
RC24875 (W0910-079) October 15, 2009
Computer Science

IBM Research Report

Extending the CIM-SPL Policy Language with RBAC for
Distributed Management Systems in the WBEM

Infrastructure 

Li Pan
Department of Electronic Engineering

Shanghai Jiao Tong University
China

Jorge Lobo, Seraphin Calo
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich



Extending the CIM-SPL Policy Language with RBAC for Distributed 
Management Systems in the WBEM Infrastructure  

 
         Li Pan                                       Jorge Lobo                               Seraphin Calo 

  Department of Electronic Engineering      IBM T. J. Watson Research Center    IBM T. J. Watson Research Center 
  Shanghai Jiao Tong University, China                              USA                                                    USA 
                     panli@sjtu.edu.cn                              jlobo@us.ibm.com                             scalo@us.ibm.com 

 
 

Abstract— In spite of the large effort behind the 
development of the WBEM and CIM standards for the 
management of distributed systems, there has been 
very little work addressing security in those standards. 
In this paper we present a Role-based Access Control 
(RBAC) policy language to render fine-grained access 
control policies for WBEM and CIM. The language is 
an extension of CIM-SPL, a preliminary DMTF policy 
language standard. The CIM-SPL RBAC extension 
fully complies with the WBEM standards. Access 
control policies can be specified for CIM object 
constructs according to the standard NIST RBAC 
model as well as with an extended model adapted for 
CIM. An implementation framework for the CIM-SPL 
RBAC in the OpenPegasus WBEM infrastructure is 
also presented to demonstrate its usability. Some 
design choices and implementation issues are 
discussed in detail. This framework provides an end to 
end solution to deploy a policy-based RBAC 
mechanism in the WBEM infrastructure. 

 
1. Introduction 

With the increasing complexity of IT infrastructures, 
realizing a distributed management system across 
disparate technologies and platforms becomes a costly 
and laborious task. To solve this problem, the 
Distributed Management Task Force (DMTF) 
proposed Web-Based Enterprise Management (WBEM) 
standards. The goal of these standards is to develop a 
unified way to describe, store and manipulate the 
resources to be managed and to provide a standard 
communication protocol for distributed management 
systems. Currently, more and more IT venders are 
tending to support WBEM standards in their products. 
There are also several open source projects dedicated 
to providing an implementation infrastructure for 
WBEM standards (e.g., OpenPegasus [1]). Based on the 
WBEM infrastructure, domain-specific management 
systems in various areas, including networks, storage 
systems and severs, can be conveniently established. 

However, although access control is a crucial security 
issue for such systems, few WBEM standards refer to 
this issue, and only a preliminary mechanism is 
provided in the OpenPegasus implementation. There is 
no satisfactory way to render a fine-grained access 
control solution in the WBEM infrastructure. 

Another important research effort led by both 
academia and industry to facilitate the system 
management task by is the development of policy-
based management technology [2]. There has been also 
interest in the integration of policy-based management 
technology into the WBEM infrastructure. To this aim, 
a novel policy language, named CIM-SPL, is proposed 
to simplify the definition and application of policy 
rules governing the resources stored in Common 
Information Model (CIM) constructs. CIM-SPL has 
been approved by the DMTF as a suggested policy 
language in the WBEM infrastructure [3]. However,  
the current version of CIM-SPL has been designed to 
specify general purpose management policy rules. It 
does not directly define access control policies. 

Motivated by the above observations, the authors 
extended the CIM-SPL language to render a policy-
based access control solution for the WBEM 
infrastructure. The design goal is to provide an easy 
way to specify authorization policy rules following the 
standard Role-based Access Control (RBAC) model 
for managed resources depicted by CIM objects. 
Furthermore, additional features, such as conditional 
role-to-permission assignments and attribute-based 
user-to-role assignments are added in the policy 
language to provide maximum flexibility for system 
administration. The CIM-SPL RBAC extension 
proposed in this paper inherited all the merits of the 
original language, i.e., it is compliant with CIM 
constructs and consistent with corresponding WBEM 
standards. An implementation framework for the CIM-
SPL RBAC extension in OpenPegasus is also 
presented to demonstrate its usability, and then some 
design choices and implementation issues are 
discussed in detail.  

1 

mailto:jlobo@us.ibm.com


The remainder of this paper is structured as follows: 
Section 2 presents background on the WBEM 
infrastructure and the CIM-SPL policy language; 
Section 3 provides details on the model, syntax and 
semantics of our CIM-SPL RBAC extension; Section 4 
provides examples of role-based access control policy 
rules defined in the CIM-SPL RBAC extension to 
illustrate its features; Section 5 describes the proposed 
OpenPegasus implementation framework; and, finally, 
Section 6 concludes the paper and points to future 
work. 

 
2. Background 
2.1. WBEM Infrastructure 

Although the WBEM standards are defined at an 
architectural level to provide greater flexibility, when 
they are used  the general WBEM Infrastructure can be  
illustrated as in Figure 1.  

 
Figure 1. WBEM Infrastructure 

In the above WBEM infrastructure, the 
communication information between the Management 
Node and the Managed Node is standardized and can 
be transported over HTTP. The managed resources are 
defined according to the CIM Specification. A 
management application, which acts as a CIM Client, 
issues CIM Operation requests and processes received 
CIM Operation responses. The CIM Server receives 
and processes these CIM Operation requests. Most of 
them will be forwarded to a specific CIM Provider. 
The CIM Provider translates the CIM formatted 
requests into resource specific operations and 
translates resource-specific responses into CIM 
formatted responses which will eventually be returned 
to the CIM Client via the CIM Server. All the 
management activities are enforced through CIM 
Operation requests which invoke one or more methods. 

These methods are either intrinsic operations defined 
by the specification to model general CIM operations 
or extrinsic operations defined as methods of specific 
CIM classes [4]. The intrinsic operations can be 
grouped by their functionalities as showed in Table 1. 

Table 1. CIM Intrinsic Operations 
Functional Group CIM Intrinsic Operations 

Basic read GetClass, EnumerateClasses, 
EnumerateClassNames, GetInstance, 

EnumerateInstances, GetProperty 
EnumerateInstanceNames 

Basic Write SetProperty 
Schema Manipulation CreateClass, ModifyClass, 

DeleteClass 
Instance Manipulation CreateInstance, ModifyInstance, 

DeleteInstance 
Association Traversal Associators, AssociatorNames, 

References, ReferenceNames 
Query ExecQuery 

Qualifier Declaration GetQualifier, SetQualifier, 
DeleteQualifier, EnumerateQualifier 

 
2.2. CIM-SPL 

CIM-SPL is a declarative policy language defined 
to specify condition-action structured policies 
governing CIM objects. Each CIM-SPL policy is 
written under the scope of a single CIM Object 
referred to as the anchor object of the policy. All other 
CIM Objects referenced by a CIM-SPL policy must be 
accessible by traversing CIM associations starting 
from the anchor object of the policy. A general CIM-
SPL policy follows the syntax structure shown in 
Figure 2.  

Figure 2.  CIM-SPL Policy Rule Syntax 

import <MOF Name>::<CIM Class Name>:<Condition>
policy{  
    declaration { <constant and macros> }  
    condition { <Java-like boolean expression> } 
    decision { <action workflow> } 
}

The boldface words are resrved key words of the 
language (we follow this method of representation in 
the remainder of the paper). The import statement 
defines the class of the anchor object for the policy. 
The declaration section is optional and defines macros 
and constants to simplify notation in the condition. The 
condition and decision sections correspond 
respectively to the “if and then” clauses of a policy 
rule. A unique feature of CIM-SPL is that it has a set 
of built-in operators that allow traversal of CIM 
associations collecting required system components 
during a policy evaluation. Besides these built-in 
operators, CIM-SPL has all conventional arithmetic, 
boolean, and casting operators along with operators for 

2 



string and datetime manipulation. It also supports all 
intrinsic data types defined by the CIM Meta Schema 
and one-dimensional arrays of an intrinsic type. These 
characteristics make CIM-SPL not only compatible 
with CIM but also powerful for policy representation. 

Consistent with the CIM Policy Model, policies can 
be organized into groups in CIM-SPL. The definition 
of a policy group follows the syntax shown in Figure 3. 
A policy group has an optional association.  The 
traversal of this association is used for gathering 
required data during the evaluation of the policy group. 
This simple but powerful mechanism significantly 
simplifies the management of policies for hierarchical 
CIM objects.  

Figure 3. CIM-SPL Policy Group Syntax 
 

3. Extending CIM-SPL with RBAC 
Generally, an access control policy specifies on 

what conditions to grant permission to a subject to 
perform actions on a protected object. In the WBEM 
context discussed in section 2.1, the protected objects 
are managed resources contained in CIM data 
structures. The controlled actions are management 
activities requested by the CIM Client to manipulate 
CIM Objects. They are either intrinsic or extrinsic CIM 
Operations. Since the Role-based Access Control 
(RBAC) model has great power for representing 
various authorization policies, our CIM-SPL extension 
is defined so as to provide a complete approach for 
using RBAC policies in WBEM-based management 
applications. Our design objectives are that:  the 
RBAC policies should be easy for a policy author to 
write;, the extension is CIM compliant; and, the 
language style is consistent with the original CIM-SPL. 

To achieve the first design objective, a close 
correspondence between access control policy rules 
and the standard NIST RBAC model [5] is established, 
which is illustrated in Figure 4. 

The bottom part of the figure is a simplified RBAC 
model including the main elements such as users, roles, 
permissions, sessions and constraints. As shown in the 
gray blocks at the top of the figure, three new types of 
Policy Rules are proposed in our CIM-SPL RBAC 
extension; these are Permission Rules, PA Rules and 

UA Rules. Each of them represents one or more 
important components in the RBAC model. The 
condition-action style Policy Rule in the original CIM-
SPL is then called the Obligation Policy Rule, since it 
expresses the semantics that when the defined 
conditions are satisfied specific management activities 
should be enforced.  

 
 Figure 4. Mapping CIM-SPL Access Control 

Policy Rules to the NIST RBAC Model 
 

A Permission Policy Rule is used to define the 
approval of CIM operations on managed resources. It 
represents a elementary policy rule which will be 
referred to in a PA Policy Rule to grant access 
privileges to roles.   

A PA Policy Rule is used to define the permission-
role assignment relationship of the RBAC model. 
However, different from the standard RBAC model, 
our PA Policy Rule can specify conditional permission 
assignments to roles, which is a very useful feature for 
system administration (e.g., backup operations are only 
allowed after midnight). Another feature is that based 
on the policy information model which will be 
introduced later, when the PA Policy Rules are parsed 
senior roles will inherit permissions from junior roles 
automatically. 

A UA Policy Rule is used to define the user-role 
assignment relationship of the RBAC model. It 
specifies the conditional connections between roles 
and selected subjects in a session. The constraints on 
conflicting roles during the assignment are also 
defined in this Policy Rule to achieve separation of 
duty.  

The mapping relationship between the functionality 
layout of our new types of Policy Rules and the RBAC 
Model facilitates a policy author to design access 
control policies according to a well-known security 
model. It is worth noting that we did not design any 
types of Policy Rules for session management, user 
and role activation and role administration, because 
they are closely related to specific implementation 
issues of a RBAC deployment system. These are 
outside the scope of a policy language. But some of 

Permission

User Role

Operation

Resource

Role 

User 
Permissio
Assignment 

Session

Permission 

PA 

UA 

Constraints

import<MOF Name>::<CIM Class Name>:<Condition>
strategy <Exiecution Strategy> 
declaration{ . . . }  
policy{ . . . }:<Priority> 
. . . 
policy{ . . . }:<Priority> 
policyGroup:<Association Class> 
                      (<Property One>,<Property Two>) 
           { . . . }:<Priority> 

3 



these implementation issues in the WBEM 
infrastructure are discussed in section 5. 

Two  design features helped us realized our second 
design objective: compliance with CIM standards. First, 
our CIM-SPL RBAC extension fully inherited the 
original language features designed for CIM, such as 
the import statement, the built-in “collection” operators, 
etc. Second, we extend the policy information model in 
the CIM Policy Schema for describing our policies in a 
way that follows the CIM specification, as shown in 
Figure 5. For simplicity the prefix CIM_ has been 
removed from the names of classes. The gray classes 
and related associations are introduced to describe the 
policy components in our CIM-SPL extension. The 
others are defined by basic CIM Schemas. 

 
Figure 5.  Extended CIM Policy Model for CIM-
SPL RBAC Extension 

The advantages of this design are twofold. First, it 
provides a unified way to define and manipulate policy 
components in the same way as other CIM objects. 
Second, it can leverage the existing information in the 
CIM repository by using basic model classes and 
associations. For example, the role class defined in the 
CIM User Schema is used in our extended CIM policy 
model to express the role information in the RBAC 
model. A corresponding RoleHierarchy association 
class is added to represent the RBAC role hierarchy 
model, which will be used to find the role hierarchy for 
a senior role and then to inherit the junior roles’ 
permissions during the compiling process of a PA 
Policy Rule. Although all CIM-SPL policy rules are 
written in plain text, this model will provide an 
efficient way for a policy compiler to parse CIM-SPL 
RBAC policy rules. Then the encoded policy 
components can be further mapped into a LDAP 
repository according to the IETF standard [6]. It will 

greatly facilitate the retrieving process during policy 
evaluation. 

An overview of the syntax of policy rules of our 
CIM-SPL RBAC extension given in Figure 6. 

F

ext
the
gro
exe
Pol
pol
6(a
as t

6(b
ma
the
wri
pre
pro
gro

4 
import <MOF Name>::<CIM Class Name>:<Condition>
strategy <Execution Strategy> 
policy{  
    PolicyName ”policy name string”; 
    declaration { <constant and macros> }  
    condition { <Java-like boolean expression> } 
    decision { <action workflow> } 
} 

(a) 
import <MOF Name>::<CIM Class Name>:<Condition>
policy { 
    PolicyName ”policy name string”; 
    declaration { <constant and macros> }     
    operation{ <CIM Operation Identifiers> } 
} 

(b) 
import <MOF Name>::<CIM Class Name>:<Condition>
policy { 
    PolicyName ”policy name string”; 
    declaration { <constant and macros> }  

condition { <Java-like boolean expression> } 
grant{ <Permission Identifiers>} 

} 
(c) 

import <MOF Name>::<CIM Class Name>:<Condition>
policy { 
    PolicyName ”policy name string”; 
    SSOD [<role names >]:<cardinality>; 

DSOD [<role names>]:<cardinality>; 
    declaration { <constant and macros> }  
    condition { <Java-like boolean expression> } 
    grant{ <role identifiers> } 
} 

(d) 
igure 6.  Syntax Schema of Policy Rules in 
the CIM-SPL RBAC Extension 

 According to the third design objective, our 
ension follows the original language style. However 
 new Policy Rules do not use the original policy 
up structure any more, hence the corresponding 
cution strategy field is not needed. In all types of 
icy Rules, a PolicyName element is added for 
icy compiling and retrieving.  As shown in Figure 
), the rest of the Obligation Policy Rule is the same 
he original policy rule.  
The syntax of a Permission Rule is shown in Figure 
). Each Permission Rule is written against a 
naged resource class or selected instances by using 
 condition constraint in the import statement. For 
ting meaningful Permission policies in an easy way, 
defined identifiers for intrinsic CIM operations are 
vided according to the names of functionality 
ups listed in Table 1, e.g., BasicRead. Other CIM 



operation identifiers in the operation statement are 
specific method names of a CIM class. 

The syntax of a PA Rule is shown in Figure 6(c).  
The permission identifiers in the grant statement are 
PolicyName strings defined in corresponding 
Permission rules. A PA rule has a condition statement 
that must be true when a user assign to the role wants ti 
exercise the permission. 

The syntax of a UA Rule is show in Figure 6(d). 
Regarding "users" in the WBEM context, they may be 
people or non-human entities, such as a service 
running as part of an application system. So the CIM 
user schema factors the user into several classes. In the 
condition statement, instead of simply passing a user 
ID, our UA Policy Rule can pass a condition on 
attributes of various user classes. This feature is quite 
suitable for applications with an unknown user 
population, e.g., web services and user attributes like 
location or credentials can be used the decide whether 
the user is assigned to the role. The Static Separation 
of Duty (SSD) constraint defines the conflicting roles 
that can not be assigned to a user at the same time. The 
Dynamic Separation of Duty (DSD) constraint defines 
the role set that can not be simultaneously activated by 
a user within a session. Each constraint consists of two 
parts. The first part is a collection of role name strings. 
The second part is a cardinality integer. The role 
identifiers in the grant statement are name strings of 
role instances. 

  
4. Examples 

The first example is to demonstrate the 
representation capability for basic RBAC and 
hierarchical RBAC policy rules. Assume there is a 
WBEM-based computer management application used 
by an IT department. The junior role “monitor” in the 
department only wants to gather some information. For 
example, he wants to know the number of processes 
running in a managed computer with a particular 
operating system installation. This can be achieved by 
invoking an intrinsic CIM operation “GetProperty” in 
the BasicRead functionality group to read the value of 
the NumberOfProcess property of the 
CIM_OperatingSystem class. A senior role “operator” 
not only wants to gather information but also needs to 
do some maintenance operations, such as to set the 
time zone, to reboot or to shutdown the operating 
system. These can be realized by executing the 
“SetProperty” intrinsic CIM operation in the 
BasicWrite functionality group or invoking 
corresponding methods of the CIM_OperatingSystem 
class respectively. First we define two permission 
policy rules as shown in Figure 7(a) and Figure 7(b). 

Then two PA policy rules are defined to assign 
corresponding permissions to the “monitor” role and  
the “operator” role as shown in Figure 8(a) and Figure 
8(b) respectively.  

Figure 7 Two Permission Policy Rules to 
the CIM_OperatiingSystem class 

import CIM_X_XX_XXXX::CIM_OperatingSystem; 
policy { // permission policy rule 
    PolicyName ”Browse”; 
    operation{ BasicRead; }              
 } 

(a) 
import CIM_X_XX_XXXX:: CIM_OperatingSystem; 
policy { // permission policy rule 
    PolicyName “Manipulation”; 
    operation{ 
         BasicWrite; 
         reboot; 
         shutdown; 
     } 
} 

(b) 

 

 

the
ass
per
the
act
role
of 
“se
of 
com
sys
CIM
acc
pol
var

spe

5 
import CIM_X_XX_XXXX::role:name=”monitor”; 
policy { // PA policy rule 

    PolicyName ”MonitorPA”; 
condition{ } 

    granted{ Browse; } 
} 

(a) 
import CIM_X_XX_XXXX::role:name=”operator”;
policy { // PA policy rule 
    PolicyName OperatorPA; 
    condition{ } 
    granted{ Manipulation; } 
} 

(b) 
Figure 8 Two PA Policy Rules for the role 
“monitor” and the role “operator” 

For simplicity, we did not define any conditions in 
 PA policy rules. Since there is a RoleHierarchy 
ociation, when the PA policy rules are parsed, all 
missions of the “monitor” role will be inherited by 
 “operator” role. Note that a real management 
ivity needs a set of permissions. For example, if the 
 “monitor” wants to know the number of processes 

a running operating system on the computer named 
ver1.ibm.com”, he needs to enumerate the instances 
the CIM_ComputerSystem class to find this 
puter first, and then get the running operating 

tem by traversing the association class 
_RunningOS. It is obvious that a fine-grained 

ess control on this activity can be achieved with our 
icy language by defining permission policy rules on 
ious objects and granting them to appointed roles. 
The second example is to demonstrate how to 
cify access control policy rules with separation of 



duty constraints. Assume there is a WBEM-based 
information management application in an enterprise 
research department.  The CIM_Proposal class is 
defined to represent the information of  a research 
proposal. It has two methods. One is “submit”. 
Another is “approve”. The policies for research 
department are: only researchers who are full-time 
employees can submit a proposal; and, only a person 
whose title is “manager” is qualified to be a member of 
the committee which has the right to approve a 
proposal. Two permission policy rules are defined to 
represent the privileges to submit or to approve a 
proposal respectively, as shown in Figure 9(a) and 
Figure 9(b). 

Figure 9 Two Permission Policy Rules to the 
Class CIM_Proposal 

Then these two permissions are assigned to the 
“researcher” role and the “committeeman” role 
respectively by two PA policy rules as shown in Figure 
10(a) and Figure 10(b).  

Figure 10 Two PA Policy Rules for the role 
“researcher” and the role “committeeman” 

Finally, two UA policy rules with separation of 
duty constraints are defined in Figure 11. In Figure 
11(a), a built-in operator “isWithin” is used to express 
a time condition constraint to assign a user with the 
“researcher” role to submit a proposal in a limited time 

period.  The “researcher” role belongs to the SSD role 
set with cardinality 1, so users can not be assigned 
more than one role from this set.  Similarly, the 
“researcher” role also belongs to the DSD role set with 
cardinality 2,  and hence authorized users can activate 
no more than two roles at the same time in a session. 
Similar contraints are also defined in Figure 11(b). 

Figure 11 Two UA Policy Rules with 
Separation of Duty Constraints 

import CIM_X_XX_XXXX::person:EmployeeType=”FullTime”; 
policy { // UA policy rule 
    PolicyName “ResearcherRA”;     
    SSOD [“Researcher”, “Committeeman”]:1; 
    DSOD [“Researcher”, “staff”, “CEO”]:2; 
    declare{ 
         CurrentDay=getDayofYear(time); 
    } 
    condition{ 
     isWithin(CurrentDay, 2008-2-1 TZ = Newyork,  
                      2008-07-31 TZ = Newyork); 
     } 
    grant{ researcher; } 
} 

(a) 
import CIM_X_XX_XXXX::person:Title=”manager”; 
policy { // UA policy rule 
    PolicyName “CommitteemanRA”;     
    SSOD [“Researcher”, “Committeeman”]:1; 
    DSOD [“Committeeman”, “Engineer”, “CEO”]:2; 
    grant{  committeeman; } 
} 

(b) 

import CIM_X_XX_XXXX::CIM_ Proposal; 
policy { // permission policy rule 
    PolicyName ”SubmitProposal”; 
    operation{ submit; } 
} 

(a) 
import CIM_X_XX_XXXX::CIM_ Proposal; 
policy { //permission policy rule 
    PolicyName ”ApproveProposal”; 
    operation{approve;} 
} 

(b) 

 
5.An Implementation Framework for OpenPegasus 

One of the design principles of both the original 
CIM-SPL and our extension is to avoid having specific 
implementation concerns intertwined with language 
characheristics [7]. It provided the maximum flexibility 
to deploy a policy-based system. However, we propose 
an open framwork of our CIM-SPL RBAC extension 
in the OpenPegasus WBEM infrastructure to 
demonstrate its usability, as illustrated in Figure 12. 
Our implementation framework follows the Policy 
Enforcement Point/Policy Decision Point (PEP/PDP) 
approach proposed by IETF [8].  In our framework, the 
PEP is a modified OpenPegasus CIM Sever. It 
interprets  all CIM operation requests coming from the 
WBEM clients, and then sends policy requests to the 
PDP. The PDP, our CIM-SPL RBAC policy sever, is 
implemented basically as a method provider in 
OpenPegasus. So the communication between the PEP 
and the PDP uses the standard provider interface APIs 
of OpenPegasus. The CIM-SPL RBAC provider has an 
internal state database for storing state information for 
policy requests.  These states are used to evaluate a 
policy rule with complex constraints, e.g., to evaluate a 

import CIM_X_XX_XXXX::role:name=”researcher”; 
policy { // PA policy rule; 
    PolicyName ResearcherPA; 

condition{ } 
    grant{ SubmitProposal;} 
} 

(a) 
import CIM_X_XX_XXXX::role:name=”committeeman”; 
policy {// PA policy rule; 
    PolicyName ResearcherPA; 

condition{ } 
    grant{ ApproveProposal; } 
} 

(b) 

6 



DSD contraint in a UA policy rule one needs to search 
informaion among active sessions.  The Policy 
Repository is a LDAP sever that stores the RBAC 
policy component objects described in Section 3. The 
policy management tools are used to edit and compile 
policies into the repository, and aslo act as a interface 
for administering the PDP service. 

Figure 12 An Implementation Framework of 
CIM-SPL RBAC Extension 

Due to space limitations, we only discuss some 
main implementation issues and choices in the 
following. 
A. Compatibility with the Namespace-based Access 
Control Mechanism in OpenPegasus 

The current OpenPegasus implementaion has a 
Namespace-based access control mechanism. All CIM 
operations are divided into two groups of READ and 
WRITE in the OpenPegasus implementation. An 
interface named “cimauth” is provided to define 
authorization rules to grant the READ or WRITE 
permission on a target Namespace to users. Since the 
Name-based access control is enforced before the CIM 
server delivers the CIM operation to a specific 
provider in which the managed resource classes are 
realized, the RBAC mechanism in our framework can 
be cascaded to it to achieve a fine-graind access 
control. Moreover, the Namespace-based authorization 
rules can be easily  represented by our CIM-SPL 
RBAC extansion language, although the literal 
meaning of a permission policy rule defined against a 
Namespace means the approval of operations on the 
Namespace class, an appropriate PEP implementation 
in the CIM sever who sends the policy request should 
know from the policy evaluation whether the CIM 
operation is allowed to be further processed to a 
specific class within this Namespace. This provides the 
possibility to integrate  the Namespace-based access 
control into our framework in the future. 
B. PEP Implementation 

The internal components of the CIM server are 
illustrated in Figure 12. There are many places that can 
be chosen to implement the RBAC PEP. The Provider 
Manager is a component responsible for the routing of 
requests and responses between the CIM Object 
Manager and the CIM Providers. So we choose the 
provider manager to implement the RBAC PEP in our 
framework. Another advantage of this design choice is 
that the Provider manager is also responsible for the 
maintainence of the Provider registration, and Provider 
loading and unloading, so it is possible to realize a 
policy registration mechanism for each provider. It 
provides the possibility to deploy a policy management 
system with distributed administration. Note that the 
Namespace-based authorization process is 
implemented in the CIM Object Manger. As discussed 
above, it can be cascaded to our framework.   

CIM Server (PEP)

CIM-SPL RBAC 
Provider (PDP)

Specific CIM
Providers
Managed 
Resources

Policy Management 
ToolsWEB Clients

       Policy Repository
CIM  Repository

LDAP

CIM Protocol Adaper

CIM Provider Manager

Internal State 
Database

CIM Object Manager

C. Data Gathering  
Unlike certain policy languages that assume a 

model of how the data required for policy evaluation 
will be gathered, the specification of CIM-SPL and our 
RBAC extension is completely independent of how the 
required data is gathered. The data gathering 
mechanism depends on the policy server 
implementation. Based on the OpenPegasus 
implementation, the CIM-SPL RBAC PDP server 
gathers the required data for policy evaluation through 
three approachs. First, it retrieves predefined constant 
data from the policy repository. Second, it collects 
state data from the internal database. Third, a 
“connectlocal” connection is established between the 
PDP sever and the CIM sever to gather data from the 
CIM repository. The “connectlocal” is an interface 
provided by the OpenPegasus implementation. With 
this connection the PDP server can act as a CIM client 
to gather data from the CIM repository through CIM 
operations. 
D. Additional Services  

One of our design decisions is not to specify the 
related session and role management services. It is 
envisioned that when a policy-based RBAC 
application system is deployed, as a part of the 
deployment, these services will be specified in the 
implementation. In fact, a set of SSL-based 
authentication and session management services are 
already provided by the OpenPegasus implementation. 
A user from a WBEM client is activated and 
authenticated in a SSL session before it can perform an 
action. As to the role management, basic properties 
and methods for role management in a managed 
system have been specified in the CIM Role Based 
Authorization Profile. Some common services, such as 
CreatRole(), DeleteRole() and ModifyRole(), etc., are 

7 



defined in the CIM_RoleBasedAuthorizationService 
class. These serivces can be seamlessly integrated with 
our framework to provide a complete solution for 
deploying a WBEM-based RBAC management system. 

 
6. Related Works 

Except for CIM-SPL, CQL (CIM Query Language) 
[9] is the only suggested policy language in the WBEM 
infrastructure. However, CQL assumes a relational 
model. This imposes a complicated syntax to represent 
policies for CIM constructs. Moreover, CQL can not 
specify access control policies directly. In the CIM 
context, a close work to ours is decribed in [10].  They 
presented a framework based on PCIM [11] for storing 
and enforcing RBAC policies in distributed 
heterogeneous systems. But they did not address the 
access control problem in the WBEM infrastructure 
and their RBAC policies are represented only by using 
CIM constructs instead of a formal policy language as 
in our work. Ponder [12] is an object-oriented general 
policy language for specifying access control rules 
called authorization rules as well as general purpose 
management rules. Ponder uses the role concept to 
provide a semantic grouping of policies with a 
common subject. There is no direct relationship 
between the role-based Ponder authorization rules and 
the RBAC model. In the Ponder deployment 
framework, policy management operations are carried 
out by invoking methods of the policy object through 
enforcement agents.  So it is hard to combine this 
model with the WBEM infrastructure. Another 
important work on access control policy languages is 
the XACML  policy language[13] which aslo adopts the 
PDP/PEP deployment framework. The specification 
for RBAC policy rules are provided in the XACML 
RBAC Profile [14]. But it can not be used to define 
seperation of duty contraints and it only supports a role 
assignment specification based on subject IDs. 

 
7. Conclusion  

This paper has presented a CIM-SPL policy 
language extension for Role-based Access Control. 
The CIM-SPL RBAC extension inherited all 
characteristics of the original CIM-SPL policy 
language and it fully complies with the WBEM 
standards. With this CIM-SPL extension, access 
control policies can be easily defined for managed 
resources stored in CIM constructs according to the 
standard NIST RBAC model. Although the language 
characteristic makes it flexible to be implemented by 
various software patterns, an implementation 
framework in the OpenPegasus WBEM infrastructure 

is proposed to demonstrate the usability of our CIM-
SPL RBAC extension. However, the ultimate 
validation of a policy language will be demonstrated 
by the degree of its adoption. So, one of our ongoing 
works is to realize a complete open policy framework 
with CIM-SPL in the OpenPegasus open source 
WBEM implementation. We expect it will be helpful 
to promote more and more WBEM-based management 
applications adopting the policy technology with CIM-
SPL in a standard open architecture.  
 
8. References 
 
[1] The Open Group: OpenPagasus: C++ CIM/WBEM 

manageability service broker. 
http://www.openpegasus.org 

[2] Raouf Boutaba, Issam Aib, “Policy-based Management: 
A Historical Perspective”, Journal of Network and 
Systems Management. Volume 15, Number 4 / 
December, 2007, pp. 447-480. 

[3] DMTF, “CIM Simplified Policy Language (CIM-SPL). 
Specification DSP0231”, v1.0.0a, 10 Jan 2007. 

[4] DMTF, “Specification for CIM Operations over HTTP”, 
Version 1.2, 2004. 

[5] Ferraiolo et al., “The NIST Model for Role-Based 
Access Control: Towards a Unified Standard”, ACM 
Trans. Information and System Security, vol. 4, no. 3, 
Aug. 2001, pp. 224-274. 

[6] J. Strassner, E. Ellesson, B. Moore, R. Moats, “Policy 
Core Lightweight Directory Access Protocol (LDAP) 
Schema”,  IETF RFC 3707, Feb. 2004. 

[7] Dakshi Agrawal, Seraphin B. Calo, Kang-Won Lee, 
Jorge Lobo, “Issues in Designing a Policy Language for 
Distributed Management of IT Infrastructures”, 10th 
IFIP/IEEE International Symposium on Integrated 
Network Management, 2007, pp. 30-39. 

[8] Yavatkar, R., Pendarakis, D., Guerin, R., A framework 
for policy-based admission control, IETF Network 
Working Group, RFC 2753, January 2000 

[9] DMTF, “CIM Query Language Specification”. Version 
1.0.0h edn. (2006) 

[10] Timothy E. Squair, Edgard Jamhour, Ricardo C. 
Nabhen, “A RBAC-Based Policy Information Base”, 
Sixth IEEE International Workshop on Policies for 
Distributed Systems and Networks, pp. 171 – 180. 

[11] Moore, B., Ellesson, E., Strassner, J., Westerinen, A, 
“Policy core information model (PCIM) version 1 
specification” Request for Comment 3060, 2001, 
Network Working Group. 

[12] Damianou, N., Dulay, N., Lupu, E., Sloman, M., “The 
ponder policy specification language”. Proceedings of 
the International Workshop on Policies for Distributed 
Systems and Networks, 2001, pp. 18–38. 

[13] OASIS, “eXtensible Access Control Markup Language 
(XACML)”, version 1.03. OASIS Standard, Feb. 2003. 

[14] Anderson, ed., “XACML Profile for Role-Based Access 
Control (RBAC)”, OASIS Access Control TC 
committee 01, 13 Feb. 2004. 

8 

http://www.openpegasus.org/

	1. Introduction
	2. Background
	2.1. WBEM Infrastructure
	2.2. CIM-SPL

	3. Extending CIM-SPL with RBAC
	4. Examples
	5.An Implementation Framework for OpenPegasus
	6. Related Works
	7. Conclusion
	8. References

