
RC24873 (W0908-052) August 14, 2009
Other

IBM Research Report

Flexible Modeling Tools for Pre-requirements Analysis:
Conceptual Architecture and Research Challenges

Harold Ossher1, Rachel Bellamy1, Ian Simmonds1, David Amid2, Ateret
Anaby-Tavor2, Matthew Callery1, Michael Desmond1, Jacqueline de Vries1,

Amit Fisher2, Sophia Krasikov1

1IBM Research Division
Thomas J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598

2IBM Research Division
Haifa Research Laboratory

Mt. Carmel 31905
Haifa, Israel

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

 1

Flexible modeling tools for pre-requirements analysis:
conceptual architecture and research challenges

Harold Ossher1, Rachel Bellamy1, Ian Simmonds1, David Amid2, Ateret Anaby-Tavor2, Matthew
Callery1, Michael Desmond1, Jacqueline de Vries1, Amit Fisher2, Sophia Krasikov1

IBM 1T.J. Watson and 2Haifa Research Centers
{ossher,rachel,simmonds,mcallery,mdesmond,devries,kras}@us.ibm.com

{davida,atereta,amitf}@il.ibm.com

ABSTRACT
There is a serious tool gap at the very start of the software lifecy-
cle, before requirements are formulated. Pre-requirements analysts
gather information, organize it to gain insight, envision alternative
possible futures, and present insights and recommendations to
stakeholders. They typically use office tools, which give them
great freedom, but no help with consistency management, change
propagation or migration of information to downstream modeling
tools. Despite these downsides to office tools, they are still used in
preference to modeling tools, which are too hard to learn and too
constraining. This paper introduces the notion of flexible modeling
tools, which blend the advantages of office and modeling tools.
We propose a conceptual architecture for such tools, and outline a
series of research challenges to be met in the course of realizing
them. We also briefly describe the Business Insight Toolkit (BIT-
Kit), a prototype tool that embodies this architecture.

1. INTRODUCTION
Few business software projects truly begin with requirements
engineering. Before a decision is even made to embark on a soft-
ware development project, some form of business analysis is con-
ducted. The primary activities at this stage, before requirements
are formulated, include gathering information, organizing it to
gain insight, envisioning alternative possible futures, and present-
ing insights and recommendations to stakeholders (when the need
for a software system is assumed up front, these activities might
be performed as part of requirements engineering). Software en-
gineers and business stakeholders encounter a serious tool prob-
lem at this early stage of the software lifecycle.

Office tools are usually used, and for many good reasons, as dis-
cussed later. However, these tools are semantics free, are limited
in organizing information, and do not have an underlying domain
model. Consistency can only be maintained manually, and even
small changes can take a lot of effort to propagate. Practitioners
reported that entire days are often spent on the mechanics of
maintaining consistency, which is not only time-consuming, but
also disrupts flow. Migrating results from these tools to down-

stream modeling tools, which are founded on underlying domain
models, is also a manual process, and traceability is usually lost.

Modeling tools, such as for Business Process Models (BPM)1, are
sometimes used even at this early stage. They have the opposite
problem to office tools, however: they require conformance to a
metamodel, a level of precision typically premature at this stage.
A pre-sales consultant told us that almost as much time is spent
making up stuff just to remove the error messages as mapping out
the process, with no real improvement to the substance.

We argue that pre-requirements analysts need what we call flexi-
ble modeling tools: tools that blend the advantages of office and
modeling tools. Such a tool would allow users to work freely and
easily with visual elements, yet be able to attribute semantics to
visual characteristics when necessary, enabling automatic con-
struction and maintenance of an underlying model and manage-
ment of consistency. Given suitable domain-specific definitions,
the tool would provide guidance and checking, but without requir-
ing strict conformance to a rigid metamodel. Users would thus be
able to move smoothly between informal exploration and model-
ing with varying degrees of formality. This paper proposes a con-
ceptual architecture for such tools, and outlines a series of re-
search challenges to be met in the course of realizing them.

This architecture arose from our work on the Business Insight
Toolkit (BITKit) [19], a prototype tool for business users involved
in pre-requirements analysis. We designed and evolved it based
on observations of and feedback from such target users. However,
we believe that flexible modeling tools have broader applicability,
since similar considerations apply in many other domains, espe-
cially for users engaged in exploratory activities. We also believe
that it would be valuable to incorporate some of the features we
describe into standard modeling tools, such as tools for UML-
based design, so that the user can work at their desired level of
formality. Especially since there are times when less formality is
desired for example, during the early, exploratory phase of design.

The contributions of this paper are: (a) identification of a new,
open area for tool research, (b) identification of requirements,
derived from user studies, for tools supporting pre-requirements
analysis, (c) a conceptual architecture for tools that integrates key
benefits of office and modeling tools, enabling users to move
smoothly between exploration and modeling (the novelty lies
primarily in the way known architectural elements are brought

1 http://www.bpmn.org/

 2

together to achieve this), and (d) identification of research chal-
lenges in this area.

Section 2 briefly explores the tooling challenges faced by pre-
requirements analysts, and the extent to which these are met by
office and modeling tools, respectively. We highlight the features
of office tools that need to be introduced into modeling tools to
provide the requisite flexibility. Section 3 describes our concep-
tual architecture for flexible modeling tools, showing how the
advantages of office and modeling tools can be blended. Section 4
briefly describes the BitKit prototype and our experience with it,
and section 5 discusses related work.

2. PRE-REQUIREMENTS ANALYSIS
To understand the work of pre-requirements analysts we held a
three-day workshop in June 2007 for 12 IBM Business Architects.
It was supplemented by an email “shadowing” of a 3-month data
governance engagement with a Senior Business Analyst, as well
as an on-site observation of a one month engagement. At the
workshop, attendees were asked to recount three types of pre-
requirements engagements: one that had been a success resulting
in insights for the customer, one that had failed, and one that had
been a near-miss or last-minute save. By asking Business Archi-
tects to relate stories from actual engagements, the workshop fo-
cused on their life in the field-–rather than ‘by the book’ versions.

We found that pre-requirements analysts typically work alone or
in small teams, at the site of the business being analyzed. In the
case of teams, the members work closely together to reach a
shared understanding of the situation. They often use ad hoc con-
cepts, diagrams and notations that they explain to one another, and
that are defined, polished or changed before presentation to
broader audiences. The analysts themselves are typically business
people, with a deep understanding of business issues and varying
degrees of technical expertise. They are usually not the same peo-
ple who elicit detailed requirements or architect or design IT sys-
tems, and hence they are not used to using modeling and devel-
opment tools designed to support the software lifecycle.

A central finding of this study is that pre-requirements analysts
work with a holistic perspective including ideas from business
and, to a lesser extent, from IT. They gather information relevant
to a business or pre-identified business problem, and then orga-
nize and make sense of it to identify business issues and potential
solutions. A presentation is created that is used to communicate to
a client proposed solutions and their value to the client’s business.
Thus pre-requirements analysts help their clients frame business
problems and explore a variety of feasible solutions. Their role is
one of envisioning that often results in business transformation.
The process is exploratory.

We also learned about the central role of narratives in structuring
the work of pre-requirements analysts. The final outcome of their
work is a presentation or report, containing a variety of tables,
business process diagrams, organizational diagrams, as-is system
diagrams, etc. While the creation of this narrative is an explora-
tory process, consultants like to be presentation-ready as soon as
possible, even if that presentation is just a temporary state in their
work towards the final version. Template reuse is a common
working style, especially for consultants who apply their accumu-
lated experience and expertise to address similar issues for a series
of clients. Templates help organize findings into pre-defined cate-

gories and representations that have been found to be helpful in
past engagements; and also as a way of reusing narrative structure
in presentations. Often the template will be adapted to fit the
needs of a particular engagement, such as by changing styles and
vocabulary to fit the storyline, taste and culture of the client.

Without exception, the analysts prefer to use office tools rather
than modeling tools for their work. To understand more about
why, we conducted an additional study focusing on the user expe-
rience provided by these tools. Using a customized version of the
Cognitive Dimensions questionnaire [5], and follow-up phone
interviews, we interviewed five business consultants who use
these tools for their day-to-day work. All but one reported on
more than one tool. Two of the consultants reported on a model-
ing tool, two reported on a diagramming tool (an office tool sup-
porting structured graphics, e.g. Visio) and four reported on a
presentation tool. Table 1 summarizes the advantages of each type
of tool. Given the small number of participants, these results are
suggestive rather than conclusive.

All the interviewees prefer to use office tools where possible,
even when creating technical diagrams. For example, depictions
of business models are produced using a special-purpose dia-
gramming tool in preference to using a modeling tool. One inter-
viewee commented this was because their immediate need was
communication and not detailed modeling: “you got lots of details
in the modeler model, and you just got the pictorial presentation
with [a diagramming tool], but that was sufficient for communicat-
ing the business process. You didn't need all the details that were
in the [modeling tool] model.” Two interviewees commented that
they did not want to take time to learn the features of the model-
ing tool. In comparison, the “learning curve was minimal for get-
ting to the ability to diagram” using the diagramming tool.

The other major finding is that modeling tools cause premature
commitment as they do not allow people to work either at the
level of detail or in the order they choose: “… [it] makes me be
too rigorous, when I want to be sloppy.” Due to enforcement of
the metamodel, people are forced to take care of details before
they are ready: “It tends to force compliance with standards, driv-
ing you into the detail before the bigger picture is sorted out.”

Office tools on the other hand have no metamodel, in fact they do
not support semantics at all: “..it [diagramming tool] is really
agnostic about what terms 'mean'. They are just elements on a
page and carry no metadata apart from style.” It is this lack of
semantics that makes them easy to learn, and enables their broad
applicability. It also means that they do not constrain what the
user can express nor do they force a particular order of develop-
ment on the user. The user is able to evolve the diagram or presen-
tation at the level of detail, and in the order they choose, as their
understanding of what they need to represent evolves: “[in office
tools] you have to put something in 'a' format or place, it has to go
somewhere to begin with. I've never found that much of a problem
because I can always move it or format it how I want when I have
decided what the overall structure or content is going to be.”

Table 1: Advantages of office vs. modeling tools

Office Tools Modeling Tools
• Have broad applicability
• Are easy to learn
• Presentation tools provide narrative

structuring in the same medium as
final presentation

• Don’t constrain development order
• Provide multiple stylistic cues
• Provide just syntax

• Support multiple views on the same
model

• Facilitates consistency management
across multiple views

• Provide domain-specific guidance
• Provide syntax, semantic model and

semantic mapping

 3

Figure 1: Architectural Elements

Working in the medium used to present is important, and is one
reason interviewees reported that they like to do even their pre-
liminary work using presentation tools. Being in the presentation
medium helps them think through the final form as they are creat-
ing the story: “There is an element of rehearsal ... as you are se-
lecting the elements and the sequence…[I ask myself] what level
of detail do I need to go into, am I conveying the message? Am I
teaching, or persuading?”

However, analysts also mentioned downsides to office tools. One
interviewee talked about how lack of a detailed model meant that
there was a disconnect between the pre-requirements business
case and the detailed models used for defining the system down-
stream. This causes severe problems when changes downstream
need to be propagated back upstream, as there is no easy way to
update the presentations, reports and diagrams produced using
office tools, so they are not updated, and get out-of-date: “…at
that point you are beyond the [diagramming tool] and you don't
go back and change the model. Then the docs get out of sync…”

Office tools are viscous: a single change to the style or terminol-
ogy of an element may require many actions to maintain consis-
tency throughout the document. Managing consistency across
documents and within large documents was a problem raised by
every person interviewed: “Difficult to maintain continuity of
thought and to ensure that if an element occurs many times in the
document they are all kept in sync.” A lot of time was wasted
making low-level changes, and ensuring they were appropriately
propagated throughout a presentation and the multiple files asso-
ciated with it: “Time-consuming to arrange all the different ele-
ments and ensuring consistent styles are used throughout.”

Such consistency issues are typically dealt with in modeling tools
by supporting semantics. The visual elements in both an office
tool and a modeling tool are syntactic, and combine to form a
visual language supported by the tool. Semantics involves map-
ping of the syntactic elements to elements of a semantic domain
[12]. In the case of office tools, the tool supports no such map-
ping; the user might have one in mind, promoting disciplined,
consistent usage, but might not adhere to it strictly and might
change it at will. Modeling tools do map syntactic elements to
elements of the underlying model, which is the semantic domain.
This allows such tools to leverage the underlying model to pro-
vide domain-specific guidance and multiple views of a single
model, and for structure-aware operations like query and refactor-
ing, rather than operating at the purely syntactic level.

Clearly, neither office tools nor modeling tools are ideal for the
exploration, sense-making and communication tasks of pre-
requirements analysts. These user studies show that there are clear
trade-offs between the added power and functionality enabled by
semantics support, and the increased burden it brings to the user
experience. For the pre-requirements analysts we studied, the user
experience of office tools has clear advantages. They have broad
applicability, are easy to learn, and give users the freedom to
choose the order of development, allowing the semantics to
evolve as content is created. However, if such a user experience
could be maintained, pre-requirements analysts would clearly
welcome the advantages that tool support for semantics provides.

3. CONCEPTUAL ARCHITECTURE
In this section, we motivate and describe architectural elements
that work together to blend the advantages of office tools and
modeling tools so as to support pre-requirements analysts’ work

and practices, as described in Section 2, more effectively. The
architectural elements are illustrated in Figure 1, and are:
• A visual layer providing multiple views, in which the user can

work with much of the freedom of office tools.
• An underlying model consisting of related visual and semantic

sub-models, enabling visual cues to be given semantics.
• A forgiving approach to domain-specific guidance, with struc-

ture definitions specifying structural constraints used to check
for structural violations and provide assistance. When provided
as a package, they effectively define a meta-model. Models that
violate them can, however, be created, manipulated and saved.

• Refactoring support to allow convenient reorganization.
• A presentation layer supporting the synthesis of presentations

from working views.
These architectural elements provide the considerable flexibility
in usage required by our target users. In contexts where individu-
als or small groups with shared understanding are engaged in
exploratory activities, they do not need support for precision.
Their work is better facilitated by automatically mapping visual
entities to generic semantic entities: untyped entities and relation-
ships that can be refined and constrained as work progresses. This
provides coordination of multiple views without requiring prema-
ture commitment or constraining the structure that can be ex-
pressed. This usage also requires minimal learning. Structure
definitions might not be used; or predefined packages of them
designed for the domain can be used, to provide assistance; or
generic entities can be refined and structure definitions introduced
incrementally to record evolving understanding. Violations might
be ignored at first. If and when greater precision is required, such
as for communication in larger groups or with other tools, (prede-
fined packages of) structure definitions can be introduced and
violations dealt with. This can be done incrementally as the need
for precision, and the understanding needed to provide it, increase.
The architectural elements presented do not constitute a complete
tool architecture. A full tool requires many other elements, such as
support for persistence, versioning, atomic model updates, undo,
and collaboration. Issues such as these are not specific to flexible
modeling tools, and hence are outside the scope of this paper. It is
worth noting, however, that the unique elements of this architec-
ture can have profound implications for them. For example, flexi-
ble support for visual cues with underlying meaning can be ex-
ploited to show collaboration dynamically (e.g., distinctive deco-
rators associated with entities others are working on [13]).
We aim to support organization and communication of informa-
tion during pre-requirements analysis in a business context. The
content of this information is greatly variable, depending on the
project, but typically concerns entities (people, organizations, etc.)
and their interactions and relationships. Our users are not primar-
ily concerned with numeric data. The entity-relationship approach
is therefore a natural fit. We henceforth assume that the informa-
tion we are dealing with consists of entities, which can have prop-
erties, and relations between them.

 4

3.1 Visual Layer
The visual layer is responsible for displaying visual elements and
allowing the user to interact with and manipulate them. Our target
users told us that it is important to allow a great deal of flexibility
in this layer, so that they can explore visually, creating and ma-
nipulating visual elements as they focus on the content of their
analysis. Office tools provide such flexibility, which is one of the
reasons they are popular in this domain. Modeling tools typically
have a visual layer that is separate from the model, such as view
and controller in the MVC pattern [9]. If the model constrains the
information and its structure, as is usually the case, the constraints
show through in the visual layer, limiting freedom: the visual
layer cannot support anything that the underlying model cannot
represent. Flexible modeling tools therefore require particularly
rich underlying models, as described in section 3.4.

An important aspect of visual flexibility is the ability to select
from, and even improvise, a variety of views. We learned that
analysts often use combinations of diagrams, tables and text,
combined into presentations or other documents, and a flexible
modeling tool could offer an even richer variety. Multiple views
give users the option of working with their information in many
different ways, facilitating exploration and presentation.
Office tools do offer a variety of document and diagram types, but
because they maintain no relationship between them, consistency
management is a manual task. To reduce this burden, flexible
modeling tools must use the same underlying model for multiple
views. Furthermore, in contrast to typical visualizations, the views
must allow editing and manipulation of the information they
show, with changes made in one being reflected in all. This has
been common practice in programming environments and model-
ing tools for decades [21], and is important in this context also,
with a wider variety of views over more diverse information.

Some views, such as hierarchy charts and process diagrams, are
designed for information with specific structure. Because of the
flexibility inherent in the underlying model, and the fact that the
model can be changed through other views, it is possible that the
user might try to apply such a view to inappropriate information.
An important special case occurs where some of the expected
structure is missing because the user has not provided it yet.
Flexible modeling tools must be tolerant: rather than refusing to
show the information at all, the view should show as much as
possible and use the guidance mechanism (section 3.5) to indicate
what is incomplete or incorrect and how the user might fix it.

3.2 Visual Organization
Analysts frequently work with information visually when explor-
ing it to gain understanding and again when communicating that
understanding. They rely on a variety of visual cues, including:

• Style. Different shapes, colors, line styles, etc. are used to high-
light distinctions and commonalities. Entities are often drawn
as shapes, and relationships as lines or arrows connecting them.

• Positioning. Related entities are often positioned in a way that
indicates the relationship, such as nearby, side-by-side, stacked
or layered, or arranged in a structure such as a list or table. A
common case is containment, which is often used to indicate a
containment or subsumption relationship.

• Other dimensions, such as time and animation, which remain
research challenges from a flexible modeling perspective.

These sorts of cues provide what we call visual organization.
They are important aids to the cognitive processes involved in

organizing and understanding information [6]. They also have a
significant effect on communication: if they are used in a consis-
tent and evocative manner, they help to make or subtly reinforce
important points being communicated, whereas if they are used
haphazardly or inconsistently, they can easily create confusion
[15]. For this reason, as we learned in our user studies, good pre-
senters put a good deal of effort into the visual cues.

Office tools offer a wide variety of visual cues, and a lot of free-
dom to make good (or bad) use of them. The user can move things
around freely and experiment with different organizations during
the exploratory phase, and can craft beautiful presentations to
communicate key points once they have been conceptualized.
Unfortunately, the relationship between the visual cues and what
they mean is not understood by the tool, since office tools have no
notion of underlying meaning. For example, one cannot pose a
query to an office tool asking for all entities related to some en-
tity, and expect it to use the visual cues to find them. One cannot
even make a query on the style, e.g., to find all boxes that are
green. Flexible modeling must enable such queries, but not at the
expense of hindering the visual organization capabilities.

3.3 Semantic Organization
To create a coherent analysis and presentation of business issues
and potential solutions, organization of the underlying concepts
and data, not merely the visual elements, was important to our
users. We call this semantic organization. Typical elements of
semantic organization include relationships, grouping, distinctions
and classification. We observed great variability in kinds of se-
mantic organization used across, and even within, projects.

In our user studies, we discovered that users evolve the concepts
that go into the final presentation by organizing snippets of infor-
mation from interviews, prior engagements and client documents.
Sets provide a well-understood means of dealing uniformly with
diverse semantic organizations. In office tools, these typically
start as lists. Flexible modeling tools treat lists as enumerated
(extensional) sets. During exploration, users need to reorganize
the content within and between these lists as they attempt to find
the appropriate structuring of their information. Once a user has
many snippets, being able to regroup these using query-based
(intensional) sets is another important aspect of flexible modeling,
minimizing the viscosity inherent in manual re-categorization.

We have found that another key form of organization important to
our users is making distinctions between information snippets,
often leading to classification. Our users told us that after creating
lists, they start to see that there are distinct sets within the items
listed. They then create lists within lists, i.e. subsets, to represent
such distinctions. When done recursively, this leads to a classifi-
cation hierarchy. Classification can be done by first defining the
categories and then categorizing entities, but during the kinds of
exploratory activities of our users it is often done the other way
around: they group entities together based on a sense that they are
similar in some way, but before they can articulate just how, then
define the categories later, once their understanding has grown.

Groupings are not enough to allow users to make sense of their
information, and are typically accompanied by drawing arrows to
show relationships, for example that an item ‘Shipping’ in the list
of ‘Departments’ ‘reported’ the ‘fulfillment issue’ found in the list
of ‘Issues.’ Users then want to be able to group all items that re-
ported fulfillment issues. Such relationships can be captured by
means of query-based sets, such as “all entities related to entity e
by relationship r,” where r denotes a particular kind of relation-

 5

ship, such as “reported” in the previous example, or perhaps a
wildcard representing many or all kinds of relationships.

Our users often viewed the same set of information snippets from
different perspectives. So the same entities often need to be orga-
nized simultaneously along multiple organizational dimensions,
to reflect different relationships, groupings or distinctions that are
important for the users’ understanding. For example, employees
might be organized by department, by job description, by experi-
ence level, by the customers they interact with, etc. An organiza-
tional dimension is a pair (s, {s1, s2, …, sn}), where s is the set of
entities being organized according to this dimension, and each si is
a subset of s. For example, s might be the set of all employees in a
company, and each si might be the set of all employees in depart-
menti or interacting with customeri, etc.

During exploration, users would like to be able to try a variety of
organizational dimensions before settling on a few that prove
valuable. This is difficult in office tools. Many users do this using
stickies and a wall, and are then frustrated by the effort needed to
get their work into electronic form in order to share it with their
team. Also, many users curtail their exploration due to the insur-
mountable difficulties of reorganizing their information snippets.
It is important for flexible modeling tools to support multiple
organizational dimensions. The implications for classification are
that multiple, simultaneous classifications must be supported,
allowing the same entity to be classified in multiple different
ways; each is an organizational dimension.

A flexible modeling tool must allow users to capture the organiza-
tions that emerge rather than have to force-fit them to limited
organizations provided. This implies that the tool should provide
not only a rich collection of useful kinds of sets and organiza-
tional dimensions, but also allow the user to define or modify
custom sets and organizational dimensions. Given that our target
users are not usually computer scientists, providing a suitable user
experience remains a significant research challenge.

3.4 Related Visual and Semantic Models
In our architecture, as in many modeling tools, the underlying
model is split into two related sub-models: the visual model and
the semantic model. Figure 2 shows this, and other model details
that will shortly be explained. The model is an entity-relationship
model, suitable for representing the kind and variety of informa-
tion described above. Both entities and relationships may need to
be organized. For example, relationships can be classified accord-
ing to their kind, such as “depends on” or “interacts with.” To
allow uniform treatment of entities and relationships when appro-
priate, relationships are themselves considered to be entities. In
fact, everything in Figure 2 specializes Entity, but this is not
shown, to reduce the complexity of the figure.
The visual model captures the visual cues and their properties,
such as style and position. Because of their importance to our
users, presentations are explicitly represented—as collections of
views and visual elements. The semantic model captures the un-
derlying information, and the sets representing their semantic
organization; structure definitions and violation sets are described
below. Entities in the visual model depict entities or relationships
in the semantic model, shown as dotted arrows in Figure 2.

As we learned from our users, during exploratory activities users
experiment visually as a way to gain understanding, thinking more
about visual elements than their underlying meaning. During this
phase, the model elements being depicted must be generic: entities

or relationships with little or nothing known about them. As un-
derstanding is gained and distinctions emerge, the user must be
able to express them, and the underlying model must evolve
accordingly. This is an important reason to avoid rigid typing,
where it is hard or impossible to change the type of an entity once
created. Conventional typing has two elements: classification of
entities according to type, and structural properties, specifying
properties that entities of a particular type are guaranteed to have.
The flexible approach to semantic organization described above
deals with classification in a less restrictive way: entities and rela-
tionships can be classified in multiple ways simultaneously, and
their categories can be changed at will. Structural properties can
be specified by means of structure definitions (right of Figure 2),
perhaps in terms of categories, using the guidance component
described in section 3.5. Reclassifying an entity or relationship
might result in guidance violations, since the structure might be
suitable for the old category but not the new one. It remains pos-
sible, however, and the guidance component will guide the user
through the process of fixing the structure.
The relationship between the models is deeper than just depic-
tions, however: it also provides a mapping between semantic and
visual organization. This provides an important capability not
present in typical modeling tools: the ability to specify the visual
cues to be used uniformly to manifest aspects of semantic organi-
zation, as described below. This enhances the user experience by
reducing viscosity at a whole different level. For example, cor-
recting a classification error, such as all ‘Sales employees’ should
be ‘located in’ ‘AL’ not ‘NY,’ when all NY employees are col-
ored blue, can be done with a single action, rather than by having
to color every depiction of Sales Employee by hand, as is the case
with office tools. This should ameliorate the time-consuming and
distracting editing reported by the business users we interviewed.

3.4.1 Style Mapping
Style is one of the key visual cues providing visual organization.
When using office tools, analysts in our user studies told us they
used styling to capture various semantic dimensions in their in-
formation. However, they also said that having to set every style
on every element manually was time-consuming, and error-prone.
Flexible modeling provides an explicit mapping between style and
underlying semantic organization, as shown in the center of Fig-
ure 2. This mapping allows tools to provide support that can re-
duce user errors and effort, while allowing them to explore visu-
ally as they uncover semantic dimensions. Such support also re-
duces the effort required when users want to visually represent
semantic distinctions they have realized in their head.

A style, following common practice such as CSS2, is a set of at-
tribute:value pairs. We interpret style attributes liberally, to in-

2 http://www.w3.org/TR/CSS2/

Figure 2: Related Visual and Semantic Models

 6

clude typical ones like fill color and line thickness as well as
shape, decorations and any other visual cues provided by a view.
For example, a view showing issues of various kinds might depict
an important personnel issue using a red stick figure style:

redFigureStyle = { shape:stickFigure, fillColor:red }

A style mapping rule is an ordered pair s → y, where s is a set and
y a style, specifying that the depiction of any member of s should
be styled according to y. For example, both style mapping rules

r1: all issues classified as “personnel” → { shape:stickFigure }
r2: all entities classified as “important” → { fillColor:red }

apply to all issues that are classified as both “personnel” and “im-
portant,” causing their depictions to have redFigureStyle (i.e., to
have at least the style attributes specified by redFigureStyle).

In our architecture, each view has a style mapping made up of
such style mapping rules. The styles used in these rules must be
such that the view can render them; for example, list or table
views might not support variations in shape. The style mapping
could be manifested to the user, as a legend. Not only does this
allow all users to see what the styles mean, it can also be the place
where style mappings are edited. Changes immediately affect the
styling of all appropriate visual elements in the view.

Many style attributes, such as fill color, shape and a variety of
decorators, are independent: any visual element can have arbitrary
combinations of values for them. We call such a set a style space,
and each independent attribute a style dimension. An appealing
structure for the style mapping is to associate each style dimen-
sion in a style space with an organizational dimension, mapping
each subset in the organizational dimension to a different value in
the style dimension. This allows the user to see the organizational
dimensions visually and to control which to show, and clearly
separates distinctions being made by the different dimensions.
The example above was based on mapping the organizational
dimensions “issue kind” (with values such as “personnel,” “ac-
counting,” etc.) and “importance” (with values such as “impor-
tant” and “insignificant”) to shape and fill color, respectively, so
that different issue kind values are displayed as different shapes
and different importance values are displayed as different colors.
This kind of use of styles was typical in the diagrams created by
our target users as they did their work.

Our users reported sophisticated use of styles across sets of views.
For example, consistent styling is often desired across a presenta-
tion, as an aid to understanding. However, in subsections of the
presentation users may purposely change a style to more appro-
priately convey their point. In one example, a consultant included
diagrams done by another team that had shared semantics with the
rest of the presentation and, to remain true to the originals, she
used the original styles for just this set of diagrams. Several views
should therefore be able to share a base style mapping, with each
view specializing or overriding it if desired. If the user changes a
style mapping rule inherited from a shared base, the question
arises of whether the user intends to change the local view only,
or the base. The user experience remains a research challenge.

It is possible for multiple style mapping rules within a style map-
ping, whether local or inherited from a shared base, to apply to a
single entity, as for r1 and r2 above. A style clash occurs if these
mappings specify different values for the same style attributes. A
related problem is style ambiguity, where the same style attribute
is mapped to different sets, leaving the user in doubt as to what
the style means in any specific case. Implementations based on
this architecture must cope with clashes and ambiguity in a non-

intrusive manner. Occasionally, multiple clashing style attributes
can be blended; for example, two fill colors can be rendered as a
transition from one to the other. Otherwise, the guidance compo-
nent described below can be used to indicate clashes and ambigu-
ity; its non-intrusive approach avoids interrupting the user’s flow,
especially important during creative, exploratory activities.
If style spaces are used, with different style dimensions being
associated with different organizational dimensions, as described
above, style ambiguity cannot occur. If the subsets of the organi-
zational dimensions are disjoint, style clashes cannot occur either.

3.4.2 Position Mapping
Position mapping is conceptually similar to style mapping, except
that mapping rules specify positioning (e.g., placement or con-
tainment) instead of style. This requires a model of positioning
instead of the simple attribute:value pairs in the case of styles.
Some views offer continuous positioning, such as diagrams that
allow arbitrary placement, whereas others offer discrete alterna-
tives, such as tables that allow placement in specific rows and
columns. Such models do exist, e.g. [10], but their integration into
the flexible modeling architecture requires further research.

3.5 Guidance
Thus far we have focused on flexibility, and on providing consis-
tent appearance in the face of flexibility. The flexibility is primar-
ily afforded by the general underlying model, capable of repre-
senting arbitrary, unconstrained entities and relationships. This is
unlike most modeling tools, for which data that does not conform
to the metamodel is effectively corrupt, and that therefore restrict
user interactions to those that respect the metamodel. While help-
ing users get things right, such enforcement puts them in a strait-
jacket. We aim to provide guidance without confinement.

During early exploration, and in unfamiliar domains, there might
be no known guidance to give. However, once a structure has
emerged or is known up-front, as when analysts are working
within an analysis framework that has been developed on previous
engagements, guidance can help the user to work within it and
conform to it. Our architecture therefore contains a guidance
component. At the conceptual architecture level, we identify and
justify some of its properties, leaving many options for specific
designs and implementations. Some concrete details of guidance
in the BITKit prototype are given in section 4.

3.5.1 Structure definitions
Guidance is specified by means of structure definitions, which can
specify a variety of structural constraints on the model. For exam-
ple: every item classified as an issue should also be classified
along the “importance” dimension. Structure definitions about
domain entities and relationships, such as these, are specified in
terms of the semantic model, not the visual elements in the visual
model. However, structure definitions can also cover the mapping
between semantic and visual models, such as specifying that style
mappings should be structured according to style spaces; e.g.,
items in subsets of ‘Issue’ should be styled using a color set.

Our architecture does not support typing of entities as such, be-
cause typing usually connotes a degree of viscosity: changing an
entity’s type can be difficult or even impossible in some models.
Abstraction can also be compromised, because an entity can usu-
ally have just a single type. Structure definitions in combination
with semantic organization, however, provide key benefits offered

 7

by typing, as noted above. Structure definitions effectively cause
referenced categories to be like types, but with greater flexibility.

The specific nature of the structure definitions and the language
used to express them are not laid down by this architecture. A
flexible modeling tool might use an existing, general approach,
such as xlinkit [16] or Crocopat [4], or implement specific kinds
of high-level, parameterized structure definitions that provide
convenient abstractions embodying many low-level rules [14].

3.5.2 Positive and negative guidance
The obvious use of structure definitions is to detect and report
violations. Architects’ Workbench AWB did this in a non-
intrusive way by means of reminders shown in a separate view
[1]. This negative guidance is important, alerting users to the fact
that their model violates the specified structure.

However, as AWB users confirmed, it is more helpful to provide
positive guidance by doing things automatically for the user
whenever possible, or leading the user to a correct result by pre-
senting a restricted set of choices. For example, if the user draws a
line in a diagram between the boxes depicting two entities, a rela-
tion is created between those entities. In the absence of guidance,
the relation might be given a generic kind like “related to.” The
user would then have to edit the relation to change its kind once it
becomes clear. This generally avoids premature commitment: the
user can draw a line without first having to decide what kind of
relation it depicts. If, as in some of the cases reported by our us-
ers, however, the analyst is using a framework defined by a senior
analyst, such as a version of issue-based consulting, a structure
definition might already have been specified. For example, an
item classified as ‘Hypothesis’ can only be related to an item clas-
sified as ‘Issue’ by the relation ‘for.’ Positive guidance would
reassign the relation kind accordingly. The user might still change
it, if desired, but that is expected to be a rare exception.
An intermediate form of positive guidance is where the structure
definitions cannot determine a unique correct result, but instead
can offer a restricted set of alternatives. This facilitates autocom-
pletion, a feature of tools that shows a restricted menu of valid
possibilities based on context and user input.

The manner in which guidance is actually given to the user
through the user interface greatly affects the user experience. In
the case of pure positive guidance, the tool can just do the single,
right thing, but in all the other cases some guidance-specific inter-
action is required. In accordance with our users’ desire for tools
that provide flexibility, we avoid the more stringent approaches,
such as bringing up a dialog forcing the user to correct the viola-
tion immediately. The flexible modeling architecture uses an ap-
proach to guidance with low invasiveness and integrated with
other architectural elements: visual cues controlled by the style
mapping. The sets used in style mapping rules can include viola-
tion sets (bottom-right of Figure 2) of items or relationships in-
volved in guidance violations, resulting in visual cues indicating
the violations. Like all style mapping rules, these will be mani-
fested to the user in the legend, making the meaning of the cues
clear, and also allowing the user to change them, thereby allowing
user-control of their obtrusiveness, and even their presence.
Different degrees of flexibility may be appropriate at different
times and in different settings. For example, users told us that in
some teams when junior people are collaborating within a struc-
ture defined by more experienced people, they may extend, but
not change, the structure. The level of freedom allowed by this

architecture might seem undesirable, or even dangerous, in such
contexts. It is certainly possible to provide levels of guidance
enforcement, and to use policies based on attributes such as user
role to control their use. However, it is an open question, whether
such measures are necessary or desirable.

When exporting a model from a flexible modeling tool to a stan-
dard modeling tool, one must ensure that it conforms to that tool’s
metamodel. Suitable structure definitions allow the guidance
component to check for this, alerting the user to violations.

3.5.3 Guidance checker
The guidance checker is responsible for evaluating the (relevant)
structure definitions when changes occur or are underway, to de-
termine both violations and what positive guidance to give. The
requirement for positive guidance places greater demands on the
checker than is typical, and so it, and the language used to express
structure definitions, should be designed with the goal of provid-
ing user-friendly positive guidance. Nentwich, Emmerich and
Finkelstein show how to compute repair actions for first-order
logic constraints [17]. Remaining research challenges include user
experience issues for positive guidance and for end-user manipu-
lation of structure definitions, and interaction protocols between
the guidance checker and views to allow timely computation and
display of positive guidance in response to user gestures.

3.6 Refactoring
During the kinds of exploratory work being done by our target
users, it is important to be able to try things without worrying
about whether they are exactly right, and then be able to change
them later. This would reduce premature commitment by making
change, and thus iteration, easy. Rich views with an underlying
flexible model support many kinds of changes, but there are some
structural changes that require refactoring support. For example,
when extracting important statements from interview transcripts,
one might quickly categorize them based on who made the state-
ments (among other criteria). Later on, however, it might be bene-
ficial to refactor to use “said by” relationships between statements
and interviewees instead. This makes the nature of the relation-
ships explicit, allowing for other relationships between statements
and stakeholders. This change would be tedious and error-prone to
do by hand, illustrating the importance of refactoring support.

Some refactorings involve just the primitives in the underlying
model, such as categories and relations in the example above. The
tool can include built-in support for these. In other cases, how-
ever, refactoring will involve transforming to or from structures
defined by structure definitions. Though refactoring has been
offered by tools for some time now, many research challenges
remain in the area of extensible support for new refactorings, as
well as determining appropriate refactorings for the domain of
flexible modeling (e.g., refactorings that both transform data and
create structure definitions). It is particularly challenging to en-
able stakeholders with domain understanding who are not expert
software engineers to define new refactorings.

3.7 Presentation layer
A key focus of pre-requirements work is the creation of presenta-
tions: coherent expositions, usually of understanding gained about
the business situation together with implications and recommen-
dations. Primary user challenges are to determine a good narrative
structure, and to ensure that each key point is backed by appropri-
ate supporting material.

 8

The presentation layer provides presentation views for working
with presentations. Any views used for exploration are candidates
for incorporation into presentations. Each presentation unit (e.g.,
slide) may be an assembly of one or more views together with
titles and other supporting visual elements. The incorporation of
large exploratory views into presentations may require user-
guided pagination or refactoring to ensure legibility, conformance
to form factors, and that material is revealed in appropriate and
useful chunks. In general, considerable work may be needed to
polish presentations, in addition to assembly of the narrative.

The act of constructing a presentation brings a fresh perspective to
the exploratory and envisioning role of the user, frequently caus-
ing them to revise and enrich their understanding. The presenta-
tion layer therefore allows full manipulation of the views within
presentations. This further justifies presentations being assemblies
of views, as well as our overall goal of blending modeling and
presentation features into a single tool. User interaction tech-
niques enabling gradual yet fluid transitions between modeling,
preparation and presentation are a topic for further research.

Explicit style mappings play additional roles within presentations.
They form the basis for legends that accompany each view. Also,
in interactive presentations, the reader may be presented with
controls that enable or disable specific mappings, or select one or
more entries to highlight from a style dimension. Decisions about
what to place under reader control are made by the author.

Suitable presentation views could be used for actual presentation,
but in many contexts it is necessary to export presentations in
standard forms, such as slide decks or web sites. This is the task
of presentation exporters.

4. BITKIT
BIKit is an early prototype tool for business stakeholders involved
in pre-requirements analysis [19]. We followed the approach of
starting with minimal capabilities and adding enhancements only
when clearly necessary. Several senior business analysts provided
feedback on design sketches and test-drove very early versions of
BITKit. We evolved it based on observations of and feedback
from them. Our work on BITKit inspired the architecture de-
scribed above. In formulating the architecture, however, we en-
gaged in extension and generalization beyond BITKit’s current
capabilities. This section briefly describes BITKit as a concrete,
and still fairly limited, instance of the architecture.

BITKit is built as a Rich Internet Application using Adobe®
Flex®3. Persistence is provided by streaming XML to a REST
server, or storing it on the local disk (when running under Adobe®

AIRTM). The underlying model is founded on entities, called
items, and directed, binary relationships, which are themselves
considered entities. Sets are items, and both enumerated and
query-based sets are supported. BITKit does not include a gen-
eral-purpose query language, however, but rather specific kinds of
parameterized sets supporting a standard set interface. For exam-
ple, an “AllTargetsSet” is the set of all target items reachable by
following a specified relationship from a specified source item.
These various kinds of sets, along with standard set operations
like intersection and union, effectively provide an open, extensible
means of expressing queries. This approach enabled us to get
started quickly and to grow the query capability as needed.

3 http://www.adobe.com/products/flex/. Adobe, Flex and AIR are trade-

marks of Adobe Systems Incorporated.

We chose to use tagging as our means of classification. Tagging is
a flexible, informal approach to organization that has become
popular, especially on the Internet (e.g., Delicious4, flikr5). It is
lightweight, allowing users to attach tags to any entities, and we
believe that it is particularly effective during early exploration.
Multiple classification is naturally supported by attaching multiple
tags to entities. Although tags might be used with little thought
initially, they can be defined and organized as understanding is
gained [20]. We found that the business analysts we were working
with were mostly not used to tagging, and their understanding and
appreciation increased when we pointed out that they were effec-
tively classifying things in a lightweight way.

Early feedback led to the introduction of tag groups: collections
of related tags, such as tags representing degrees of importance or
kinds of issues. Tag groups serve as organizational dimensions in
multi-dimensional classifications, allowing simultaneous classifi-
cation by such criteria as importance and issue kind. Later feed-
back revealed (as we expected) the need for implication relation-
ships among tags, which would support classification hierarchies.

BITKit provides three primary kinds of views: diagrams, lists and
tables [20]. A diagram depicts items as shapes and relationships
between them as lines; the items are explicitly placed in the dia-
gram by the user. A list is founded on a set, and displays all items
in that set. Like all BITKit views, lists can be changed by the user,
and this causes the underlying set to be updated automatically. In
some cases there is not a unique way to do this, such as when an
item is removed from an intersection, and the user needs to be
consulted. Determining exactly what the user experience should
be remains a research challenge.

Tables are also set-based. The user selects row and column sets,
determining the headers. The contents of a cell, at the intersection
of a row and column, is computed based on the headers of that
row and column. For example, if the rows are “all tags in group
Issues” and the columns are “all tags in group Importance,” then
each cell will contain entries that are tagged with a particular kind
of issue and degree of importance. Changes the user makes in the
table cause appropriate changes to the underlying tagging.

All BITKit views have legends, showing their style mappings.
Diagrams currently support the richest variety of styles: shape,
background color, line color and line thickness. Lists and tables
do not support variation in shape, as this is not a style typically
used by business analysts in these views. Experience has revealed
the need for mapping organizational dimensions to style dimen-
sions, as described in section 3.4, so that the user can comprehend
organizational dimensions at a glance. We plan to add support for
such mapping, and for other style attributes, such as decorators.

As with sets, BITKit offers an initially small but extensible set of
structure definitions in the model. Currently, it supports implica-
tions involving sets (every item in s1 must also be in s2, e.g., every
item tagged with a tag in tag group “Issues” must also be tagged
with a tag in tag group “Importance”), and constraints on the end-
points of relations (e.g., both the source and target of a “sub-
issue” relation must be tagged with “Issue”). We have given prior-
ity to supporting positive guidance. For example, given the struc-
ture definition above, if the user creates a “sub-issue” relation
anywhere, the source and target are automatically given “Issue”
tags, if they do not have them already. Violations are currently

4 http://delicious.com/
5 http://www.flickr.com/

 9

shown as decorators on shapes and lines in diagrams only. We
plan to introduce violation sets, as described in section 3.5.2,
which would then allow style mappings to be used to indicate how
violations should be depicted. Violation decorators can be opened
to see details, including a list of possible repairs.

BITKit’s presentation layer is still primitive. Based on user feed-
back, two separate aggregations of views are provided, workbooks
and presentations. This allows users to explore using workbooks,
and then to copy views into presentations and polish them. As
practice areas mature, we expect workbooks to become fairly
stable templates, guiding analysts in there work, but presentations
to be tailored differently for different audiences. Supporting
smooth transitions between them remains an area for future work.

The need for refactoring soon emerged as we showed analysts
early versions of BITKit. Because tagging is so lightweight, we
found it being used early on in situations where it later turned out
relationships were more appropriate. We also found that it is not
always clear upon creation whether something should be an item,
a tag or a tag group. Wand and Weber discuss another situation
where it is hard for users to make correct choices up front [22].
Avoidance of premature commitment requires that the user can
pick quickly, and change the decision easily later.

Our experience with BITKit and feedback from business analysts
thus led to the insights behind the architecture described in this
paper. We are currently preparing for pilot use of BITKit in a real
industrial context, to support consultants in evaluating software
development organizations in order to recommend practices (e.g.,
requirements management or change management) that would
improve them. This has already led to the need to support collat-
eral material: standard material, perhaps from prior engagements,
that can be adapted and reused. Users want to include (copies of)
parts of it in their models and make local changes, and also pa-
rameterize it, effectively creating templates, whose importance
was noted in Section 2. We have begun experimenting with ap-
proaches to abstracting from and parameterizing existing models.

5. RELATED WORK
Requirements modeling tools, such as GRAIL/KAOS [3] and
Rational Requirements Composer6, embody specific metamodels.
Extensible modeling tools, such as RSM7, also embody specific
metamodels, but allow some degree of flexibility, such as user-
defined stereotypes and profiles, and sometimes the ability to add
annotations. The need to conform with the metamodels, however,
prevents the degree of flexibility needed in our domain.

Model Integrated Program Synthesis [18], and other environments
supporting metamodeling, allow domain experts to define meta-
models from which domain-specific modeling tools can be gener-
ated. Each such tool supports manipulation of models that con-
form to its metamodel. These systems provide valuable time sav-
ings and flexibility to tool builders, but the tools produced do not
reflect it: each supports the metamodel from which it was gener-
ated, and changes require regeneration. Flexible modeling tools,
in contrast, allow tool users to evolve metamodels and to manipu-
late models that do not conform to specific metamodels.

Architects’ Workbench (AWB) [1] served as an inspiration for
our work, though it was developed for IT architects rather than
business stakeholders. It also provides a flexible underlying model

6 http://www-01.ibm.com/software/rational/announce/rrc/
7 www.ibm.com/developerworks/rational/products/rsm/

with guidance, but is configured with specific metamodels. The
underlying model allows change-type refactorings and graceful
handling of incompleteness and metamodel evolution, which re-
sult in reminders indicating what is incomplete or incorrect.
AWB’s metamodels include catch-all types (RawNode, Basic-
Relation and Note), which allow free-form, untyped capture of
data, but with no way of introducing new categories or kinds of
relations except by changing the metamodel and reconfiguring.
AWB also does not support general style mapping.

Telelogic Systems Architect8 is a modeling tool for enterprise
architecture, and hence closer to the domain of business analysis.
It supports a large corpus of diagrams, methods and notations,
based on underlying metamodels that can be tailored by expert
administrators. The user thus has a wide choice of metamodels,
but not the flexibility to deviate from or extend the one chosen.

Our approach to guidance relates to Balzer’s landmark work on
tolerating inconsistency [2]. His approach involved introducing
pollution markers to indicate the violation of specific constraints:
instead of requiring a constraint to hold always, one instead re-
quires a pollution marker to be present if and only if the constraint
does not hold. The presence of the marker thus indicates the viola-
tion of a specific constraint, and, as he noted, can be used to pro-
vide a visual cue to the user, such as coloring inconsistent spread-
sheet cells. The markers can also be used as guards, preventing
the execution of code that depends on the constraints being satis-
fied. Balzer’s motivation was facilitating complex updates involv-
ing multiple parties, where consistency would only be restored
once all parties had completed their parts of the updates. The in-
consistencies were thus expected to be temporary. Our motivation
is to allow users to be guided by domain-specific structure defini-
tions, but with the freedom to deviate from them. Violations thus
represent cases where the semantic model violates whatever struc-
ture definitions are in use, and not necessarily inherent inconsis-
tencies within the models. These violations might be repaired as
work proceeds, and must be if the models are to be passed to
downstream modeling tools. Sometimes, however, the violations
are deemed acceptable; they then persist as such, or the structure
definitions themselves are modified to reflect new understanding
or a difference in domain.

Another important area of inconsistency handling in requirements
tools is that of representing and working with mutually-
inconsistent information provided by multiple stakeholders. This
must be addressed by a model that reifies multiple perspectives,
allows them to be inconsistent and allows their relationships to be
explored, such as the Viewpoints model [7]. Support for multiple
stakeholder perspectives, as well as for alternative possible fu-
tures, which might also be mutually inconsistent, are important in
our domain also. They are, however, largely independent of the
focus of this paper, and are therefore not addressed here.

Another largely-independent area not addressed in this paper is
sketch-based user interfaces. Grundy and Hosking describe ge-
neric support for adding sketch-based input to modeling tools
[11]: drawn shapes are recognized as diagram elements, at times
that are customizable by the user. They argue that this approach
improves tools along several cognitive dimensions [5]: premature
commitment, viscosity, progressive evaluation, secondary nota-
tion, closeness of mapping and error proneness. Since most of
these are important in our domain too, we postulate that sketch-
based interfaces would be a valuable addition to pre-requirements

8 http://www.telelogic.com/Products/systemarchitect

 10

tools, but how they would be received by business stakeholders,
and how much they would help, remain issues for further study.
An interesting research challenge when adding sketch-based inter-
faces to flexible modeling tools is that the user might draw new
shapes, not yet known to the tool. The sort of support Grundy and
Hosking provide for coexistence of sketches and computer-drawn
shapes can be expected to be helpful here. The user will also need
means to select or define new computer-drawn shapes and associ-
ate them with sketched shapes, causing the recognizer to be up-
dated dynamically.

6. CONCLUSION
This paper introduced the notion of flexible modeling tools, and
described key architectural elements needed to blend the advan-
tages of office tools and modeling tools. Pre-requirements ana-
lysts, and others engaged in exploratory work, currently find
themselves forced to use either office tools or modeling tools.
Input we received from many practitioners clearly indicated that
neither is ideal. Through a visual layer allowing the user great
freedom, an underlying model able to represent any information,
mapping from semantic characteristics to visual cues, forgiving
guidance and refactoring and presentation support, flexible model-
ing tools bring together many of the key advantages of office tools
and modeling tools, allowing users to move smoothly between
informal exploration and modeling with varying degrees of for-
mality and precision. They therefore have the potential to fill an
important gap in the current tool spectrum.

We also identified a number of research challenges remaining in
the area of flexible modeling tools. Several involve infrastructure,
but many involve the user experience: providing an experience
that gives power and flexibility to business users without being
too complex, confusing or intrusive is particularly challenging.
We hope that this paper will spark research on these challenges,
and provide a framework within which it can be positioned.

7. ACKNOWLEDGMENTS
We thank Barthélémy Dagenais for many helpful comments.

8. REFERENCES
[1] S. Abrams, et. al., “Architectural thinking and modeling with

the Architects' Workbench.” IBM Systems Journal 45(3),
July, 2006.

[2] R. Balzer, “Tolerating inconsistency.” In Proceedings of the
13th International Conference on Software Engineering
(ICSE 1991), IEEE, pp. 158 – 165, 1991.

[3] P. Bertrand, et. al., “GRAIL/KAOS: An Environment for
Goal-Driven Requirements Engineering”, In Proceedings of
the 19th international conference on Software Engineering
(ICSE 1997), pp. 612—613, 1997.

[4] D. Beyer, “Relational programming with CrocoPat.” In Pro-
ceedings of the 28th International Conference on Software
Engineering (ICSE 2006), pp. 807-810, 2006.

[5] A. F. Blackwell and T.R.G Green, “A Cognitive Dimensions
questionnaire optimised for users.” In A.F. Blackwell & E.
Bilotta (Eds.), In Proceedings of the Twelfth Annual Meeting
of the Psychology of Programming Interest Group, pp. 137-
152, 2000.

[6] S.K. Card, J.D. Mackinlay and B. Shneiderman (Eds.), Read-
ings in information visualization: Using vision to think.
Morgan Kaufmann, 1999.

[7] A. Finkelstein, et. al., “Viewpoints: A framework for inte-
grating multiple perspectives in system development.” Inter-
national Journal of Software Engineering and Knowledge
Engineering 2(1), pp. 31-58, 1992.

[8] A. C. W. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and
B. Nuseibeh, "Inconsistency Handling in Multi-perspective
Specifications", IEEE TSE 20(8), pp. 569-578, 1994.

[9] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, April 2005.

[10] E. R. Gansner and S. C. North, “An Open Graph Visualiza-
tion System and its Applications to Software Engineering.”
Software—Practice and Experience, 30(11), pp. 1203-1233,
2000.

[11] J. Grundy and J. Hosking, “Supporting generic sketching-
based input of diagrams in a domain-specific visual language
meta-tool.” In Proceedings of the 29th international confer-
ence on Software Engineering (ICSE 2007), pp. 282-291,
2007.

[12] D. Harel, and B. Rumpe, “Meaningful Modeling: What's the
Semantics of "Semantics"?” IEEE Computer 37(10), pp. 64-
71, 2004.

[13] S. Hupfer, L-T. Cheng, S. Ross and J. F. Patterson, “Intro-
ducing collaboration into an application development envi-
ronment.” In Proceedings of the 2004 ACM Conference on
Computer Supported Cooperative Work, pp. 21-24, 2004.

[14] H. Kilov and J. Ross, Information Modeling: an Object-
Oriented Approach. Prentice Hall, 1994.

[15] J.H. Larkin and H.A. Simon, “Why a Diagram is (Some-
times) Worth Ten Thousand Words.” Cognitive Science
11(1), pp. 65-99, 1987.

[16] C. Nentwich, L. Capra, W. Emmerich and A. Finkelstein,
“xlinkit: a consistency checking and smart link generation
service.” ACM Transactions on Internet Technology 2(2), pp.
151-185, 2002.

[17] C. Nentwich, W. Emmerich and A. Finkelstein, “Consistency
management with repair actions.” In Proceedings of the 25th
International Conference on Software Engineering (ICSE
2003), pp. 455-464, 2003.

[18] . Nordstrom, J. Sztipanovits, G. Karsai, and A. Ledeczi,
"Metamodeling — rapid design and evolution of domain-
specific modeling environments." In Proceedings of the
IEEE ECBS '99 Conference, Nashville, Tennessee, pp. 68—
74, April, 1999.

[19] H. Ossher et. al., “Business Insight Toolkit: Flexible pre-
requirements modeling.” Informal demonstration paper in
ICSE 2009 Proceedings Companion, May 2009.

[20] H. Ossher et. al., “Using tagging to identify and organize
concerns during pre-requirements analysis.” Workshop paper
in ICSE 2009 Proceedings Companion, May 2009.

[21] S. P. Reiss, “PECAN: Program Development Systems that
Support Multiple Views.” IEEE TSE 11(3), pp. 276-285,
1985.

[22] Y. Wand and R.A. Weber, “Research commentary: informa-
tion systems and conceptual modelling—a research agenda.”
Information Systems Research 13(4), pp. 363–376, 2002.

