, for example, in Glasserman [22].

The synthetic data used here consists of 2000 samples, which are equally divided into train-
ing and validation data sets. The covariate set is 6-dimensional, x = {x1, x2, . . . , x6}, with
continuous-valued x1, x2, x3 being uniformly sampled in the interval (0, 1), and categorical-valued
x3, x4, x5 being uniformly sampled at 4 levels denoted by {1, 2, 3, 4} respectively. The response
is given by y = Twp(µ(x), φ(x)) where p = 0, 2, 3 respectively, and the mean and dispersion are
given functions of the covariates. In these synthetic data sets, the mean is always an additive,
nonlinear function of the following form (which we have taken from [15]),

µ(x) = 7 + 10(x1 − 0.5)2 − x2 + sin 2πx2 − 3x3 + 1.5I[3,4](x4), (67)

with IS(x) denoting the unit indicator function (e.g., IS(x) = 1ifx ∈ S, 0otherwise).
The first collection of synthetic data sets, termed SYNTH1, are generated using a constant-

dispersion response model φ(x) = c, with c being chosen to achieve a signal-to-noise ratio in
the range (1, 2) (the simulated response for the normal distribution is checked to ensure strictly-
positive values, so that the data can also be explored using the non-normal loss functions for
comparison purposes.

For example, in Table (1) the response is generated from the Normal, Gamma and Inverse
Gaussian distributions respectively, and these data sets are fitted using all three corresponding
loss models. In all these cases, the identity link was used for the mean sub-model and the log-
link for the dispersion sub-mmodel. The results show that the “correct” loss model typically
has the lowest validation-set loss, and in each case, the examination of the model fit also shows
a consistent signal recovery. For small c, the identification of the correct model fit can be
confounded (as can be noticed in the case of Gamma and Inverse Gaussian distributions) in
Table (1), however, for large c the correct loss model always clearly provides the best model fit.

These results Table (1) also demonstrate the utility of the joint modeling formulation even in
the constant-dispersion case, since the likelihood-based, variable-dispersion formulation allows
alternative distributional models for the conditional response to be compared, which is not
possible using the deviance-based loss function formulations typically used for mean regression
modeling.

Table (2) considers the synthetic data set generated for Normal-distributed response case,
with the Normal loss function being used for the model fit. The results show the effect of varying
the tree-depth size in the mean and dispersion sub-models on the model accuracy. The best
model accuracy is obtained using the tree depths (1, 0), which are the simplest basis functions
that consistent with the assumed covariate effects in the synthetic data set. The results show
that using more-complex basis functions in this case, apparently leads to overfitting in the
individual stages, which is reflected by the overall sub-optimal solution in the gradient boosting
expansion.

The second collection of synthetic data sets, termed SYNTH2, is generated with the same
mean sub-model as SYNTH1, and with a variable-dispersion sub-model of the form

φ(x) = c1I[1,2](x4) + c2I[3,4](x4). (68)
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Response Type Model Loss Function
Normal Gamma Inverse Gaussian

N (µ(x), 0.6) 1.290 1.376 1.575

Ga(µ(x), 0.08) 2.100 2.000 2.042
Ga(µ(x), 1.0) 3.386 2.895 7.749

IG(µ(x), 0.005) 1.728 1.604 1.628
IG(µ(x), 0.2) 3.661 2.916 2.789

Table 1: Validation-set loss LV for SYNTH1 data set, with tree depths l = 1 for the mean and
k = 0 for the dispersion. The estimated standard errors are negligible and have been omitted
for brevity.

Tree depths (l, k)
(1, 0) (1, 1) (2, 0) (2, 1) (2, 2)

LV 1.317 1.393 1.386 2.588 69.77

Table 2: Validation-set loss LV for SYNTH1 data set for the response given by N (µ(x), 0.6) for
varying tree depth sizes (l, k) .

Table (3) shows the effect of varying the tree depth in the respective fitted models, for the
different response distributions in this variable dispersion case, using the “correct” loss function
for the model fit. For all three response distributions, the choice k = 1 yields the best model
fit, and we note that this choice also leads to the simplest basis function that is consistent with
the assumed piecewise-constant variation in the generating model for the synthetic data.

5.2 Sniffer Data Set

The Sniffer data set (used in Smyth [23]) models the amount y of hydrocarbon vapors escaping
while filling a gasoline tank. This data set, which can be obtained from http://www.statsci.

Response Type
Tree depths Normal Gamma Inverse Gaussian

(c1 = 0.2, c2 = 2.0) (c1 = 0.08, c2 = 1.0) (c1 = 0.08, c2 = 0.8)

l = 1, k = 0 1.598 2.822 2.810
l = 1, k = 1 1.421 2.566 2.655
l = 2, k = 0 1.661 2.876 2.817
l = 2, k = 1 1.490 2.597 2.634
l = 2, k = 2 1.587 2.596 2.660

Table 3: Validation-set loss LV for SYNTH2 data set fitted with the “correct” loss model for
the simulated response, for the case of varying tree depths (l, k). The estimated standard errors
are negligible and excluded for brevity.
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loss function Identity link
(l, k) = (1, 0) (l, k) = (1, 1) (l, k) = (2, 1)

Normal 2.838 (0.184) 3.231 (0.18) 3.227 (0.093)
Gamma 2.660(0.119) 3.056 (0.254) 2.815 (0.132)
Inverse Gaussian 2.558 (0.104) 2.968 (0.084) 2.735 (0.123)

Canonical link
(l, k) = (1, 0) (l, k) = (1, 1) (l, k) = (2, 1)

Normal 2.838 (0.184) 3.231 (0.18) 3.231 (0.18)
Gamma 2.770(0.137) 3.209 (0.099) 3.169 (0.050)
Inverse Gaussian 2.642 (0.110) 2.949 (0.221) 2.798 (0.096)

Table 4: Cross-validation loss estimates (with standard errors in brackets) for the Sniffer Data
Set using various response distributions with different tree depths for the mean (l) and dispersion
(k).

org/data/general/gasvapor.html, comprises of 125 measurement records, with four contin-
uous explanatory variables, viz., the respective temperatures (x1 and x2) and vapor pressures
(x3 and x4) of the original and dispensed gasoline in the tank.

In Smyth [23], several heteroscedastic GLM’s were fitted to this data, and in his results,
when assuming constant dispersion, the Gamma and Inverse Gaussian models yielded a better fit
than the Normal model, indicating that the variance increased with the mean for the conditional
response distribution. For the variable dispersion case, his results showed that the Normal model
with the mean sub-model comprising of linear terms and an interaction term between the x1

and x4 variates, and the dispersion sub-model comprising of linear terms in x2 and x4, was
considered to be the most suitable for the data (however, the conclusions in that paper appear
to have be based solely on the training set loss estimates, so that possibility of overfitting in this
result cannot be ruled out).

Table 4 shows the cross-validation estimates of the negative log-likelihood for heteroscedastic
modeling with the present Gradient Boosting-based approach. The use of different tree depths l
and k for the regression functions in the mean and dispersion sub-models controls the degree of
the interaction effects in the respective sub-models. Our results are in agreement with Smyth’s
conclusions [23] for the constant dispersion case (k = 0), confirming the suggestion that the
response variance increases with the mean. However, in marked contrast to Smyth’s conclusions,
our results show that the Normal model with a variable-dispersion sub-model (i.e., k = 1), or
with a mean sub-model with first-order interaction terms (i.e., k = 2), are not so suitable for this
data set. In fact, the best model fit is obtained with the Inverse Gaussian model with a constant
dispersion (irrespective of whether the identity link or its canonical squared-reciprocal link was
used in the mean regression model). The negative log-likelihood for the training data with this
model for l = 1, k = 0 was 2.32 (which compares favorably with the value of 2.368 obtained
the equivalent GLM fit in Smyth [23]). It is unclear if the identification of the conditional
response as an Inverse Gaussian distribution with constant dispersion leads to any insights that
are consistent with the physical origins of the data.
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c1 = 0.5, c2 = 1.0 c1 = 0.5, c2 = 2.0
NTr (l, k) = (1, 0) (l, k) = (1, 1) (l, k) = (1, 0) (l, k) = (1, 1)

500 -0.279 (0.027) -0.293 (0.024) -0.222 (0.038) -0.234 (0.032)
1000 -0.308 (0.030) -0.325 (0.027) -0.222 (0.042) -0.293 (0.031)
2000 -0.305 (0.029) -0.328 (0.026) -0.229 (0.040) -0.290 (0.031)

Table 5: Validation set loss (with standard errors in brackets) for modeling claims costs using
heteroscedastic Gamma regression for a synthetic insurance data set for varying levels of disper-
sion heterogeneity, with the same mean response heterogeneity (NTr is the number of records
in the training data set).

5.3 Synthetic Insurance Data Set

The synthetic insurance data sets are based on the well-known Canadian Auto Insurance data set
of Bailey and Simon [5] (see http://www.statsci.org/data/general/carinsca.html), which
contains aggregated claim frequency and claims cost data as a function of 2 covariate rating
factors, viz., Merit (with 4 levels) and Class (with 5 levels), for a total of 20 cells. This web site
for this data also describes GLM fits for the claims frequency (using Poisson regression) and the
claims cost (using Gamma regression) for models incorporating the main effects.

The synthetic data sets for heteroscedastic modeling, therefore, use the mean profile from
those GLM fits for generating the random variates for the claim frequency and cost, but with
the claim cost also having an assumed variable-dispersion profile given by

φ(x) = c1I[1,2,3,5](Class) + c2I[4](Class), (69)

so that the dispersion is a constant c1, except in the cells with the rating factor Class = 4, when
it another constant c2 (the cells with Class = 4 comprise roughly 6% of the claim records in the
data, so that this dispersion constrast is over a relatively small fraction of the overall data).

The following procedure is then used to generating the individual claim records in the syn-
thetic data set. For each claim record to be generated, a combination of rating-factor levels is
generated by random sampling using observed cell frequency of insured claims in the Bailey-
Simon data set. The assumed GLM profiles for the claim frequency and claim cost corresponding
to the sampled rating-factor level combination, are then used to generate a Poisson random vari-
ate for the claim frequency, and to generate Gamma random variates for the claim costs for each
of these individual claim records upto the sampled claim frequency. The set of non-zero claim-
frequency records then comprises the required synthetic insurance data set for heteroscedastic
Gamma regression modeling, in which the cost per claim is the response variable, and the
corresponding number of claims is the case weight for the record.

The results shown in Table (5) are all obtained using the log link for both the mean and
dispersion sub-models. Two different sets of values are considered for (c1, c2), and in each
case, training data sets of 3 different sizes, respectively containing approximately 50, 100 and
200 records respectively were used, in each case, with the same validation data set containng
roughly 1000 records.

The results in Table (5) show that it is possible to discern variations in the dispersion
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parameter by comparing the constant dispersion sub-model (k = 0) case with the variable-
dispersion sub-model (k = 1) case. We note that for the case with smaller contrasts in the
dispersion heterogeneity (e.g., c1 = 0.5, c2 = 1.0), somewhat larger training data sets are required
to elicit the signal for the variable-dispersion effect in the regression response model.

6 Summary

The extension of Gradient Boosting to the joint modeling case, must take into account the fact
that the estimation of the mean and dispersion sub-models cannot be carried out independently,
as these two sub-models are tightly coupled through the likelihood formulation.

The conditional response distributions considered in this paper, viz., the Normal, Gamma
and Inverse Gaussian, are the only members of the exponential dispersion family for which
the negative log-likelihood has the special form (12). Nevertheless, the overall methodology
described in this paper can also be used for other conditional response distributions in the small
dispersion limit φ −→ 0, for which the leading-order term of the saddlepoint approximation to
the negative log-likelihood also have the form (11) (see Jorgenson [13]), and we plan to discuss
these extensions in detail elsewhere.

In real data sets (as opposed to the many synthetic data sets considered in this paper), it
is often the case that a given choice of basis functions for the mean regression model is unable
to effectively capture the intrinsic variation for the mean. The resulting systematic departures
for the mean model in this case, can lead to a spurious inference of dispersion variability in
the regression model. A careful cross-validation analysis, along with a detailed examination of a
variety of regression model fits using different regression-tree depths for the stage basis functions,
is required in order to rule out any such spurious inferences of variable dispersion.

The Gradient Boosting approach has been widely studied for mean regression modeling,
where it is known to have certain advantages over GLM’s and other comparable regression
methods (see Friedman [8]), which carry over to the extension of this methodology to the joint
regression modeling case as well. For example, the adaptive, non-parametric basis functions
that are used in Gradient Boosting are suitable not only for capturing nonlinear additive effects,
but also for capturing low-order covariate interaction effects in the regression sub-models. Fur-
thermore, the Gradient Boosting procedure is relatively unaffected by the presence of collinear
covariates and noise covariates, which are commonly encountered in high-dimensional data sets
found in applications, and for which other comparable methods require careful modeling with
specialized feature selection and regularization algorithms. Finally, in contrast to comparable
methods, the Gradient Boosting approach can easily incorporate high-cardinality categorical
covariates in the regression modeling, and there is no need for any preprocessing or grouping
of these feature levels in order to reduce the feature cardinality for tractable computational
modeling.
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