
RC24865 (W0909-089) September 22, 2009
Computer Science

IBM Research Report

Dynamic Security Policy Learning

Yow Tzu Lim1, Pau Chen Cheng2, Pankaj Rohatgi2, John A Clark1

1Department of Computer Science
University of York

UK

2IBM Research Division
Thomas J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598

USA

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Dynamic Security Policy Learning
Yow Tzu Lim∗, Pau Chen Cheng†, Pankaj Rohatgi†, John A Clark∗

∗Department of Computer Science, University of York, UK.
Email: {yowtzu, jac@cs.york.ac.uk}
†IBM Watson Research Center, USA.
Email: {pau, rohatgi@us.ibm.com}

Abstract—Recent research [1,2] has suggested traditional top
down security policy models were too rigid to cope with changes
in dynamic operational environments. There is a need for more
flexibility in security policy to protect the information an d yet
still satisfy the operational needs. Previous work has shown that
a security policy can be learnt from examples using machine
learning techniques. Given a set of criteria of concern, onecan
apply these techniques to learn the policy that best fits the
criteria. These criteria can be expressed in terms of high level
objectives, or characterized by the set of previously seen decision
examples. We argue here that even if an optimal policy could be
learnt automatically, it will eventually become sub-optimal over
time as the operational environment changes. In other words, the
policy needs to be continually updated to maintain its optimality.
In this paper, we review the requirements for dynamic learning
and propose a dynamic policy learning framework.

Index Terms—Dynamic Learning, Concept Drift, Multi Objec-
tive Genetic Programming, MOGP

I. I NTRODUCTION

A traditional top-down, rigid security policy model defines
a static trade-off between the estimated risk and benefit that
can be obtained from allowing accessing the information in the
system. It is often difficult to develop a policy that encodesthe
appropriate risk vs. benefit trade-off. First, there are toomany
factors to be considered, and some of these factors can conflict
with one another. Second, due to the nature of the information
— exposure of information is irreversible, the policy developed
is often pessimistic, i.e. information access is denied by
default to minimise the risk although it is not necessarily
the best decision. Worse, exceptions to policies and additional
privileges are often granted to users to meet operational needs
and these privileges are rarely revoked. Conversely, sometimes
information is also classified at a lower sensitivity level to
facilitate information sharing. In summary, the crafted policy
is sub-optimal and is tweaked during operational time in an
unmanaged way to fit the operational needs.

Recent work has shown that machine learning techniques
(see Section II) can be used to learn policy. Given a set of
criteria of concern, one can apply these techniques to learnthe
policy that best fits the criteria. These criteria can be expressed
in terms of high level objectives, or characterised by the set
of previously seen decision examples. We argue here that
even if an optimal policy could be learnt automatically, it will
eventually become sub-optimal over time as the operational
environment changes. In other words, the policy needs to be
continually updated to maintain its optimality, especially in a

highly dynamic operational environment. There is a need for
such dynamic learning to fully meet the operational criteria.
In this paper, we review the requirements in dynamic learning
and propose a dynamic policy learning framework.

We choose to use Genetic Programming [3], a kind of
evolutionary algorithm that was previously shown to be able
to learn the policy given a set of decision examples [4]–[6].
The main reason to use Genetic Programming is its rather
weak assumptions and its ability to search for solutions of
unknown (or controlled) size and shape in vast, discontinuous
solution spaces. Other data mining algorithms are potentially
applicable.

The main contributions in this paper includes:

1) The design of a dynamic security policy model. Cur-
rently there are no decision examples that are available
for us to work with, we need to design this model and
generate examples to be used for training purposes.

2) The discovery of the problems and difficulties encoun-
tered in dynamic learning using Genetic Programming.

3) The design of two dynamic learning frameworks using
Multi Objective Genetic Programming (MOGP). Both
of them are sufficient generic to be used with other data
mining algorithms.

The rest of the paper is organised follows: Section II
discuss the related work on security policy learning. Section
III presents a time-varying risk budget based policy. Section
IV presents the learning technique in use. Section V presents
the general experimental setup. Sections VI and VII presents
the experiments carried out on static and dynamic learning
respectively. Section VIII presents the analysis on various
way in selecting the best solution from a set of candidate
solutions generated by MOGP. Finally Section IX concludes
and discusses future research.

II. RELATED WORK

In this section we will first review prior work on applying
machine learning techniques to learn security policies, and
then we will briefly review some data stream classification
algorithms that provided the inspiration for the development
of our policy learning framework. See [7,8] for details on
classification algorithms in data stream mining.

A. Application of Machine Learning Techniques in Policy
Learning

Machine learning techniques have achieved significant suc-
cess in intrusion detection systems (IDS) to discover useful
patterns and rules in terms of system normal behaviour or at-
tack features. These extracted rules are then used to recognise
anomalies and intrusions. Most work focuses on using various
data mining techniques to learn a classifier or clusterer that
describes the normal (or abnormal) conditions of the systems.
For details, refer to [9].

In [10] autonomic security policies were mentioned yet no
known results have been published. In [11]–[13], various data
mining techniques have been used to aid the process of role
engineering: deriving roles and their associated permission
from existing data. In [14] machine learning techniques are
used to generalise low-level rules to high level rules. Genetic
Programming [4]–[6] and later Grammatical Evolution [15]
are used to learn a new risk based security policy — Fuzzy
MLS [16] from a set of decision examples. Both results show
these approaches are promising.

Sometimes, it is necessary to have specific policies on a per-
application basis. In [17], Inoue et al. inferred a sand-boxing
policy for specific application written in Java by monitoring
program execution. In [18], Scott et al. introduced SPECTRE,
a tool to secure a specific web application. When using SPEC-
TRE in an inference mode, it is able to learn automatically the
policy for a security gateway in Security Policy Description
Language (SPDL) by monitoring the interaction between web
application and its client.

B. Data Stream Classification and Dynamic Learning

Data stream classification posts two challenges to the tra-
ditional data classification algorithms: infinite data flow and
concept drifts. Infinite data flow prohibits a classification
algorithm to have multiple scans of the data set. Furthermore,
the distribution of the data changes over. This change is
typically referred to asconcept drift. The algorithms have to
able to cope with this.

To do this, traditional algorithms have been revised to
include fading effects for the older examples. A previously
learnt classifier is required to undergo revision and to relearn
the new concept constantly. Using the decision tree classifier as
an example, the decision tree/sub-tree is pruned, re-grownor
discarded as necessary [19]. The resulting algorithms are often
complicated. Worse, as these algorithms discard old examples
at a fixed rate, the learnt classifier is only supported by the
latest data. This usually results in large prediction variances.

The ensemble of classifiers is another approach that has
become very popular in data stream classification. This ap-
proach offers several advantages over single model classifier.
First, it offers an efficient way to improve accuracy. Second, its
parallel nature is easy to scale.Often, the ensembles approach
splits the learning process into 2 parts: data summarisation and
model selection. Data in the stream is divided into chunks; a
classifier ensemble (which itself can also be a set of classifier
ensembles) is built from each data chunk. These classifier

ensembles are combined using different weights to form the
ultimate classifier. The criteria used for selecting the weights
include the time (sliding window),estimatedaccuracy using
the latest data chunk, variation in class distribution, etc.

Dynamic Policy Learning is very similar to data stream
classification. Each possible decision in the policy can be
viewed as a class; the learning objective is to search for
the classifier that best agrees with the examples in the data
stream in a timely manner. In both cases, the amount of data
will inevitably increases over, the algorithm has to be ableto
learn incrementally and cope with change. Yet there is stilla
small distinction in terms of the learning rate requirement.
In dynamic policy learning, the learning time requirement
is is much relaxed. A few minutes to hours for learning is
acceptable. This implies we do not have the one pass learning
constraint in data stream mining and old data can be revisited
if necessary.

One possible approach to this problem is to apply static
learning algorithm on the latest data. In other words, the old
data is discarded indiscriminately after a fixed time period.
Whilst this approach is conceptually simple, it is unwise to
dump but not using these learnt and accumulated knowledge
in a meaningful way. The model learnt in such a way will
inevitably lack behind in time. The model is no longer
predictive, but chasing the changes at all time.

In [20], Fan presents a simple example to illustrate that
old data which is consistent with the new concept can help
learning. Instead of throwing away old data, he proposed a
framework that dynamically selects one of the following four
classifiers as the final classifier:

1) The optimal classifier trained so far without the use of
latest chunk of data.

2) The classifier trained by updating the optimal classifier
in 1 with the latest chunk of data.

3) The classifier trained from scratch with the latest chunk
of data.

4) The classifier trained from scratch with the latest chunk
of data and some old data samples that are (assumed to
be) consistent with latest chunk of data.

The chosen classifier is the one with best accuracy using cross
validation on the latest chunk of data. Then, this classifieris
set to be the optimal classifier trained so far (Classifier 1) in
the next classifier selection process.

The intuition is that no one knows if the latest data chunk on
its own is sufficient to train a better classifier than the previous
one learnt. Instead of statically defining how much old data
to be used, Fan’s framework lets the data make the decision
dynamically.

In this paper, we begin the dynamic learning framework
design with this intuition and show how MOGP can serve as
an elegant framework for dynamic learning. Then we propose
a novel way to improve the performance of the framework by
reducing the error rate and time taken to response to changes.

Since there is not a popular security policy model that
supports time-varying policies, we design a time-varying risk
budget based security policy model for our experiments. This

model is used to generate training examples for MOGP and
serves as the benchmark against which the models learnt by
MOGP are evaluated.

III. T HE TIME-VARYING , RISK BUDGET BASED SECURITY

POLICY MODEL

In a system using a risk budget based security policy, each
user is given an amount of risk tokens that represents how
much risk the system is willing to take with that user. To
access a piece of information, an user offers the amount of risk
tokens he is willing to spend from his budget to pay for the
access. The system evaluates the risk incurred in granting the
access and grant the access only if the user’s offer is greater
than or equal to the risk. The risk evaluation is part of the
policy and may change with time.

The model described in [21] is used for risk evaluation. Risk
is defined as the expected value of damage:

risk = (P : probability of incurring damage) ×

(V : value of damage) (1)

The probability of incurring damage,P is decomposed into
four independentprobabilities:

1) PCH : The probability that the communication channel
between the user and the system is compromised.

2) PIS : The probability that the information system is
compromised.

3) PHU : The probability that the human user is compro-
mised, i.e.; being tempted, malicious, careless, etc.

4) PPH : The probability that the physical security of the
user or the system is compromised.

It should be noted thatPCH , PIS and PHU exclude the
probability of physical compromises that are covered byPPH .
Whilst the independence assumption among these probabilities
might not be true and results inP being slightly overestimated;
this is fine from the security perspective, especially giventhe
fact that all these probabilities are only estimates to begin with.

To estimatePCH , we only consider the security level of the
communication channel,SCH is either secure (SCH = 1) or
not (SCH = 0). PCH = 0 only if SCH = 1 and PCH = 1
otherwise.

To estimatePIS , we submit to the five level information
system security ratings,SIS as outlined in Trusted Computer
System Evaluation Criteria (TCSEC). We assume thatSIS

is an integer in the range[0, 4]; the higherSIS, the more
secure the system is.SIS is mapped toPIS using an inverse
exponential function such thatPIS = 1/ exp(SIS).

To estimatePHU , we consider the sensitivity labels of the
subject (user),sl and the object (information),ol. The sensitiv-
ity label of a subject represents the level of trustworthiness of
the subject whereas the sensitivity label of an object indicates
the level of damage incurred if the object is lost or misused.
To map these sensitivity labels toPHU , we reused the sigmoid
function as outlined in [16] as follow:

PHU =
1

1 + exp(−k(TI(sl, ol)− mid))
(2)

whereTI(sl, ol) is called the temptation index which indicates
how much the subject with sensitivitysl is tempted to leak
information with sensitivity levelol; it is defined as:

TI(sl, ol) =
a(ol−sl)

M − ol
(3)

The intuition forPHU andTI can be found in [16]. The value
mid is the value ofTI that makesPHU equal0.5; the valuek
controls the slope ofPHU . The valueM is the ultimate object
sensitivity level and the temptationTI approaches infinity as
ol approachesM ; the intuition is that access to an object with
sensitive level equals to or more thanM should be controlled
by human beings and not machines. In our experiments, the
sl andol are integers in the range of[0, 9]; the settings fork,
mid andM arek = 3, mid = 4, M = 11.

To estimatePPH , we assume there are10 levels of physical
security ratings,SPH . SPH takes an integer in the range[0, 9];
the higher the rating level, the more secure it is. The mapping
function fromSPH to PPH used isPPH = (9 − SPH)/9.

The probability of incurring damage,P is the joint proba-
bility of these four probabilities.

To estimate the value of damage,V , the sensitivity level
of an object,ol is considered to be theorder of magnitudeof
damage, andV can be estimated using an exponential function
such thatV = aol [16]. In our experimentsa is set to be10.

In order to introduce dynamic changes to the policy, we
further multiply the risk calculated with a safety margin factor,
α which varies over time depending on the operational envi-
ronment. For example, the risk policy can be more restrictive
and uses a largerα value at night. We restrictα here to be a
real number in the range of[1.0, 3.0). The evaluated riskfor
an access to a piece of information is thereforeα × P × V .

We assume that each user is rationale when making an
access request in the following ways. First, each user is able to
estimate the risk to a certain degree of accuracy. Second, each
user always attempts to minimise the amount of risk tokens
spent for each access as well as to maximise his chance in
gaining that access.

To model this user behaviour, we assume the user will
always make an offer of(βmin + γ) × P × V , whereγ is
a random variable with a beta distribution which has a mean
value of0.5 and a variance value of0.05. The user adjusts its
βmin overtime based on the allow/deny responses he received.
This is achieved by using a counter. The counter increments if
an access request is granted and decrements otherwise. After
N decisions, the user increasesβmin by 0.1 if the counter
value is positive and decreasesβmin by 0.1 otherwise. The
counter is then reset to zero. The value ofβmin is initialised
to be0.5 less than the initial value ofα.

Examples of access control decisions are generated using
the setting described above. Each example is a tuple of the6
input variables,SCH , SIS , sl, ol, SPH , the offer and the
decision. We generate a set of10000 examples. For each set of
examples, the value ofα is changed randomly within its range
every1000 examples. Using these examples as a training set,
MOGP is used to learn an access control policy from them.

IV. M ULTI OBJECTIVE GENETIC PROGRAMMING

A. Evolutionary Algorithms

Evolutionary Algorithms (EA) are a family of problem
solving techniques inspired by natural selection1. An initial
population of individuals is generated, typically in a random
fashion. Each individual represents a candidate solution to the
problem in question.

The population of individuals is evolved repeatedly in the
following way to produce new generations of population that
offer increasingly better solutions to the problem.

First, each individual in the population is evaluated and
given a fitness score that measures how well the individual
solves the problem. Then, the population of individuals is
subject to the evolutionary operators to produce the population
of the next generation as follows:

• Selection: individuals are selected for breeding according
to fitness (natural selection). This is an implementation
of the “survival of the fittest” concept, ensuring better
(fitter) individuals are more likely to contribute the next
generation;

• Crossover: parts of two individuals are exchanged to form
two new individuals;

• Mutation: elements within an individual is perturbed in
some way. This serves to diversify the population. Given
an initial population, repeated application of selection and
crossover alone might otherwise not be able to reach parts
of the search space.

• Reproduction: an individual is passed on to the next
generation unchanged.

Commonly, the stopping criterion is either that a “good
enough” solution (individual) has been found or that a preset
number of generations have been produced.

B. Genetic Programming

Genetic Programming (GP) is a form of EA wherein an
individual is a program represented by a tree structure. An
example that implements the formula(X × Y) + (4 − Y) is
shown in Figure 1.

�

�

�

�
X

�

�

�

�
Y

�

�

�

�
∗

�

�

�

�
4

�

�

�

�
Y

�

�

�

�
−

�

�

�

�
+

Fig. 1. An example individual in GP

The nodes in such a tree can be classified into two groups:
the terminal setT and function setF . The terminal setT
consists of constants and variables (the leaf nodes) and the
function setF consists of functions, operators and statements

1Natural selection states that individual that are best adapted to the
environment have better chance to survive and reproduce fornext generation.

(the non-leaf nodes). An example terminal setT and function
setF sufficient to allow description of the LISP tree in Figure
1 is given below as:

T = {X, Y }
⋃

{1, 2 . . .100}

F = {+,−,×,÷, %}

In choosing these sets, there are two properties that must
be ensured: thesufficiencyproperty andclosureproperty. The
sufficiency property requires that the target solution for the
problem in question can be represented with the elements in
the sets. The closure property refers to the elements in the
function setF being able to take any value they may receive
as input, including all the elements in the terminal setT and
any return values from other functions or operators. Practically,
it is important to keep both sets small to prevent the search
space from becoming too large [22].

The crossoverandmutationoperators in GP are defined as
follows [3]:

• Crossover is performed on two trees. A sub-tree in each
tree is chosen randomly and swapped with the other.

• Mutation is performed on one tree. A node in the tree is
chosen randomly and replaced with a new node or sub-
tree randomly. Mutation helps to introduce diversity into
the population.

C. Multi Objective Evolutionary Algorithm (MOEA)

In many practical problems, a desire to optimise more
than one objective is common. Some of these can conflict
with one another. In other words, instead of having a single
fitness score, each possible solution has a vector of fitness
scores, one per objective. This is typically referred to as a
multi objective optimisation problem. The traditional wayto
approach this is to aggregate the vector of fitness scores using
a weighted sum approach. In a sense, this is like “comparing
apples with oranges” by weighting them differently. There is
inevitably some degree of subjectiveness and arbitrariness in
weight assignments. A more principled and conceptually clear
approach would be advantageous.

MOEA uses the well known concept of Pareto dominance
in the fitness evaluation of each solution (individual) in the
population. A Pareto Dominance,≻ relation between two
solutionx andy is defined as follow:

Pareto Dominance,≻. Let fx andfy be the fitness vector of
x and y, x ≻ y ⇔ ∀i · fx[i] ≥ fy[i] ∧ ∃i · fx[i] > fy[i] where
f [i] is the fitness score of thei-th objective.

In other words,x dominatesy iff x is better thany in at least
one aspect and is at least equally good in all other aspects.
This defines a partial order relation on the solution space. This
relation implies there exists a subset of solutions that arenot
dominated by any other solutions. This subset represents the
best solutions possible and is known as thePareto Front or
Pareto Optimal set.

The aim of MOEA is to converge the individuals in the
population to the Pareto Optimal set of solutions. Within the

population of each generation, there is always a subset in
which solutions are not dominated by any other solution in the
population. MOEA aims to make thisnon-dominatedsubset
a better approximation of the Pareto Optimal set than one
in the previous generation. To have a good approximation to
the Pareto Optimal set, MOEA also attempts to maximise the
diversity among the solutions in the “non-dominated” subset.
Consider an optimisation problem with2 objectives as in
Figure 2, let the curve line represent all the solutions withthe
best possible achievable trade-off between the2 objectives,
i.e. the real Pareto Front, MOEA attempts to converge the
individuals (points) in the population to be as near to the Pareto
Front as possible and also as diversely spreaded on the Pareto
Front as possible.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

F
itn

es
s

2

Fitness 1

Fig. 2. The ultimate goal of MOEA is to obtain the best approximation
of the Pareto Front of the problem in question with the individuals in the
population.

In this paper we used Strength Pareto Evolutionary Algo-
rithm (SPEA2), one of the most popular MOEAs to perform
multi objective evolution in MOGP. For details on SPEA2,
refer to [23].

D. Advantages of MOEA

The Pareto Optimal Set approach used by MOEA has
several advantages over the traditional weighted sum approach:

• The weights that define the trade-off among different
objectives is no longer required to be determined a
priori. Such a determination is hard as it requires a deep
understanding of the problem domain.

• The Pareto front can unfold the relationship between
different objectives, which may be difficult to obtain
otherwise. Such information is also helpful in guiding
a decision-maker to choose the optimal solution for the
problem from the Pareto Optimal set.

• The set of Pareto Optimal solutions can be saved and
be retrieved later. Such a retrieval may be necessary if a
change in circumstance requires a different trade-off and
and therefore a different solution.

• Optimising for multiple fitness scores tends to preserve
the diversity of the population, which prevents the popula-

tion from being trapped in a local optimum and increases
the chance of finding better solutions.

V. EXPERIMENTAL SETUP

We carried out multiple experiments of using GP/MOGP
to learn security policies from decision examples generated
according to the time-varying risk budget based security
policy model as described in Section III. This model can
be viewed as a function that maps a 6 decision factors,
SCH , SIS , sl, ol, SPH , offer to a binary decision. To use
GP to search for a policy, we choose to use each individual
tree in the population to represent a policy. It follows thatthe
words “individual” and “policy” are used interchangeably in
the rest of this paper. The terminal (leaf) nodes can be one
of the decision factors or an Ephemeral Random Constant
(ERC)2, which takes a real number in[−10, 10]. The non-
terminal (non-leaf) nodes are mathematical functions. The
functions chosen are:+, −, ×, ÷3 , protectedln(x)4, exp(x),
pow(x, y), protectedlogx(y)5, max(x, y), min(x, y), sin(x)
andcos(x).

In each experiment, a policy is learnt from a training set
of decision examples. Ideally, the learnt policy should output
the same decisions prescribed by the examples in the training
set when the policy is fed the tuple of 6 decision factors
〈SCH , SIS , sl, ol, SPH , offer〉 in the examples. The
practical objective is to minimise the percentage of output
decisions that are different from the true model that generates
the examples. This percentage is theerror rate of the learnt
policy. This error rate is estimated using the1000 examples.
We will show that using MOGP actually helps in better
achieving this single objective.

All the experiments are carried out using ECJ 18 [24]
with the SPEA2 module is obtained from the ECJ 19 CVS
repository http://dev.java.net/6. Unless otherwise specified, the
default parameters7 were used in all experiments.

As GP (and EA in general) is stochastic in nature, the
evolution process in each run varies a lot depending on the
random seed used. To see how well GP can perform in learning
policies, we carried out100 runs for each experiment using
a different random seed for each run, and evaluated GP’s
performance using the best individuals produced by each run.
The best individual produced by a run is the individual with
the lowest error rate in the last generation of that run. An GP’s
performance is evaluated by two measurements:

2Ephemeral Random Constant (ERC) is a constant in which its value is
randomly generated during its creation.

3x ÷ y =

{

x

y
if y 6= 0

1 otherwise

4protectedln(x) =

{

ln(|x|) if x 6= 0

0 otherwise

5protectedlogx(y) =

{

log(|x|)(|y|) if x 6= 0 or 1 or y 6= 0 or 1

0 otherwise
6The reason is that there is a major revision on the module in version 19

to improve clarity and remove some minor bugs found
7koza.params for Single Objective GP andspea2.params for MOGP

1) The median error rate of the best individuals. Median
is used here instead of mean as the error rate distribu-
tion is highly skewed. This follows that the confidence
interval based upon standard deviation of mean is no
longer valid. Instead, the95% confidence interval of the
median is calculated using the Thompson-Savur formula
presented in [25].

2) The number of the best individuals with error rates≤
25%.

These measurements give an indication how low the error rate
could be and on the likelihood of GP producing a low error
rate policy.

VI. L EARNING STATIC SECURITY POLICY

To prepare for the experiments on dynamic policy learning,
we started with three experiments to learn static policy. The
training used is the first1000 examples generated as described
in Section III. The policy to be learnt is static in the sense that
all 1000 are generated with the same value ofα. Experiment
1 uses Single Objective Genetic Programming. Experiment2
and Experiment3 use MOGP-SPEA2 to address the problems
encountered in Experiment1.

In the first experiment, the default genetic operators and
parameters are used: each selected individual (policy) hasa
probability of 0.9 to be applied the crossover operator and a
probability of0.1 to be reproduced. To breed the individuals of
the next generations, the binary tournament selection scheme
[26] is used. The fitness of a policy is its error rate. Letri be
the6-tuple in examplei, decision i be the decision in example
i, andP (ri) be the decision of a policyP onri, then the fitness
function of P is:

fall (P) =
1

n

n
∑

i=1

P (ri) 6= decisioni (4)

In this case,n = 1000 and the numbers1 and0 are used to
represents Boolean valuesTrue andFalse.

The experiment is carried out with all100 runs terminated
after 200 generations. The median error rate of the100
best policies produced by these runs is0.3555 with its 95%
confidence interval of[0.3487, 0.3640]. The best of the best
individual has an error of only0.107 and there is only12 out
of the 100 best policies have error rate≤ 0.25. Worse, more
than half of these best policies have error rates> 0.35. The
distribution of the error rates of these best individuals isshown
as Experiment 1 in Figure 3. This suggests that many of the
runs got stuck at local optima. Analysis on the tree structure
of policies in the population reveals some common problems
in Genetic Programming. We now present these problems and
the methods used to alleviate them.

A. Increase in average individual size and evaluation time

The size of an individual is the number of nodes in its
tree representation. The average size of the individuals inthe
population grows quickly and becomes very large. This can
be either a phenomenon of bloat (uncontrolled growth of the
average size of the individuals) or over-fitting problems, or

even both. We do not attempt to distinguish them here as they
both make the learning process more difficult. Furthermore,as
the size of the individuals become larger, they consume more
memory and require longer time to evaluate.

To alleviate these problems, we use SPEA2 bloat control
which has been shown to be effective [27]. This method
introduces a new objective to the experiment — minimising
the individual size. Letsize(P) be the size of an individual
P , the fitness function with respect to individual size is:

fsize(P) =

size(P)/512 if 32 ≤ size(P) ≤ 512

32/512 if size(P) < 32

1 otherwise

(5)

In other words, individuals with less than32 nodes have
the samefsize values as the individual with32 nodes and
individuals with more than512 nodes have the samefsize

values as the individual with512 nodes. This is to avoid over-
simplified or over-complicated solutions.

As SPEA2 maintains an archive that ensures the individuals
in the non-dominated subset of a generation are copied to
the population of the following generation, the reproduction
operators is removed, i.e. the crossover operator is applied
with probability of 1.0.

The second experiment is carried out with these changes.
The results show the countermeasure is effective. The average
size of the individuals is significantly smaller and the eval-
uation time is also much faster. However, the performance
improvement in terms of error rate is very marginal. After
200 generations, the median error rate of the100 best policies
is 0.3545 with its 95% confidence interval of[0.3419, 0.3591].
The best of the best individual has an error of only0.126. The
number of best policies that have error rate≤ 25 increases
to 22. The error rate distribution of these best individuals is
shown as Experiment 2 in Figure 3.

B. Loss of diversity among constants and individuals

The diversity among constants appearing in the individuals
decreases with each new generation. This is expected as some
forms of convergence is necessary if a population is to produce
a solution for the problem in question. It is often that the
desired constant will not appear in the initial population that is
randomly generated; but the evolutionary process is expected
to synthesise the required constant by joining the existing
ones through the operators. However, if the constants converge
prematurely before finding the appropriate one, the evolution
process will be stuck at a local optimum.

This lack of diversity among constants is the key to our
problem. This is revealed by analysis on the risk-based policy
discussed in Section III. This model can be written as:

allow iff offer ≥ risk

⇒ allow iff offer ≥ α(P × V)

⇒ allow iff offer ≥ α × P × aol (6)

As P is in the range[0, 1] and α is in the range[0, 3] and
offer is programmed to trackrisk , the value of constanta

which is raised exponentially dominates the right hand side
of inequality (6). An individual would still have a high error
rate even if it otherwise exactly implements the inequalitybut
with the wrong value fora. As the diversity of the constant
decreases over generations, the chance of finding the correct
value ofa becomes even smaller.

In our experiments, the rate of convergence among constants
is accelerated by the following factors:

• Small chance of using a constant as a leaf node —
In ECJ, each ERC constant of a range is implemented
as a terminal class and each variable is implemented
as a terminal class. Each terminal class has an equal
probability to be selected to be a leaf node. As our
experiments consists of 6 variable terminal classes and
1 ERC terminal class, the probability of an ERC to be
chosen as a leaf node is only1/7. Furthermore, the
relatively large ERC range also exacerbated the problem
in finding the appropriate constant.

• No mutation operator — Without mutation, there is no
new constant introduced to the population at all. The
diversity among constants in the population is decreasing
in every generation.

• The use of archive in SPEA2 — SPEA2 restricts the
binary tournament selection among the individuals in the
archive and therefore only the constants that appear in
these individuals have the opportunity to be passed to
the next generation.

Further analysis also reveals that substantial portion of the
individuals in the archive share the same or similar higher level
structures of their trees (assuming root of the tree is the highest
node). The diversity among the individual is lost. We think the
cause of this problem is similar; the absence of mutation and
the use of archive in SPEA2.

To overcome these problems, we setup the third experiment
with the following changes. First, we used six identical ERC
classes instead of just one. This makes the probability in
choosing between a variable and a constant become equal.
Second, we choose to use mutation operator only instead of
the typical high crossover and low mutation settings. Thereare
four reasons to do this. First, mutation introduces new gene
and thus promotes diversity in the population. Second, it has
been shown empirically that crossover does not outperform
mutation in many problems in GP. Third, this frees us from
tuning the probability parameter of applying crossover and
mutation. Finally, mutation provides a means to introduce new
individual to the population by simply allowing mutation to
happen at the root node of an individual tree. We changed the
probability of mutation at the root node from0 (default) to
0.125, at a terminal node from0.1 (default) to0.125 and at
a non-terminal nodes from0.9 (default) to 0.75. The value
0.125 is chosen based upon the ratio between the archive size
(128) and the population size (1024) used in ECJ.

The results show a significant performance improvement in
terms of error rate and success rate. After200 generations, the
median error rate of the100 best individuals reduced to0.2225
with its 95% confidence interval of[0.1595, 0.2789]. The best

of the best individual has an error of only0.099. Also, the
number of best policies with error rates≤ 25% became54.
The error rate distribution of these best individuals ratesis
shown as Experiment 3 in Figure 3.

 0

 10

 20

 30

 40

 50

 60

[0,5]
(5,10]

(10,15]

(15,20]

(20,25]

(25,30]

(30,35]

(35,40]

(40,45]

(45,50]

N
um

be
r

of
 r

un
s

Error rate interval

Experiment 1
Experiment 2
Experiment 3

Fig. 3. The distribution of the best individuals in the100 runs from each
of the first three experiments on each error rate interval.

VII. L EARNING DYNAMIC SECURITY POLICY

In the first three experiments presented so far, all the
decision examples are available prior to the start of the learning
process. This is hardly the case in practice. In this section,
we investigate how to learn dynamically when the decision
examples become available gradually during the course of
learning. The learnt model is continuously refined or even
redefined if necessary by the new decision examples. This
section presents three experiments: Experiments4 shows how
dynamic learning can be done by extending the previous static
learning algorithm. Experiments5 and 6 use a novel dy-
namic learning framework — Diversity via opposite objective
(DOO).

In all experiments, the input decision examples are organ-
ised into a sequence of data chunks. Each chunk consists
of 200 examples. The risk-based policy model described in
Section III is used to generate the data. The policy is changed
every 1000 examples by changing the value ofα. In each
experiment, the sequence is fed into a MOGP learning process
one chunk at a time. The first policy is learnt using the first
chunk after100 generations of evolution. Each subsequent
chunk is used by the learning process to refine the policy
learnt from the previous chunk(s). Each refinement starts with
the population of the last generation learnt from the previous
chunk(s), and uses the examples in the latest chunk to learn a
refined policy after100 generation of evolutions.

A. Experiment 4: Dynamic Learning framework based on
Fan’s intuition

In Experiment 4, the previous learning framework is ex-
tended in two ways. First, the number of examples,n in
fall(P) is no longer fixed to1000 but set to be the total
number of examples received;n increases as more chunks

are received. Second, a new fitness function is introduced to
measure the error rate of a policyP with respect to the latest
chunk of data. Letri be the6-tuple in an examplei, decision i

be the decision in examplei, s be the size of a data chunk,
andP (ri) be the decision made byP on ri, this new fitness
function,flast is:

flast(P) =
1

s

n
∑

i=n−s+1

P (ri) 6= decisioni (7)

With the introduction of this new fitness function, this exper-
iment has3 fitness functions in total, namelyfall , flast and
fsize.

The intuition employed here is similar to Fan’s (refer Sec-
tion II-B). Each chunk is used to refine the policy learnt from
the previous chunks. The refinement process happens through
100 generations of MOGP learning. In each generation:

1) The policies with the lowestfall or flast values in
the previous generations are preserved in the SPEA2
archive. These policies correspond to Fan’s Classifier 1.

2) These policies are refined with examples in the latest
chunk through MOGP. These refined policies correspond
to Fan’s Classifier 2.

3) New policies are generated (using mutation). Some of
these policies will have the lowestfall value within the
population and correspond to Fan’s Classifier 3. Some
others will have the lowestflast value and correspond
to Fan’s Classifier 4.

After 100 generations, the policy with the lowestflast value
is chosen to be the new learnt policy.

The experiment is carried out with these settings. The results
are shown in two levels of resolution. Figure 4(a) shows
the median error rate of the best policies learnt after every
100 generations of training time. Except in the initial500
generations, the median error rate is kept below0.220 at all
time.

To understand the learning progress in detail, Figure 4(b)
shows the median error rate of the best policies in each
generation. When policy change happens at every5 chunk
of decision examples, i.e.5 × 100 = 500 generations, the
median error rate spikes up sharply. After the spike, the error
rate reduced faster than the initial500 generations. This is a
direct effect of using the2 fitness functions:fall and flast

together. It provides a smooth transition phase for learning
by protecting the models that are optimal with respect to
the old policy from being eliminated quickly by the new
policy. Consequently, these models are able to pass on the
knowledge they learnt to the new individuals created after
the change. Consider the population in the generation prior
to the change, the models that have lowflast values are also
likely to have low fall values. After the change, theirflast

will become worse (higher), but theirfall values would only
be affected slightly. Thus, these models will still have a good
chance to be kept in the archive and be brought forward to
the next generation. As the policy change in our problem is
characterised by a change on the value ofα, the learning of a

new policy is thus reduced to learning of a new value forα.
This is obviously simpler than learning from scratch.

Further analysis also reveals the individuals in the archive
converge and become more alike to one another over genera-
tions. For our problem, this is not an issue as long as a policyis
learnt before the diversity is lost. The subsequent changesonly
require changes on the value ofα which the mutation operator
can easily provide. The loss of diversity also explains the very
sharp upward spikes during policy change in the error rate in
Figure 4(b). Since the individuals are all alike, none of them
would be a good match for a new policy when a policy change
happens and thus the error rate increases sharply. However,
the new policy is relatively easy to learn and thus the quick
decrease in error rate.

In summary, this dynamic learning approach can perform
well under the assumption that the policy change is relatively
small and the knowledge learnt previously can aid the learning
of the new policy. The use of2 fitness functions:fall andflast

protects and allows the knowledge learnt to be passed on to the
next generation. However, this approach still suffer from the
loss of diversity among the individuals. This puts the general
applicability of this approach in question.

B. Diversity via Opposing Objectives (DOO) Framework

The loss of diversity problem is not uncommon in the
traditional EA settings. The “survival of the fittest” principle
employed by EA provides the fitter individuals higher chances
to survive and pass their genes to the individuals in the next
generations. Consequently, the individuals in the population
will inevitably become more alike with one another over
generations, i.e. the diversity among individuals will be lost
over generations. If the diversity is lost prior to the optimum
individual is found, the individuals in the population is said to
be trapped in a local optima. To prevent being trapped at local
optima, EA uses mutation operators to introduce new random
genes to the individuals. However, as these genes are generated
randomly, the chances that they provide improvement over
current individuals are very small and therefore are highly
unlikely to be preserved. In other words, the diversity is
generated and then lost from one generation to the next.

To overcome this problem, several EA-based dynamic learn-
ing algorithms have been proposed in the literature. Most,
if not all of them first attempt to produce individuals that
are optimised for the problem related objectives andthen
attempt to maintain the diversity among individuals in the
population as much as possible [28]. Their settings are often
ad-hoc and the algorithms are often complicated. We propose
a new dynamic learning framework — Diversity via Opposing
Objectives (DOO). DOO takes the opposite perspective; it
first attempts to maximise the diversity among individuals in
the population through generations, andthen uses the ever
increasing diversity to help in finding optimised individuals.

Performing evolutionary operations on a single individualin
EA can be viewed as searching for more optimised individuals
from the position of the individual in the solution space.
Performing evolutionary operations on a diverse population of

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of generations

M
ed

ia
n

er
ro

r
ra

te
 o

f t
he

 b
es

t p
ol

ic
ie

s

(a) The median error rate of the best policies after100 generations
training time for each chunk of decision examples

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of generations

M
ed

ia
n

er
ro

r
ra

te
 o

f t
he

 b
es

t p
ol

ic
ie

s

(b) The median error rate of the best policies

Fig. 4. The experimental results of dynamic learning using3 objectives

individuals can be viewed as searching many different partsof
the solution space in parallel. This parallel search has a much
better chance of finding more optimised individuals than a
search starting from just one individual. The ever increasing
diversity in DOO results in a domino effect such that not only
the search is done in parallel, but the search space coverage
increases as the diversity increases. Consequently, the chance
of finding a more optimal individual becomes larger and larger
as the evolution proceeds. This same effect cannot be achieved
by conducting many runs of single-objective EA in parallel
because each run is likely to be trapped in a local optima.

DOO is very simple. DOO changes each and every ob-
jective into a pair of opposing objectives. For example, the
objective of minimising error rate is changed to minimising
error rate and minimising accuracy (1.0 − error rate). DOO
then optimises all objectives using MOEA. The opposing
objectives in DOO ensures that an individual who is less fitter
for one objective is fitter the opposing objective. Therefore,
no individual is dominated by others, i.e. all individuals are
at Pareto Front. Therefore, each and every individual has

a fair chance of passing its genes to the next generation,
and evolutionary operations will produce more diversity in
the next generation. Using the〈error rate, accuracy〉 pair of
objectives as an example, a possible Pareto Front formed by
the individuals is depicted in Figure 6. From an MOEA’s point
of view, since the true Pareto Front is already found at the
start of the evolution process, the only job left for MOEA is
to improve the spread of the solutions on the Pareto Front
(See Section IV-C for details). Therefore, the population of a
generation has a wider coverage of the solution space than the
previous generations, i.e. diversity increases as MOEA drives
the evolution process.

To understand how DOO works via MOEA, we introduce
the concepts of the solution spaceS and objective spaceO.
Referring to Figure 5, each points ∈ S represents a possible
solution to the problem in question. The fitness function,f
maps a points ∈ S to a pointo ∈ O such that the location of
the pointo represents how wells meets the objectives. The
function f is surjective (onto) but not injective (1 to 1); each
point in S is mapped to a point inO and multiple points in
S can be mapped to one point inO.

Objective SpaceSolution Space f

fa
ct

or
 2

factor 1

fit
ne

ss
 2

fitness 1

Fig. 5. Mapping between solution space,S to objective space,O.

Diversity among individuals in a population is essentiallya
measure on how uniformly the solution points are distributed
in S. While f does not conserve the distribution, it is often true
thatf is a continuous function between these two topological
spaces, i.e. a set of solution points near a points′ in S is
mapped to a set of point near the pointf(s′) in O.

As f is not injective, the inverse is not necessarily true,
e.g. 2 solutions can be very different yet both solve the
same problem equally good. However, following the continuity
assumption onf , it is reasonable to assume that a set of points
in O that are far apart from one another corresponds to a set
of points that are far apart from one another inS. DOO makes
use of this assumption and attempts to maximise the diversity
of solution points inS via maximising the diversity of points
in O using MOEA.

In the SPEA2 implementation of MOEA, if the number of
non-dominated points exceeds the archive size, the point that
has the shortest Euclidean distance to itsk-th nearest neighbor
in the O space is dropped, wherek is usually set to be the
square root of the sum of the the population size and the
archive size [23]. If two points have the same distance to its
k-th nearest neighbor, then the tie is broken by comparing

their distances to their(k − 1)-th nearest neighbors and so
forth. This process is iterated until the non-dominated points
can fit into the fixed size archive. Essentially, the goal is to
fill the archive with non-dominated points as uniformly and
widely distributed overO as possible. Using the〈error rate,
accuracy〉 pair of objectives as an example, a possible archive
is depicted in Figure 6. As the most optimum point of each
objective is always located at the corner point of the convex
hull of the Pareto Front formed, i.e. they are furthest apartfrom
others. These points are guaranteed to be preserved at each
generation until a better one is found; and a better solutionis
likely to be found as the diversity keeps increasing.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

E
rr

or
 r

at
e

of
 th

e
in

di
vi

du
al

Accuracy rate of the individual

Fig. 6. The use of opposing objectives implies that every individual in the
population is a Pareto Optimal solution. SPEA2 truncates individuals that are
close togetheriteratively until they can fit into the archive. Assuming the
archive size is10, the individuals removed is illustrated. It should be clearto
see that the individuals at both corner of the Pareto front are guaranteed to
survive from this truncation process

Furthermore, every policy that output binary decisions (all
binary classifiers in general) can be inverted to its complement
by a simple negation on the output decision. Therefore, high
error rate policies are just as good as those with the low error
rate. To gain benefit from this, final output policy selected by
DOO is the one with highest absolute value of bias; bias is
defined as0.5−error rate. A negative bias value implies that
the policy is optimised on the opposing objective and thus its
output decisions need to be flipped if it is selected for use.

It may be argued that another way to preserve diversity is
to randomly select the individuals whose genes will be passed
to the next generation. Our experience shows that this may
next work in practice. Our experimental results indicate that
the error rates of the randomly generated individuals of the
first generation cluster around50%. Such a distribution may
be attributed to the law of large number. Randomly selecting
individuals to pass on their genes means that the error ratesof
the next generation are likely to cluster around50% as well.
DOO creates two opposing forces to pull this cluster apart.

C. Experiment 5: Two Pairs of Opposing Objectives

To use DOO, Experiment 4 is modified to use two pairs of
opposing objectives:〈fall, 1.0 − fall〉 and 〈flast, 1.0− flast〉.

The fitness of the individual size,fsize is excluded here as it
is not a problem related objective.

The experiment is carried out with all other settings remain
the same. The results are presented in two levels resolutions
as before. Figure 7(a) shows the median error rate of the best
policies learnt after100 generations of training time. Figure
7(b) shows the median error rate of the best policies in each
generation. The results of Experiment 4 using3 objectives is
also included in pink for comparison purpose.

In the initial 500 generations, the learning rate in DOO is
significant faster. The median error rate of the best policies
is reduced to0.250 in 200 generations. This result is com-
parable to the best static learning approach in Experiment 3,
despite the fact that the amount of training examples used is
significantly less (400 vs. 1000) and presented to the learning
algorithm in sequential chunks.

Furthermore, the best policies learnt in each generation
using DOO generally has a lower or equal median error rate
than the one learnt in previous experiments. However, the error
rate can suddenly rise even in the absence of a policy change.
Analysis reveals that this is related to the model selection
problem. Currently, the output policy is selected based upon
the estimatederror rate/bias on the latest200 examples. As
these200 examples are generated randomly, they may not be
sufficient in forming a good representation of the target policy.
Moreover, changes in policy sometimes can simply mean a
revisit of an old policy in the past. Therefore, the policy that
is optimal in respect to the latest chunk may not be the true
optimal policy. This sub-optimal policy selection effect is not
obvious in previous experiment as the policies are very much
alike to one another. We will show how the ensemble approach
can be used to overcome this problem in the Section VIII.
From the other perspective, this effect is a positive sign of
diversity maintenance.

Lastly, the heights of the spikes in the error rate due to
policy changes are much lower in DOO. This is another
evidence of diversity maintenance. One could view policy
change as a change on the fitness mapping function,f . With a
diverse set of policies maintained in the population, it is likely
that one of them will be near the new target policy after the
change.

D. Experiment 6: One Pair of Opposite Objectives

An obvious weakness of the previous experiment is that it is
not scalable. The evaluation offall involves scanning through
all the decision examples seen. As the number of examples
increases over time, the fitness evaluation time required for
each individuals follows. A possible way to overcome this is
to use a subset of decision examples, randomly sampled from
all the decision examples seen. The likelihood of an example
being sampled decay over time, i.e. the older an example is,
the less likely it is being sampled.

In Experiment 6, we drop the pair of objectives〈fall, 1.0−
fall〉 from Experiment 5 to see the effect of not evaluating
fitness against older examples.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of generations

M
ed

ia
n

er
ro

r
ra

te
 o

f t
he

 b
es

t p
ol

ic
ie

s

(a) The median error rate of the best policies after 100 generations
training time for each chunk received

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of generations

M
ed

ia
n

er
ro

r
ra

te
 o

f t
he

 b
es

t p
ol

ic
ie

s

(b) The median error rate of the best policies

Fig. 7. The results of experiment with 2 pairs of opposite objectives

The experiment is carried out with only this change. The
results are shown in two figures: Figure 8(a) shows the median
error rate of the best policies learnt after every100 generations
of training time and Figure 8(b) shows the median error rate of
the best policies in each generation. The results of Experiment
5 that uses2 pairs of opposing objectives is also included in
pink for comparison purpose.

The experimental result shows that the performance of
the best policies obtained in this experiment lay somewhere
between those obtained in Experiment 4 and those obtained
in Experiment 5. This suggests that the the pair of objectives
〈fall, 1.0− fall〉 dropped are actually useful in maintaining a
better diverse set of individuals in the populations. It remains
to be our future work to investigate the best way to investigate
this further as well as seeking a sampling technique to select
the old data to make the framework scalable whilst maintaining
the performance.

VIII. M ODEL SELECTION

In this section, we examine various ensemble approaches in
which the output model can be constructed by combining mul-

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of generations

M
ed

ia
n

er
ro

r
ra

te
 o

f t
he

 b
es

t p
ol

ic
ie

s

(a) The median error rate of the best policies after 100 generations
training time for each chunk received

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of generations

M
ed

ia
n

er
ro

r
ra

te
 o

f t
he

 b
es

t p
ol

ic
ie

s

(b) The median error rate of the best policies

Fig. 8. The results of experiment with 1 pair of opposite objectives

tiple models to achieve better performance. We use a simple
voting mechanism such that the output of the ensemble is the
majority output all the models. This ensemble construction
is virtually no cost in EA by simply selecting the bestN
individuals from the final population.

However, the theoretical study of ensembles has revealed the
2 key factors that determine the performance of an ensemble
are the performance of individual models and the diversity
among all models in the ensemble [29]. As the population
of an EA run with non-DOO setting converges and loses the
diversity among individuals, the performance gain of using
ensemble is limited to the first factor. However, this is not a
problem with DOO. Yet, we still have2 questions to answer:

1) How many models should be used to construct the
ensemble? Whilst the negative bias models are as useful
as the positive bias models, models with near zero bias
are virtually useless. Should these models be included?
If not, what should be the threshold on the bias of a
model such that it is included in an ensemble?

2) Should the vote among these models be weighted?

We choose to examine if weighting the vote of each
model with its bias on the latest chunk is better than a
simple uniform weighted vote. If so, how much is the
improvement?

We attempt to answer these questions by comparing the per-
formance of ensemble built with the following combinations
of models:

• use the single highest bias model in the archive.
• use the8 highest bias models in the archive.
• use the16 highest bias models in the archive.
• use the32 highest bias models in the archive.
• use the64 highest bias models in the archive.
• use all models (128) in the archive.

in which the bias is estimated with the bias of the model on
the latest chunk of examples.

The models in each of these ensembles are combined
with 2 different methods: uniform weighted (unweighted) and
bias weighted voting mechanisms. In bias weighted voting
mechanism, the vote of each model is weighted with the
absolute value of its bias on the latest data chunk. If the bias
is negative, its vote goes to the complement decision class.

When using the ensemble approach in Experiment 4, the
error rate does not decrease but increases with the number
of models used as shown in Figures 9(a)− 9(b). This is
because not all the models are optimised on error rate, some
models in the archive are optimised on other objectives, e.g.
the model size. When the number of models used is small (8
or 16 models), it is still very likely that the selected models
are those optimised on error rate. However, as these models
have converged to become very similar to one another, the
use of ensemble does not result in any performance gain nor
loss. As the number of models used increases, those models
that are not optimised on error rate are also included in the
ensemble. The performance of the ensemble become worse.
The deterioration in performance is worse in the unweighted
voting mechanism.

The results on using the ensemble approach in Experiment
5 and 6 are shown in Figures 9(c)− 9(f). When the number of
models used is small (8 or 16 models), there is no significant
change in performance. However, the error rate curve becomes
smoother, the sudden rises happen in the absence of policy
changes seem to disappear. This smoothing effect is especially
clear between generations2500 to 3000 and also between
generations3500 to 3700. As the number of models used
increases, the performance only becomes slightly worse. The
diversity maintained in DOO provides performance gain to
counter the performance loss due to the use of less bias models
in the ensemble.

IX. CONCLUSION AND FUTURE WORK

This papers shows that dynamic policy can be learnt from
examples using evolutionary algorithms. We propose a novel
dynamic learning framework — Diversity via Opposite Ob-
jectives (DOO). DOO treats anN objectives optimisation
problem as2N objectives optimisation problem by adding

an opposing objective for each of the original objectives.
With such a setting, DOO is able to maintain the diversity
among the individuals in the population whilst optimising the
intended objectives. Diversity among individuals can aid in
avoiding premature convergence and coping with concept drift
in dynamic learning.

In our future work, it is envisaged to investigate DOO
framework in more detail. This includes examining the use
of random sampling on old decision examples to overcome
its current weakness, extension on replacing its current GP
representation with other techniques such as neural network
and decision tree.

ACKNOWLEDGEMENT

Research was sponsored by US Army Research laboratory
and the UK Ministry of Defence and was accomplished under
Agreement Number W911NF–06–3–0001. The views and
conclusions contained in this document are those of the authors
and should not be interpreted as representing the official
policies, either expressed or implied, of the US Army Research
Laboratory, the U.S. Government, the UK Ministry of Defense,
or the UK Government. The US and UK Governments are
authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation hereon.

We would also like to thank Wei Fan, Charanjit Jutla and
Charu Aggrawal from IBM Watsons Research Center for
providing useful direction and feedback on the work.

REFERENCES

[1] “Horizontal Integration: Broader Access Models for Realizing Infor-
mation Dominance,” The MITRE Corporation JASON Program Office,
Mclean, Virginia, Tech. Rep. JSR-04-132, Dec 2004.

[2] Y. T. Lim, “Survey on Risk-based Decision Making,” University of York,
York, United Kingdom, Qualifying Dissertation, July 2007.

[3] J. R. Koza, “Hierarchical Genetic Algorithms Operatingon Populations
of Computer Programs,” inIJCAI, 1989, pp. 768–774.

[4] Y. T. Lim, P. C. Cheng, J. A. Clark, and P. Rohatgi, “PolicyEvolution
with Genetic Programming: a Comparison of Three Approaches,” in
2008 IEEE Congress on Evolutionary Computation, IEEE Computa-
tional Intelligence Society. Hong Kong: IEEE Press, 1-6 Jun. 2008,
pp. 813–819.

[5] ——, “Policy Evolution with Genetic Programming,” IBM Research
Report RC24442, Tech. Rep., 2008.

[6] ——, “MLS Security Policy Evolution with Genetic Programming,” in
GECCO ’08: Proceedings of the 10th annual conference on Genetic and
evolutionary computation. Atlanta, Georgia, USA: ACM Press, 12-16
Jul. 2008.

[7] M. M. Gaber, A. Zaslavsky, and S. Krishnaswamy, “Mining data
streams: a review,”SIGMOD Rec., vol. 34, no. 2, pp. 18–26, 2005.

[8] C. C. Aggarwal,Data Streams: Models and Algorithms (Advances in
Database Systems). Secaucus, NJ, USA: Springer-Verlag New York,
Inc., 2006.

[9] D. Barbara,Applications of Data Mining in Computer Security, S. Ja-
jodia, Ed. Norwell, MA, USA: Kluwer Academic Publishers, 2002.

[10] P. D. McDaniel, “Policy Evolution: Autonomic Environmental Security,”
December 2004.

[11] M. Kuhlmann, D. Shohat, and G. Schimpf, “Role mining - revealing
business roles for security administration using data mining technology,”
in SACMAT ’03: Proceedings of the eighth ACM symposium on Access
control models and technologies. New York, NY, USA: ACM, 2003,
pp. 179–186.

[12] N. Li, T. Li, I. Molloy, Q. Wang, E. Bertino, S. Calo, and J. Lobo,
“Role mining for engineering and optimizing role based access control
systems,” Tech. Rep., 11 2007.

[13] J. Schlegelmilch and U. Steffens, “Role mining with orca,” in SACMAT
’05: Proceedings of the tenth ACM symposium on Access control models
and technologies. New York, NY, USA: ACM, 2005, pp. 168–176.

[14] A. Tongaonkar, N. Inamdar, and R. Sekar, “Inferring higher level policies
from firewall rules,” inLISA’07: Proceedings of the 21st conference on
Large Installation System Administration Conference. Berkeley, CA,
USA: USENIX Association, 2007, pp. 1–10.

[15] Y. T. Lim, P.-C. Cheng, J. A. Clark, and P. Rohatgi, “Policy evolution
with grammatical evolution,” inProceedings of the 7th International
Conference on Simulated Evolution And Learning (SEAL ’08), ser.
Lecture Notes in Computer Science, X. Li, M. Kirley, M. Zhang, D. G.
Green, V. Ciesielski, H. A. Abbass, Z. Michalewicz, T. Hendtlass,
K. Deb, K. C. Tan, J. Branke, and Y. Shi, Eds., vol. 5361. Melbourne,
Australia: Springer, Dec. 7-10 2008, pp. 71–80.

[16] P. C. Cheng, P. Rohatgi, C. Keser, P. A. Karger, G. M. Wagner, and A. S.
Reninger, “Fuzzy multi-level security: An experiment on quantified risk-
adaptive access control,”sp, vol. 0, pp. 222–230, 2007.

[17] H. Inoue and S. Forrest, “Inferring java security policies through
dynamic sandboxing,” inIn International Conference on Programming
Languages and Compilers, Las Vegas, 2005.

[18] D. Scott and R. Sharp, “SPECTRE: A tool for inferring, specifying and
enforcing web-security policies,” 2002.

[19] P. Domingos and G. Hulten, “Mining high-speed data streams,” inKDD
’00: Proceedings of the sixth ACM SIGKDD international conference
on Knowledge discovery and data mining. New York, NY, USA: ACM,
2000, pp. 71–80.

[20] W. Fan, “Systematic data selection to mine concept-drifting data
streams,” inKDD ’04: Proceedings of the tenth ACM SIGKDD inter-
national conference on Knowledge discovery and data mining. New
York, NY, USA: ACM, 2004, pp. 128–137.

[21] P.-C. Cheng and P. A. Karger, “Risk Modulating Factors in Risk–Based
Access Control for Information in a MANET,” IBM Research Report
RC24442, Tech. Rep., 2008.

[22] J. R. Koza, D. Andre, F. H. Bennett, and M. A. Keane,Genetic
Programming III: Darwinian Invention & Problem Solving. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1999.

[23] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the Strength
Pareto Evolutionary Algorithm,” inEUROGEN 2001. Evolutionary
Methods for Design, Optimization and Control with Applications to In-
dustrial Problems, K. Giannakoglou, D. Tsahalis, J. Periaux, P. Papailou,
and T. Fogarty, Eds., Athens, Greece, 2002, pp. 95–100.

[24] S. Luke, “ECJ version 18 A Java-based Evolutionary Computation
Research System,” May 2008. [Online]. Available: http://cs.gmu.edu/
∼eclab/projects/ecj/

[25] M. Hollander and D. A. Wolfe,Nonparametric statistical inference.
New York: John Wiley & Sons, 1973.

[26] A. Brindle, “Genetic algorithms for function optimization,” Ph.D. dis-
sertation, University of Alberta, Edmonton, Alberta, Canada, Jan. 1981,
computer Science Department, Technical Report TR81-2.

[27] S. Bleuler, M. Brack, L. Thiele, and E. Zitzler, “Multiobjective
genetic programming: Reducing bloat using SPEA2,” inProceedings of
the 2001 Congress on Evolutionary Computation CEC2001. COEX,
World Trade Center, 159 Samseong-dong, Gangnam-gu, Seoul,Korea:
IEEE Press, 27-30 May 2001, pp. 536–543. [Online]. Available:
ftp://ftp.tik.ee.ethz.ch/pub/people/zitzler/BBTZ2001b.ps.gz

[28] J. Branke,Evolutionary Optimization in Dynamic Environments. Nor-
well, MA, USA: Kluwer Academic Publishers, 2001.

[29] A. Krogh and J. Vedelsby, “Neural network ensembles, cross validation,
and active learning,” inAdvances in Neural Information Processing
Systems. MIT Press, 1995, pp. 231–238.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Number of generations

M
ed

ia
n

er
ro

r
ra

te
 o

f t
he

 b
es

t p
ol

ic
ie

s

(a) Experiment 4: Unweighted voting mechanism

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Number of generations

M
ed

ia
n

er
ro

r
ra

te
 o

f t
he

 b
es

t p
ol

ic
ie

s

(b) Experiment 4: Weighted voting mechanism

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Number of generations

M
ed

ia
n

er
ro

r
ra

te
 o

f t
he

 b
es

t p
ol

ic
ie

s

(c) Experiment 5: Unweighted voting mechanism

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Number of generations

M
ed

ia
n

er
ro

r
ra

te
 o

f t
he

 b
es

t p
ol

ic
ie

s

(d) Experiment 5: Weighted voting mechanism

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Number of generations

M
ed

ia
n

er
ro

r
ra

te
 o

f t
he

 b
es

t p
ol

ic
ie

s

(e) Experiment 6: Unweighted voting mechanism

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Number of generations

M
ed

ia
n

er
ro

r
ra

te
 o

f t
he

 b
es

t p
ol

ic
ie

s

(f) Experiment 6: Weighted voting mechanism

0.20.40.6

 1 Model 8 Models 16 Models 32 Models 64 Models 128 Models

Fig. 9. Performance of Ensemble Models in Experiments4, 5 and6

